1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "bolt/Rewrite/RewriteInstance.h"
10 #include "bolt/Core/AddressMap.h"
11 #include "bolt/Core/BinaryContext.h"
12 #include "bolt/Core/BinaryEmitter.h"
13 #include "bolt/Core/BinaryFunction.h"
14 #include "bolt/Core/DebugData.h"
15 #include "bolt/Core/Exceptions.h"
16 #include "bolt/Core/FunctionLayout.h"
17 #include "bolt/Core/MCPlusBuilder.h"
18 #include "bolt/Core/ParallelUtilities.h"
19 #include "bolt/Core/Relocation.h"
20 #include "bolt/Passes/CacheMetrics.h"
21 #include "bolt/Passes/ReorderFunctions.h"
22 #include "bolt/Profile/BoltAddressTranslation.h"
23 #include "bolt/Profile/DataAggregator.h"
24 #include "bolt/Profile/DataReader.h"
25 #include "bolt/Profile/YAMLProfileReader.h"
26 #include "bolt/Profile/YAMLProfileWriter.h"
27 #include "bolt/Rewrite/BinaryPassManager.h"
28 #include "bolt/Rewrite/DWARFRewriter.h"
29 #include "bolt/Rewrite/ExecutableFileMemoryManager.h"
30 #include "bolt/Rewrite/JITLinkLinker.h"
31 #include "bolt/Rewrite/MetadataRewriters.h"
32 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h"
33 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
34 #include "bolt/Utils/CommandLineOpts.h"
35 #include "bolt/Utils/Utils.h"
36 #include "llvm/ADT/AddressRanges.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
39 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
40 #include "llvm/MC/MCAsmBackend.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/MCAsmLayout.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCObjectStreamer.h"
45 #include "llvm/MC/MCStreamer.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/MC/TargetRegistry.h"
48 #include "llvm/Object/ObjectFile.h"
49 #include "llvm/Support/Alignment.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/DataExtractor.h"
53 #include "llvm/Support/Errc.h"
54 #include "llvm/Support/Error.h"
55 #include "llvm/Support/FileSystem.h"
56 #include "llvm/Support/ManagedStatic.h"
57 #include "llvm/Support/Regex.h"
58 #include "llvm/Support/Timer.h"
59 #include "llvm/Support/ToolOutputFile.h"
60 #include "llvm/Support/raw_ostream.h"
65 #include <system_error>
68 #define DEBUG_TYPE "bolt"
71 using namespace object
;
74 extern cl::opt
<uint32_t> X86AlignBranchBoundary
;
75 extern cl::opt
<bool> X86AlignBranchWithin32BBoundaries
;
79 extern cl::opt
<MacroFusionType
> AlignMacroOpFusion
;
80 extern cl::list
<std::string
> HotTextMoveSections
;
81 extern cl::opt
<bool> Hugify
;
82 extern cl::opt
<bool> Instrument
;
83 extern cl::opt
<JumpTableSupportLevel
> JumpTables
;
84 extern cl::list
<std::string
> ReorderData
;
85 extern cl::opt
<bolt::ReorderFunctions::ReorderType
> ReorderFunctions
;
86 extern cl::opt
<bool> TimeBuild
;
88 cl::opt
<bool> AllowStripped("allow-stripped",
89 cl::desc("allow processing of stripped binaries"),
90 cl::Hidden
, cl::cat(BoltCategory
));
92 static cl::opt
<bool> ForceToDataRelocations(
93 "force-data-relocations",
94 cl::desc("force relocations to data sections to always be processed"),
96 cl::Hidden
, cl::cat(BoltCategory
));
100 cl::desc("add any string to tag this execution in the "
101 "output binary via bolt info section"),
102 cl::cat(BoltCategory
));
104 cl::opt
<bool> DumpDotAll(
106 cl::desc("dump function CFGs to graphviz format after each stage;"
107 "enable '-print-loops' for color-coded blocks"),
108 cl::Hidden
, cl::cat(BoltCategory
));
110 static cl::list
<std::string
>
111 ForceFunctionNames("funcs",
113 cl::desc("limit optimizations to functions from the list"),
114 cl::value_desc("func1,func2,func3,..."),
116 cl::cat(BoltCategory
));
118 static cl::opt
<std::string
>
119 FunctionNamesFile("funcs-file",
120 cl::desc("file with list of functions to optimize"),
122 cl::cat(BoltCategory
));
124 static cl::list
<std::string
> ForceFunctionNamesNR(
125 "funcs-no-regex", cl::CommaSeparated
,
126 cl::desc("limit optimizations to functions from the list (non-regex)"),
127 cl::value_desc("func1,func2,func3,..."), cl::Hidden
, cl::cat(BoltCategory
));
129 static cl::opt
<std::string
> FunctionNamesFileNR(
130 "funcs-file-no-regex",
131 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden
,
132 cl::cat(BoltCategory
));
136 cl::desc("preserve intermediate .o file"),
138 cl::cat(BoltCategory
));
140 cl::opt
<bool> Lite("lite", cl::desc("skip processing of cold functions"),
141 cl::cat(BoltCategory
));
143 static cl::opt
<unsigned>
144 LiteThresholdPct("lite-threshold-pct",
145 cl::desc("threshold (in percent) for selecting functions to process in lite "
146 "mode. Higher threshold means fewer functions to process. E.g "
147 "threshold of 90 means only top 10 percent of functions with "
148 "profile will be processed."),
152 cl::cat(BoltOptCategory
));
154 static cl::opt
<unsigned> LiteThresholdCount(
155 "lite-threshold-count",
156 cl::desc("similar to '-lite-threshold-pct' but specify threshold using "
157 "absolute function call count. I.e. limit processing to functions "
158 "executed at least the specified number of times."),
159 cl::init(0), cl::Hidden
, cl::cat(BoltOptCategory
));
161 static cl::opt
<unsigned>
162 MaxFunctions("max-funcs",
163 cl::desc("maximum number of functions to process"), cl::Hidden
,
164 cl::cat(BoltCategory
));
166 static cl::opt
<unsigned> MaxDataRelocations(
167 "max-data-relocations",
168 cl::desc("maximum number of data relocations to process"), cl::Hidden
,
169 cl::cat(BoltCategory
));
171 cl::opt
<bool> PrintAll("print-all",
172 cl::desc("print functions after each stage"), cl::Hidden
,
173 cl::cat(BoltCategory
));
175 cl::opt
<bool> PrintProfile("print-profile",
176 cl::desc("print functions after attaching profile"),
177 cl::Hidden
, cl::cat(BoltCategory
));
179 cl::opt
<bool> PrintCFG("print-cfg",
180 cl::desc("print functions after CFG construction"),
181 cl::Hidden
, cl::cat(BoltCategory
));
183 cl::opt
<bool> PrintDisasm("print-disasm",
184 cl::desc("print function after disassembly"),
185 cl::Hidden
, cl::cat(BoltCategory
));
188 PrintGlobals("print-globals",
189 cl::desc("print global symbols after disassembly"), cl::Hidden
,
190 cl::cat(BoltCategory
));
192 extern cl::opt
<bool> PrintSections
;
194 static cl::opt
<bool> PrintLoopInfo("print-loops",
195 cl::desc("print loop related information"),
196 cl::Hidden
, cl::cat(BoltCategory
));
198 static cl::opt
<cl::boolOrDefault
> RelocationMode(
199 "relocs", cl::desc("use relocations in the binary (default=autodetect)"),
200 cl::cat(BoltCategory
));
202 static cl::opt
<std::string
>
204 cl::desc("save recorded profile to a file"),
205 cl::cat(BoltOutputCategory
));
207 static cl::list
<std::string
>
208 SkipFunctionNames("skip-funcs",
210 cl::desc("list of functions to skip"),
211 cl::value_desc("func1,func2,func3,..."),
213 cl::cat(BoltCategory
));
215 static cl::opt
<std::string
>
216 SkipFunctionNamesFile("skip-funcs-file",
217 cl::desc("file with list of functions to skip"),
219 cl::cat(BoltCategory
));
222 TrapOldCode("trap-old-code",
223 cl::desc("insert traps in old function bodies (relocation mode)"),
225 cl::cat(BoltCategory
));
227 static cl::opt
<std::string
> DWPPathName("dwp",
228 cl::desc("Path and name to DWP file."),
229 cl::Hidden
, cl::init(""),
230 cl::cat(BoltCategory
));
233 UseGnuStack("use-gnu-stack",
234 cl::desc("use GNU_STACK program header for new segment (workaround for "
235 "issues with strip/objcopy)"),
237 cl::cat(BoltCategory
));
240 TimeRewrite("time-rewrite",
241 cl::desc("print time spent in rewriting passes"), cl::Hidden
,
242 cl::cat(BoltCategory
));
245 SequentialDisassembly("sequential-disassembly",
246 cl::desc("performs disassembly sequentially"),
248 cl::cat(BoltOptCategory
));
250 static cl::opt
<bool> WriteBoltInfoSection(
251 "bolt-info", cl::desc("write bolt info section in the output binary"),
252 cl::init(true), cl::Hidden
, cl::cat(BoltOutputCategory
));
256 // FIXME: implement a better way to mark sections for replacement.
257 constexpr const char *RewriteInstance::SectionsToOverwrite
[];
258 std::vector
<std::string
> RewriteInstance::DebugSectionsToOverwrite
= {
259 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str",
260 ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists",
261 ".gdb_index", ".debug_addr", ".debug_abbrev", ".debug_info",
262 ".debug_types", ".pseudo_probe"};
264 const char RewriteInstance::TimerGroupName
[] = "rewrite";
265 const char RewriteInstance::TimerGroupDesc
[] = "Rewrite passes";
270 extern const char *BoltRevision
;
272 MCPlusBuilder
*createMCPlusBuilder(const Triple::ArchType Arch
,
273 const MCInstrAnalysis
*Analysis
,
274 const MCInstrInfo
*Info
,
275 const MCRegisterInfo
*RegInfo
,
276 const MCSubtargetInfo
*STI
) {
278 if (Arch
== Triple::x86_64
)
279 return createX86MCPlusBuilder(Analysis
, Info
, RegInfo
, STI
);
282 #ifdef AARCH64_AVAILABLE
283 if (Arch
== Triple::aarch64
)
284 return createAArch64MCPlusBuilder(Analysis
, Info
, RegInfo
, STI
);
287 #ifdef RISCV_AVAILABLE
288 if (Arch
== Triple::riscv64
)
289 return createRISCVMCPlusBuilder(Analysis
, Info
, RegInfo
, STI
);
292 llvm_unreachable("architecture unsupported by MCPlusBuilder");
298 using ELF64LEPhdrTy
= ELF64LEFile::Elf_Phdr
;
302 bool refersToReorderedSection(ErrorOr
<BinarySection
&> Section
) {
303 return llvm::any_of(opts::ReorderData
, [&](const std::string
&SectionName
) {
304 return Section
&& Section
->getName() == SectionName
;
308 } // anonymous namespace
310 Expected
<std::unique_ptr
<RewriteInstance
>>
311 RewriteInstance::create(ELFObjectFileBase
*File
, const int Argc
,
312 const char *const *Argv
, StringRef ToolPath
) {
313 Error Err
= Error::success();
314 auto RI
= std::make_unique
<RewriteInstance
>(File
, Argc
, Argv
, ToolPath
, Err
);
316 return std::move(Err
);
317 return std::move(RI
);
320 RewriteInstance::RewriteInstance(ELFObjectFileBase
*File
, const int Argc
,
321 const char *const *Argv
, StringRef ToolPath
,
323 : InputFile(File
), Argc(Argc
), Argv(Argv
), ToolPath(ToolPath
),
324 SHStrTab(StringTableBuilder::ELF
) {
325 ErrorAsOutParameter
EAO(&Err
);
326 auto ELF64LEFile
= dyn_cast
<ELF64LEObjectFile
>(InputFile
);
328 Err
= createStringError(errc::not_supported
,
329 "Only 64-bit LE ELF binaries are supported");
334 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
335 if (Obj
.getHeader().e_type
!= ELF::ET_EXEC
) {
336 outs() << "BOLT-INFO: shared object or position-independent executable "
341 auto BCOrErr
= BinaryContext::createBinaryContext(
343 DWARFContext::create(*File
, DWARFContext::ProcessDebugRelocations::Ignore
,
344 nullptr, opts::DWPPathName
,
345 WithColor::defaultErrorHandler
,
346 WithColor::defaultWarningHandler
));
347 if (Error E
= BCOrErr
.takeError()) {
351 BC
= std::move(BCOrErr
.get());
352 BC
->initializeTarget(std::unique_ptr
<MCPlusBuilder
>(
353 createMCPlusBuilder(BC
->TheTriple
->getArch(), BC
->MIA
.get(),
354 BC
->MII
.get(), BC
->MRI
.get(), BC
->STI
.get())));
356 BAT
= std::make_unique
<BoltAddressTranslation
>();
358 if (opts::UpdateDebugSections
)
359 DebugInfoRewriter
= std::make_unique
<DWARFRewriter
>(*BC
);
361 if (opts::Instrument
)
362 BC
->setRuntimeLibrary(std::make_unique
<InstrumentationRuntimeLibrary
>());
363 else if (opts::Hugify
)
364 BC
->setRuntimeLibrary(std::make_unique
<HugifyRuntimeLibrary
>());
367 RewriteInstance::~RewriteInstance() {}
369 Error
RewriteInstance::setProfile(StringRef Filename
) {
370 if (!sys::fs::exists(Filename
))
371 return errorCodeToError(make_error_code(errc::no_such_file_or_directory
));
375 return make_error
<StringError
>(Twine("multiple profiles specified: ") +
376 ProfileReader
->getFilename() + " and " +
378 inconvertibleErrorCode());
381 // Spawn a profile reader based on file contents.
382 if (DataAggregator::checkPerfDataMagic(Filename
))
383 ProfileReader
= std::make_unique
<DataAggregator
>(Filename
);
384 else if (YAMLProfileReader::isYAML(Filename
))
385 ProfileReader
= std::make_unique
<YAMLProfileReader
>(Filename
);
387 ProfileReader
= std::make_unique
<DataReader
>(Filename
);
389 return Error::success();
392 /// Return true if the function \p BF should be disassembled.
393 static bool shouldDisassemble(const BinaryFunction
&BF
) {
397 if (opts::processAllFunctions())
400 return !BF
.isIgnored();
403 // Return if a section stored in the image falls into a segment address space.
404 // If not, Set \p Overlap to true if there's a partial overlap.
405 template <class ELFT
>
406 static bool checkOffsets(const typename
ELFT::Phdr
&Phdr
,
407 const typename
ELFT::Shdr
&Sec
, bool &Overlap
) {
408 // SHT_NOBITS sections don't need to have an offset inside the segment.
409 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
412 // Only non-empty sections can be at the end of a segment.
413 uint64_t SectionSize
= Sec
.sh_size
? Sec
.sh_size
: 1ull;
414 AddressRange
SectionAddressRange((uint64_t)Sec
.sh_offset
,
415 Sec
.sh_offset
+ SectionSize
);
416 AddressRange
SegmentAddressRange(Phdr
.p_offset
,
417 Phdr
.p_offset
+ Phdr
.p_filesz
);
418 if (SegmentAddressRange
.contains(SectionAddressRange
))
421 Overlap
= SegmentAddressRange
.intersects(SectionAddressRange
);
425 // Check that an allocatable section belongs to a virtual address
426 // space of a segment.
427 template <class ELFT
>
428 static bool checkVMA(const typename
ELFT::Phdr
&Phdr
,
429 const typename
ELFT::Shdr
&Sec
, bool &Overlap
) {
430 // Only non-empty sections can be at the end of a segment.
431 uint64_t SectionSize
= Sec
.sh_size
? Sec
.sh_size
: 1ull;
432 AddressRange
SectionAddressRange((uint64_t)Sec
.sh_addr
,
433 Sec
.sh_addr
+ SectionSize
);
434 AddressRange
SegmentAddressRange(Phdr
.p_vaddr
, Phdr
.p_vaddr
+ Phdr
.p_memsz
);
436 if (SegmentAddressRange
.contains(SectionAddressRange
))
438 Overlap
= SegmentAddressRange
.intersects(SectionAddressRange
);
442 void RewriteInstance::markGnuRelroSections() {
443 using ELFT
= ELF64LE
;
444 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
445 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
446 const ELFFile
<ELFT
> &Obj
= ELF64LEFile
->getELFFile();
448 auto handleSection
= [&](const ELFT::Phdr
&Phdr
, SectionRef SecRef
) {
449 BinarySection
*BinarySection
= BC
->getSectionForSectionRef(SecRef
);
450 // If the section is non-allocatable, ignore it for GNU_RELRO purposes:
451 // it can't be made read-only after runtime relocations processing.
452 if (!BinarySection
|| !BinarySection
->isAllocatable())
454 const ELFShdrTy
*Sec
= cantFail(Obj
.getSection(SecRef
.getIndex()));
455 bool ImageOverlap
{false}, VMAOverlap
{false};
456 bool ImageContains
= checkOffsets
<ELFT
>(Phdr
, *Sec
, ImageOverlap
);
457 bool VMAContains
= checkVMA
<ELFT
>(Phdr
, *Sec
, VMAOverlap
);
459 if (opts::Verbosity
>= 1)
460 errs() << "BOLT-WARNING: GNU_RELRO segment has partial file offset "
461 << "overlap with section " << BinarySection
->getName() << '\n';
465 if (opts::Verbosity
>= 1)
466 errs() << "BOLT-WARNING: GNU_RELRO segment has partial VMA overlap "
467 << "with section " << BinarySection
->getName() << '\n';
470 if (!ImageContains
|| !VMAContains
)
472 BinarySection
->setRelro();
473 if (opts::Verbosity
>= 1)
474 outs() << "BOLT-INFO: marking " << BinarySection
->getName()
475 << " as GNU_RELRO\n";
478 for (const ELFT::Phdr
&Phdr
: cantFail(Obj
.program_headers()))
479 if (Phdr
.p_type
== ELF::PT_GNU_RELRO
)
480 for (SectionRef SecRef
: InputFile
->sections())
481 handleSection(Phdr
, SecRef
);
484 Error
RewriteInstance::discoverStorage() {
485 NamedRegionTimer
T("discoverStorage", "discover storage", TimerGroupName
,
486 TimerGroupDesc
, opts::TimeRewrite
);
488 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
489 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
491 BC
->StartFunctionAddress
= Obj
.getHeader().e_entry
;
493 NextAvailableAddress
= 0;
494 uint64_t NextAvailableOffset
= 0;
495 Expected
<ELF64LE::PhdrRange
> PHsOrErr
= Obj
.program_headers();
496 if (Error E
= PHsOrErr
.takeError())
499 ELF64LE::PhdrRange PHs
= PHsOrErr
.get();
500 for (const ELF64LE::Phdr
&Phdr
: PHs
) {
501 switch (Phdr
.p_type
) {
503 BC
->FirstAllocAddress
= std::min(BC
->FirstAllocAddress
,
504 static_cast<uint64_t>(Phdr
.p_vaddr
));
505 NextAvailableAddress
= std::max(NextAvailableAddress
,
506 Phdr
.p_vaddr
+ Phdr
.p_memsz
);
507 NextAvailableOffset
= std::max(NextAvailableOffset
,
508 Phdr
.p_offset
+ Phdr
.p_filesz
);
510 BC
->SegmentMapInfo
[Phdr
.p_vaddr
] = SegmentInfo
{Phdr
.p_vaddr
,
517 BC
->HasInterpHeader
= true;
522 for (const SectionRef
&Section
: InputFile
->sections()) {
523 Expected
<StringRef
> SectionNameOrErr
= Section
.getName();
524 if (Error E
= SectionNameOrErr
.takeError())
526 StringRef SectionName
= SectionNameOrErr
.get();
527 if (SectionName
== ".text") {
528 BC
->OldTextSectionAddress
= Section
.getAddress();
529 BC
->OldTextSectionSize
= Section
.getSize();
531 Expected
<StringRef
> SectionContentsOrErr
= Section
.getContents();
532 if (Error E
= SectionContentsOrErr
.takeError())
534 StringRef SectionContents
= SectionContentsOrErr
.get();
535 BC
->OldTextSectionOffset
=
536 SectionContents
.data() - InputFile
->getData().data();
539 if (!opts::HeatmapMode
&&
540 !(opts::AggregateOnly
&& BAT
->enabledFor(InputFile
)) &&
541 (SectionName
.startswith(getOrgSecPrefix()) ||
542 SectionName
== getBOLTTextSectionName()))
543 return createStringError(
544 errc::function_not_supported
,
545 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize");
548 if (!NextAvailableAddress
|| !NextAvailableOffset
)
549 return createStringError(errc::executable_format_error
,
550 "no PT_LOAD pheader seen");
552 outs() << "BOLT-INFO: first alloc address is 0x"
553 << Twine::utohexstr(BC
->FirstAllocAddress
) << '\n';
555 FirstNonAllocatableOffset
= NextAvailableOffset
;
557 NextAvailableAddress
= alignTo(NextAvailableAddress
, BC
->PageAlign
);
558 NextAvailableOffset
= alignTo(NextAvailableOffset
, BC
->PageAlign
);
560 // Hugify: Additional huge page from left side due to
561 // weird ASLR mapping addresses (4KB aligned)
562 if (opts::Hugify
&& !BC
->HasFixedLoadAddress
)
563 NextAvailableAddress
+= BC
->PageAlign
;
565 if (!opts::UseGnuStack
) {
566 // This is where the black magic happens. Creating PHDR table in a segment
567 // other than that containing ELF header is tricky. Some loaders and/or
568 // parts of loaders will apply e_phoff from ELF header assuming both are in
569 // the same segment, while others will do the proper calculation.
570 // We create the new PHDR table in such a way that both of the methods
571 // of loading and locating the table work. There's a slight file size
572 // overhead because of that.
574 // NB: bfd's strip command cannot do the above and will corrupt the
575 // binary during the process of stripping non-allocatable sections.
576 if (NextAvailableOffset
<= NextAvailableAddress
- BC
->FirstAllocAddress
)
577 NextAvailableOffset
= NextAvailableAddress
- BC
->FirstAllocAddress
;
579 NextAvailableAddress
= NextAvailableOffset
+ BC
->FirstAllocAddress
;
581 assert(NextAvailableOffset
==
582 NextAvailableAddress
- BC
->FirstAllocAddress
&&
583 "PHDR table address calculation error");
585 outs() << "BOLT-INFO: creating new program header table at address 0x"
586 << Twine::utohexstr(NextAvailableAddress
) << ", offset 0x"
587 << Twine::utohexstr(NextAvailableOffset
) << '\n';
589 PHDRTableAddress
= NextAvailableAddress
;
590 PHDRTableOffset
= NextAvailableOffset
;
592 // Reserve space for 3 extra pheaders.
593 unsigned Phnum
= Obj
.getHeader().e_phnum
;
596 NextAvailableAddress
+= Phnum
* sizeof(ELF64LEPhdrTy
);
597 NextAvailableOffset
+= Phnum
* sizeof(ELF64LEPhdrTy
);
600 // Align at cache line.
601 NextAvailableAddress
= alignTo(NextAvailableAddress
, 64);
602 NextAvailableOffset
= alignTo(NextAvailableOffset
, 64);
604 NewTextSegmentAddress
= NextAvailableAddress
;
605 NewTextSegmentOffset
= NextAvailableOffset
;
606 BC
->LayoutStartAddress
= NextAvailableAddress
;
608 // Tools such as objcopy can strip section contents but leave header
609 // entries. Check that at least .text is mapped in the file.
610 if (!getFileOffsetForAddress(BC
->OldTextSectionAddress
))
611 return createStringError(errc::executable_format_error
,
612 "BOLT-ERROR: input binary is not a valid ELF "
613 "executable as its text section is not "
614 "mapped to a valid segment");
615 return Error::success();
618 void RewriteInstance::parseBuildID() {
622 StringRef Buf
= BuildIDSection
->getContents();
624 // Reading notes section (see Portable Formats Specification, Version 1.1,
625 // pg 2-5, section "Note Section").
626 DataExtractor DE
= DataExtractor(Buf
, true, 8);
628 if (!DE
.isValidOffset(Offset
))
630 uint32_t NameSz
= DE
.getU32(&Offset
);
631 if (!DE
.isValidOffset(Offset
))
633 uint32_t DescSz
= DE
.getU32(&Offset
);
634 if (!DE
.isValidOffset(Offset
))
636 uint32_t Type
= DE
.getU32(&Offset
);
638 LLVM_DEBUG(dbgs() << "NameSz = " << NameSz
<< "; DescSz = " << DescSz
639 << "; Type = " << Type
<< "\n");
641 // Type 3 is a GNU build-id note section
645 StringRef Name
= Buf
.slice(Offset
, Offset
+ NameSz
);
646 Offset
= alignTo(Offset
+ NameSz
, 4);
647 if (Name
.substr(0, 3) != "GNU")
650 BuildID
= Buf
.slice(Offset
, Offset
+ DescSz
);
653 std::optional
<std::string
> RewriteInstance::getPrintableBuildID() const {
658 raw_string_ostream
OS(Str
);
659 const unsigned char *CharIter
= BuildID
.bytes_begin();
660 while (CharIter
!= BuildID
.bytes_end()) {
661 if (*CharIter
< 0x10)
663 OS
<< Twine::utohexstr(*CharIter
);
669 void RewriteInstance::patchBuildID() {
670 raw_fd_ostream
&OS
= Out
->os();
675 size_t IDOffset
= BuildIDSection
->getContents().rfind(BuildID
);
676 assert(IDOffset
!= StringRef::npos
&& "failed to patch build-id");
678 uint64_t FileOffset
= getFileOffsetForAddress(BuildIDSection
->getAddress());
680 errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n";
684 char LastIDByte
= BuildID
[BuildID
.size() - 1];
686 OS
.pwrite(&LastIDByte
, 1, FileOffset
+ IDOffset
+ BuildID
.size() - 1);
688 outs() << "BOLT-INFO: patched build-id (flipped last bit)\n";
691 Error
RewriteInstance::run() {
692 assert(BC
&& "failed to create a binary context");
694 outs() << "BOLT-INFO: Target architecture: "
695 << Triple::getArchTypeName(
696 (llvm::Triple::ArchType
)InputFile
->getArch())
698 outs() << "BOLT-INFO: BOLT version: " << BoltRevision
<< "\n";
700 if (Error E
= discoverStorage())
702 if (Error E
= readSpecialSections())
704 adjustCommandLineOptions();
705 discoverFileObjects();
707 preprocessProfileData();
709 // Skip disassembling if we have a translation table and we are running an
711 if (opts::AggregateOnly
&& BAT
->enabledFor(InputFile
)) {
712 processProfileData();
713 return Error::success();
716 selectFunctionsToProcess();
720 disassembleFunctions();
722 processMetadataPreCFG();
726 processProfileData();
728 postProcessFunctions();
730 processMetadataPostCFG();
733 return Error::success();
735 preregisterSections();
737 runOptimizationPasses();
743 if (opts::LinuxKernelMode
) {
744 errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n";
745 return Error::success();
746 } else if (opts::OutputFilename
== "/dev/null") {
747 outs() << "BOLT-INFO: skipping writing final binary to disk\n";
748 return Error::success();
751 // Rewrite allocatable contents and copy non-allocatable parts with mods.
753 return Error::success();
756 void RewriteInstance::discoverFileObjects() {
757 NamedRegionTimer
T("discoverFileObjects", "discover file objects",
758 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
760 // For local symbols we want to keep track of associated FILE symbol name for
761 // disambiguation by combined name.
762 StringRef FileSymbolName
;
763 bool SeenFileName
= false;
764 struct SymbolRefHash
{
765 size_t operator()(SymbolRef
const &S
) const {
766 return std::hash
<decltype(DataRefImpl::p
)>{}(S
.getRawDataRefImpl().p
);
769 std::unordered_map
<SymbolRef
, StringRef
, SymbolRefHash
> SymbolToFileName
;
770 for (const ELFSymbolRef
&Symbol
: InputFile
->symbols()) {
771 Expected
<StringRef
> NameOrError
= Symbol
.getName();
772 if (NameOrError
&& NameOrError
->startswith("__asan_init")) {
773 errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer "
774 "support. Cannot optimize.\n";
777 if (NameOrError
&& NameOrError
->startswith("__llvm_coverage_mapping")) {
778 errs() << "BOLT-ERROR: input file was compiled or linked with coverage "
779 "support. Cannot optimize.\n";
783 if (cantFail(Symbol
.getFlags()) & SymbolRef::SF_Undefined
)
786 if (cantFail(Symbol
.getType()) == SymbolRef::ST_File
) {
788 cantFail(std::move(NameOrError
), "cannot get symbol name for file");
789 // Ignore Clang LTO artificial FILE symbol as it is not always generated,
790 // and this uncertainty is causing havoc in function name matching.
791 if (Name
== "ld-temp.o")
793 FileSymbolName
= Name
;
797 if (!FileSymbolName
.empty() &&
798 !(cantFail(Symbol
.getFlags()) & SymbolRef::SF_Global
))
799 SymbolToFileName
[Symbol
] = FileSymbolName
;
802 // Sort symbols in the file by value. Ignore symbols from non-allocatable
803 // sections. We memoize getAddress(), as it has rather high overhead.
808 std::vector
<SymbolInfo
> SortedSymbols
;
809 auto isSymbolInMemory
= [this](const SymbolRef
&Sym
) {
810 if (cantFail(Sym
.getType()) == SymbolRef::ST_File
)
812 if (cantFail(Sym
.getFlags()) & SymbolRef::SF_Absolute
)
814 if (cantFail(Sym
.getFlags()) & SymbolRef::SF_Undefined
)
816 BinarySection
Section(*BC
, *cantFail(Sym
.getSection()));
817 return Section
.isAllocatable();
819 for (const SymbolRef
&Symbol
: InputFile
->symbols())
820 if (isSymbolInMemory(Symbol
))
821 SortedSymbols
.push_back({cantFail(Symbol
.getAddress()), Symbol
});
823 auto CompareSymbols
= [this](const SymbolInfo
&A
, const SymbolInfo
&B
) {
824 if (A
.Address
!= B
.Address
)
825 return A
.Address
< B
.Address
;
827 const bool AMarker
= BC
->isMarker(A
.Symbol
);
828 const bool BMarker
= BC
->isMarker(B
.Symbol
);
829 if (AMarker
|| BMarker
) {
830 return AMarker
&& !BMarker
;
833 const auto AType
= cantFail(A
.Symbol
.getType());
834 const auto BType
= cantFail(B
.Symbol
.getType());
835 if (AType
== SymbolRef::ST_Function
&& BType
!= SymbolRef::ST_Function
)
837 if (BType
== SymbolRef::ST_Debug
&& AType
!= SymbolRef::ST_Debug
)
842 llvm::stable_sort(SortedSymbols
, CompareSymbols
);
844 auto LastSymbol
= SortedSymbols
.end();
845 if (!SortedSymbols
.empty())
848 // For aarch64, the ABI defines mapping symbols so we identify data in the
849 // code section (see IHI0056B). $d identifies data contents.
850 // Compilers usually merge multiple data objects in a single $d-$x interval,
851 // but we need every data object to be marked with $d. Because of that we
852 // create a vector of MarkerSyms with all locations of data objects.
859 std::vector
<MarkerSym
> SortedMarkerSymbols
;
860 auto addExtraDataMarkerPerSymbol
= [&]() {
862 uint64_t LastAddr
= 0;
863 for (const auto &SymInfo
: SortedSymbols
) {
864 if (LastAddr
== SymInfo
.Address
) // don't repeat markers
867 MarkerSymType MarkerType
= BC
->getMarkerType(SymInfo
.Symbol
);
868 if (MarkerType
!= MarkerSymType::NONE
) {
869 SortedMarkerSymbols
.push_back(MarkerSym
{SymInfo
.Address
, MarkerType
});
870 LastAddr
= SymInfo
.Address
;
871 IsData
= MarkerType
== MarkerSymType::DATA
;
876 SortedMarkerSymbols
.push_back({SymInfo
.Address
, MarkerSymType::DATA
});
877 LastAddr
= SymInfo
.Address
;
882 if (BC
->isAArch64() || BC
->isRISCV()) {
883 addExtraDataMarkerPerSymbol();
884 LastSymbol
= std::stable_partition(
885 SortedSymbols
.begin(), SortedSymbols
.end(),
886 [this](const SymbolInfo
&S
) { return !BC
->isMarker(S
.Symbol
); });
887 if (!SortedSymbols
.empty())
891 BinaryFunction
*PreviousFunction
= nullptr;
892 unsigned AnonymousId
= 0;
894 // Regex object for matching cold fragments.
895 const Regex
ColdFragment(".*\\.cold(\\.[0-9]+)?");
897 const auto SortedSymbolsEnd
=
898 LastSymbol
== SortedSymbols
.end() ? LastSymbol
: std::next(LastSymbol
);
899 for (auto Iter
= SortedSymbols
.begin(); Iter
!= SortedSymbolsEnd
; ++Iter
) {
900 const SymbolRef
&Symbol
= Iter
->Symbol
;
901 const uint64_t SymbolAddress
= Iter
->Address
;
902 const auto SymbolFlags
= cantFail(Symbol
.getFlags());
903 const SymbolRef::Type SymbolType
= cantFail(Symbol
.getType());
905 if (SymbolType
== SymbolRef::ST_File
)
908 StringRef SymName
= cantFail(Symbol
.getName(), "cannot get symbol name");
909 if (SymbolAddress
== 0) {
910 if (opts::Verbosity
>= 1 && SymbolType
== SymbolRef::ST_Function
)
911 errs() << "BOLT-WARNING: function with 0 address seen\n";
915 // Ignore input hot markers
916 if (SymName
== "__hot_start" || SymName
== "__hot_end")
919 FileSymRefs
[SymbolAddress
] = Symbol
;
921 // Skip section symbols that will be registered by disassemblePLT().
922 if (SymbolType
== SymbolRef::ST_Debug
) {
923 ErrorOr
<BinarySection
&> BSection
=
924 BC
->getSectionForAddress(SymbolAddress
);
925 if (BSection
&& getPLTSectionInfo(BSection
->getName()))
929 /// It is possible we are seeing a globalized local. LLVM might treat it as
930 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to
931 /// change the prefix to enforce global scope of the symbol.
932 std::string Name
= SymName
.startswith(BC
->AsmInfo
->getPrivateGlobalPrefix())
933 ? "PG" + std::string(SymName
)
934 : std::string(SymName
);
936 // Disambiguate all local symbols before adding to symbol table.
937 // Since we don't know if we will see a global with the same name,
938 // always modify the local name.
940 // NOTE: the naming convention for local symbols should match
941 // the one we use for profile data.
942 std::string UniqueName
;
943 std::string AlternativeName
;
945 UniqueName
= "ANONYMOUS." + std::to_string(AnonymousId
++);
946 } else if (SymbolFlags
& SymbolRef::SF_Global
) {
947 if (const BinaryData
*BD
= BC
->getBinaryDataByName(Name
)) {
948 if (BD
->getSize() == ELFSymbolRef(Symbol
).getSize() &&
949 BD
->getAddress() == SymbolAddress
) {
950 if (opts::Verbosity
> 1)
951 errs() << "BOLT-WARNING: ignoring duplicate global symbol " << Name
953 // Ignore duplicate entry - possibly a bug in the linker
956 errs() << "BOLT-ERROR: bad input binary, global symbol \"" << Name
957 << "\" is not unique\n";
962 // If we have a local file name, we should create 2 variants for the
963 // function name. The reason is that perf profile might have been
964 // collected on a binary that did not have the local file name (e.g. as
965 // a side effect of stripping debug info from the binary):
967 // primary: <function>/<id>
968 // alternative: <function>/<file>/<id2>
970 // The <id> field is used for disambiguation of local symbols since there
971 // could be identical function names coming from identical file names
972 // (e.g. from different directories).
973 std::string AltPrefix
;
974 auto SFI
= SymbolToFileName
.find(Symbol
);
975 if (SymbolType
== SymbolRef::ST_Function
&& SFI
!= SymbolToFileName
.end())
976 AltPrefix
= Name
+ "/" + std::string(SFI
->second
);
978 UniqueName
= NR
.uniquify(Name
);
979 if (!AltPrefix
.empty())
980 AlternativeName
= NR
.uniquify(AltPrefix
);
983 uint64_t SymbolSize
= ELFSymbolRef(Symbol
).getSize();
984 uint64_t SymbolAlignment
= Symbol
.getAlignment();
986 auto registerName
= [&](uint64_t FinalSize
) {
987 // Register names even if it's not a function, e.g. for an entry point.
988 BC
->registerNameAtAddress(UniqueName
, SymbolAddress
, FinalSize
,
989 SymbolAlignment
, SymbolFlags
);
990 if (!AlternativeName
.empty())
991 BC
->registerNameAtAddress(AlternativeName
, SymbolAddress
, FinalSize
,
992 SymbolAlignment
, SymbolFlags
);
995 section_iterator Section
=
996 cantFail(Symbol
.getSection(), "cannot get symbol section");
997 if (Section
== InputFile
->section_end()) {
998 // Could be an absolute symbol. Used on RISC-V for __global_pointer$ so we
999 // need to record it to handle relocations against it. For other instances
1000 // of absolute symbols, we record for pretty printing.
1001 LLVM_DEBUG(if (opts::Verbosity
> 1) {
1002 dbgs() << "BOLT-INFO: absolute sym " << UniqueName
<< "\n";
1004 registerName(SymbolSize
);
1008 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName
1009 << " for function\n");
1011 if (SymbolAddress
== Section
->getAddress() + Section
->getSize()) {
1012 assert(SymbolSize
== 0 &&
1013 "unexpect non-zero sized symbol at end of section");
1016 << "BOLT-DEBUG: rejecting as symbol points to end of its section\n");
1017 registerName(SymbolSize
);
1021 if (!Section
->isText()) {
1022 assert(SymbolType
!= SymbolRef::ST_Function
&&
1023 "unexpected function inside non-code section");
1024 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n");
1025 registerName(SymbolSize
);
1029 // Assembly functions could be ST_NONE with 0 size. Check that the
1030 // corresponding section is a code section and they are not inside any
1031 // other known function to consider them.
1033 // Sometimes assembly functions are not marked as functions and neither are
1034 // their local labels. The only way to tell them apart is to look at
1035 // symbol scope - global vs local.
1036 if (PreviousFunction
&& SymbolType
!= SymbolRef::ST_Function
) {
1037 if (PreviousFunction
->containsAddress(SymbolAddress
)) {
1038 if (PreviousFunction
->isSymbolValidInScope(Symbol
, SymbolSize
)) {
1040 << "BOLT-DEBUG: symbol is a function local symbol\n");
1041 } else if (SymbolAddress
== PreviousFunction
->getAddress() &&
1043 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n");
1044 } else if (opts::Verbosity
> 1) {
1045 errs() << "BOLT-WARNING: symbol " << UniqueName
1046 << " seen in the middle of function " << *PreviousFunction
1047 << ". Could be a new entry.\n";
1049 registerName(SymbolSize
);
1051 } else if (PreviousFunction
->getSize() == 0 &&
1052 PreviousFunction
->isSymbolValidInScope(Symbol
, SymbolSize
)) {
1053 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
1054 registerName(SymbolSize
);
1059 if (PreviousFunction
&& PreviousFunction
->containsAddress(SymbolAddress
) &&
1060 PreviousFunction
->getAddress() != SymbolAddress
) {
1061 if (PreviousFunction
->isSymbolValidInScope(Symbol
, SymbolSize
)) {
1062 if (opts::Verbosity
>= 1)
1063 outs() << "BOLT-INFO: skipping possibly another entry for function "
1064 << *PreviousFunction
<< " : " << UniqueName
<< '\n';
1065 registerName(SymbolSize
);
1067 outs() << "BOLT-INFO: using " << UniqueName
<< " as another entry to "
1068 << "function " << *PreviousFunction
<< '\n';
1072 PreviousFunction
->addEntryPointAtOffset(SymbolAddress
-
1073 PreviousFunction
->getAddress());
1075 // Remove the symbol from FileSymRefs so that we can skip it from
1077 auto SI
= FileSymRefs
.find(SymbolAddress
);
1078 assert(SI
!= FileSymRefs
.end() && "symbol expected to be present");
1079 assert(SI
->second
== Symbol
&& "wrong symbol found");
1080 FileSymRefs
.erase(SI
);
1085 // Checkout for conflicts with function data from FDEs.
1086 bool IsSimple
= true;
1087 auto FDEI
= CFIRdWrt
->getFDEs().lower_bound(SymbolAddress
);
1088 if (FDEI
!= CFIRdWrt
->getFDEs().end()) {
1089 const dwarf::FDE
&FDE
= *FDEI
->second
;
1090 if (FDEI
->first
!= SymbolAddress
) {
1091 // There's no matching starting address in FDE. Make sure the previous
1092 // FDE does not contain this address.
1093 if (FDEI
!= CFIRdWrt
->getFDEs().begin()) {
1095 const dwarf::FDE
&PrevFDE
= *FDEI
->second
;
1096 uint64_t PrevStart
= PrevFDE
.getInitialLocation();
1097 uint64_t PrevLength
= PrevFDE
.getAddressRange();
1098 if (SymbolAddress
> PrevStart
&&
1099 SymbolAddress
< PrevStart
+ PrevLength
) {
1100 errs() << "BOLT-ERROR: function " << UniqueName
1101 << " is in conflict with FDE ["
1102 << Twine::utohexstr(PrevStart
) << ", "
1103 << Twine::utohexstr(PrevStart
+ PrevLength
)
1104 << "). Skipping.\n";
1108 } else if (FDE
.getAddressRange() != SymbolSize
) {
1110 // Function addresses match but sizes differ.
1111 errs() << "BOLT-WARNING: sizes differ for function " << UniqueName
1112 << ". FDE : " << FDE
.getAddressRange()
1113 << "; symbol table : " << SymbolSize
<< ". Using max size.\n";
1115 SymbolSize
= std::max(SymbolSize
, FDE
.getAddressRange());
1116 if (BC
->getBinaryDataAtAddress(SymbolAddress
)) {
1117 BC
->setBinaryDataSize(SymbolAddress
, SymbolSize
);
1119 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x"
1120 << Twine::utohexstr(SymbolAddress
) << "\n");
1125 BinaryFunction
*BF
= nullptr;
1126 // Since function may not have yet obtained its real size, do a search
1127 // using the list of registered functions instead of calling
1128 // getBinaryFunctionAtAddress().
1129 auto BFI
= BC
->getBinaryFunctions().find(SymbolAddress
);
1130 if (BFI
!= BC
->getBinaryFunctions().end()) {
1132 // Duplicate the function name. Make sure everything matches before we add
1133 // an alternative name.
1134 if (SymbolSize
!= BF
->getSize()) {
1135 if (opts::Verbosity
>= 1) {
1136 if (SymbolSize
&& BF
->getSize())
1137 errs() << "BOLT-WARNING: size mismatch for duplicate entries "
1138 << *BF
<< " and " << UniqueName
<< '\n';
1139 outs() << "BOLT-INFO: adjusting size of function " << *BF
<< " old "
1140 << BF
->getSize() << " new " << SymbolSize
<< "\n";
1142 BF
->setSize(std::max(SymbolSize
, BF
->getSize()));
1143 BC
->setBinaryDataSize(SymbolAddress
, BF
->getSize());
1145 BF
->addAlternativeName(UniqueName
);
1147 ErrorOr
<BinarySection
&> Section
=
1148 BC
->getSectionForAddress(SymbolAddress
);
1149 // Skip symbols from invalid sections
1151 errs() << "BOLT-WARNING: " << UniqueName
<< " (0x"
1152 << Twine::utohexstr(SymbolAddress
)
1153 << ") does not have any section\n";
1157 // Skip symbols from zero-sized sections.
1158 if (!Section
->getSize())
1161 BF
= BC
->createBinaryFunction(UniqueName
, *Section
, SymbolAddress
,
1164 BF
->setSimple(false);
1167 // Check if it's a cold function fragment.
1168 if (ColdFragment
.match(SymName
)) {
1169 static bool PrintedWarning
= false;
1170 if (!PrintedWarning
) {
1171 PrintedWarning
= true;
1172 errs() << "BOLT-WARNING: split function detected on input : "
1174 if (BC
->HasRelocations
)
1175 errs() << ". The support is limited in relocation mode\n";
1179 BC
->HasSplitFunctions
= true;
1180 BF
->IsFragment
= true;
1183 if (!AlternativeName
.empty())
1184 BF
->addAlternativeName(AlternativeName
);
1186 registerName(SymbolSize
);
1187 PreviousFunction
= BF
;
1190 // Read dynamic relocation first as their presence affects the way we process
1191 // static relocations. E.g. we will ignore a static relocation at an address
1192 // that is a subject to dynamic relocation processing.
1193 processDynamicRelocations();
1195 // Process PLT section.
1198 // See if we missed any functions marked by FDE.
1199 for (const auto &FDEI
: CFIRdWrt
->getFDEs()) {
1200 const uint64_t Address
= FDEI
.first
;
1201 const dwarf::FDE
*FDE
= FDEI
.second
;
1202 const BinaryFunction
*BF
= BC
->getBinaryFunctionAtAddress(Address
);
1206 BF
= BC
->getBinaryFunctionContainingAddress(Address
);
1208 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address
) << ", 0x"
1209 << Twine::utohexstr(Address
+ FDE
->getAddressRange())
1210 << ") conflicts with function " << *BF
<< '\n';
1214 if (opts::Verbosity
>= 1)
1215 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address
) << ", 0x"
1216 << Twine::utohexstr(Address
+ FDE
->getAddressRange())
1217 << ") has no corresponding symbol table entry\n";
1219 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(Address
);
1220 assert(Section
&& "cannot get section for address from FDE");
1221 std::string FunctionName
=
1222 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address
).str();
1223 BC
->createBinaryFunction(FunctionName
, *Section
, Address
,
1224 FDE
->getAddressRange());
1227 BC
->setHasSymbolsWithFileName(SeenFileName
);
1229 // Now that all the functions were created - adjust their boundaries.
1230 adjustFunctionBoundaries();
1232 // Annotate functions with code/data markers in AArch64
1233 for (auto ISym
= SortedMarkerSymbols
.begin();
1234 ISym
!= SortedMarkerSymbols
.end(); ++ISym
) {
1237 BC
->getBinaryFunctionContainingAddress(ISym
->Address
, true, true);
1243 const auto EntryOffset
= ISym
->Address
- BF
->getAddress();
1244 if (ISym
->Type
== MarkerSymType::CODE
) {
1245 BF
->markCodeAtOffset(EntryOffset
);
1248 if (ISym
->Type
== MarkerSymType::DATA
) {
1249 BF
->markDataAtOffset(EntryOffset
);
1250 BC
->AddressToConstantIslandMap
[ISym
->Address
] = BF
;
1253 llvm_unreachable("Unknown marker");
1256 if (BC
->isAArch64()) {
1257 // Check for dynamic relocations that might be contained in
1258 // constant islands.
1259 for (const BinarySection
&Section
: BC
->allocatableSections()) {
1260 const uint64_t SectionAddress
= Section
.getAddress();
1261 for (const Relocation
&Rel
: Section
.dynamicRelocations()) {
1262 const uint64_t RelAddress
= SectionAddress
+ Rel
.Offset
;
1263 BinaryFunction
*BF
=
1264 BC
->getBinaryFunctionContainingAddress(RelAddress
,
1265 /*CheckPastEnd*/ false,
1266 /*UseMaxSize*/ true);
1268 assert(Rel
.isRelative() && "Expected relative relocation for island");
1269 BF
->markIslandDynamicRelocationAtAddress(RelAddress
);
1275 if (!opts::LinuxKernelMode
) {
1276 // Read all relocations now that we have binary functions mapped.
1277 processRelocations();
1280 registerFragments();
1283 void RewriteInstance::registerFragments() {
1284 if (!BC
->HasSplitFunctions
)
1287 for (auto &BFI
: BC
->getBinaryFunctions()) {
1288 BinaryFunction
&Function
= BFI
.second
;
1289 if (!Function
.isFragment())
1291 unsigned ParentsFound
= 0;
1292 for (StringRef Name
: Function
.getNames()) {
1293 StringRef BaseName
, Suffix
;
1294 std::tie(BaseName
, Suffix
) = Name
.split('/');
1295 const size_t ColdSuffixPos
= BaseName
.find(".cold");
1296 if (ColdSuffixPos
== StringRef::npos
)
1298 // For cold function with local (foo.cold/1) symbol, prefer a parent with
1299 // local symbol as well (foo/1) over global symbol (foo).
1300 std::string ParentName
= BaseName
.substr(0, ColdSuffixPos
).str();
1301 const BinaryData
*BD
= BC
->getBinaryDataByName(ParentName
);
1303 ParentName
.append(Twine("/", Suffix
).str());
1304 const BinaryData
*BDLocal
= BC
->getBinaryDataByName(ParentName
);
1309 if (opts::Verbosity
>= 1)
1310 outs() << "BOLT-INFO: parent function not found for " << Name
<< "\n";
1313 const uint64_t Address
= BD
->getAddress();
1314 BinaryFunction
*BF
= BC
->getBinaryFunctionAtAddress(Address
);
1316 if (opts::Verbosity
>= 1)
1317 outs() << formatv("BOLT-INFO: parent function not found at {0:x}\n",
1321 BC
->registerFragment(Function
, *BF
);
1324 if (!ParentsFound
) {
1325 errs() << "BOLT-ERROR: parent function not found for " << Function
1332 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress
,
1333 uint64_t EntryAddress
,
1334 uint64_t EntrySize
) {
1338 auto setPLTSymbol
= [&](BinaryFunction
*BF
, StringRef Name
) {
1339 const unsigned PtrSize
= BC
->AsmInfo
->getCodePointerSize();
1340 MCSymbol
*TargetSymbol
= BC
->registerNameAtAddress(
1341 Name
.str() + "@GOT", TargetAddress
, PtrSize
, PtrSize
);
1342 BF
->setPLTSymbol(TargetSymbol
);
1345 BinaryFunction
*BF
= BC
->getBinaryFunctionAtAddress(EntryAddress
);
1346 if (BF
&& BC
->isAArch64()) {
1347 // Handle IFUNC trampoline
1348 setPLTSymbol(BF
, BF
->getOneName());
1352 const Relocation
*Rel
= BC
->getDynamicRelocationAt(TargetAddress
);
1353 if (!Rel
|| !Rel
->Symbol
)
1356 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(EntryAddress
);
1357 assert(Section
&& "cannot get section for address");
1359 BF
= BC
->createBinaryFunction(Rel
->Symbol
->getName().str() + "@PLT",
1360 *Section
, EntryAddress
, 0, EntrySize
,
1361 Section
->getAlignment());
1363 BF
->addAlternativeName(Rel
->Symbol
->getName().str() + "@PLT");
1364 setPLTSymbol(BF
, Rel
->Symbol
->getName());
1367 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection
&Section
) {
1368 const uint64_t SectionAddress
= Section
.getAddress();
1369 const uint64_t SectionSize
= Section
.getSize();
1370 StringRef PLTContents
= Section
.getContents();
1371 ArrayRef
<uint8_t> PLTData(
1372 reinterpret_cast<const uint8_t *>(PLTContents
.data()), SectionSize
);
1374 auto disassembleInstruction
= [&](uint64_t InstrOffset
, MCInst
&Instruction
,
1375 uint64_t &InstrSize
) {
1376 const uint64_t InstrAddr
= SectionAddress
+ InstrOffset
;
1377 if (!BC
->DisAsm
->getInstruction(Instruction
, InstrSize
,
1378 PLTData
.slice(InstrOffset
), InstrAddr
,
1380 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1381 << Section
.getName() << " at offset 0x"
1382 << Twine::utohexstr(InstrOffset
) << '\n';
1387 uint64_t InstrOffset
= 0;
1388 // Locate new plt entry
1389 while (InstrOffset
< SectionSize
) {
1390 InstructionListType Instructions
;
1392 uint64_t EntryOffset
= InstrOffset
;
1393 uint64_t EntrySize
= 0;
1395 // Loop through entry instructions
1396 while (InstrOffset
< SectionSize
) {
1397 disassembleInstruction(InstrOffset
, Instruction
, InstrSize
);
1398 EntrySize
+= InstrSize
;
1399 if (!BC
->MIB
->isIndirectBranch(Instruction
)) {
1400 Instructions
.emplace_back(Instruction
);
1401 InstrOffset
+= InstrSize
;
1405 const uint64_t EntryAddress
= SectionAddress
+ EntryOffset
;
1406 const uint64_t TargetAddress
= BC
->MIB
->analyzePLTEntry(
1407 Instruction
, Instructions
.begin(), Instructions
.end(), EntryAddress
);
1409 createPLTBinaryFunction(TargetAddress
, EntryAddress
, EntrySize
);
1413 // Branch instruction
1414 InstrOffset
+= InstrSize
;
1417 while (InstrOffset
< SectionSize
) {
1418 disassembleInstruction(InstrOffset
, Instruction
, InstrSize
);
1419 if (!BC
->MIB
->isNoop(Instruction
))
1422 InstrOffset
+= InstrSize
;
1427 void RewriteInstance::disassemblePLTSectionRISCV(BinarySection
&Section
) {
1428 const uint64_t SectionAddress
= Section
.getAddress();
1429 const uint64_t SectionSize
= Section
.getSize();
1430 StringRef PLTContents
= Section
.getContents();
1431 ArrayRef
<uint8_t> PLTData(
1432 reinterpret_cast<const uint8_t *>(PLTContents
.data()), SectionSize
);
1434 auto disassembleInstruction
= [&](uint64_t InstrOffset
, MCInst
&Instruction
,
1435 uint64_t &InstrSize
) {
1436 const uint64_t InstrAddr
= SectionAddress
+ InstrOffset
;
1437 if (!BC
->DisAsm
->getInstruction(Instruction
, InstrSize
,
1438 PLTData
.slice(InstrOffset
), InstrAddr
,
1440 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1441 << Section
.getName() << " at offset 0x"
1442 << Twine::utohexstr(InstrOffset
) << '\n';
1447 // Skip the first special entry since no relocation points to it.
1448 uint64_t InstrOffset
= 32;
1450 while (InstrOffset
< SectionSize
) {
1451 InstructionListType Instructions
;
1453 const uint64_t EntryOffset
= InstrOffset
;
1454 const uint64_t EntrySize
= 16;
1457 while (InstrOffset
< EntryOffset
+ EntrySize
) {
1458 disassembleInstruction(InstrOffset
, Instruction
, InstrSize
);
1459 Instructions
.emplace_back(Instruction
);
1460 InstrOffset
+= InstrSize
;
1463 const uint64_t EntryAddress
= SectionAddress
+ EntryOffset
;
1464 const uint64_t TargetAddress
= BC
->MIB
->analyzePLTEntry(
1465 Instruction
, Instructions
.begin(), Instructions
.end(), EntryAddress
);
1467 createPLTBinaryFunction(TargetAddress
, EntryAddress
, EntrySize
);
1471 void RewriteInstance::disassemblePLTSectionX86(BinarySection
&Section
,
1472 uint64_t EntrySize
) {
1473 const uint64_t SectionAddress
= Section
.getAddress();
1474 const uint64_t SectionSize
= Section
.getSize();
1475 StringRef PLTContents
= Section
.getContents();
1476 ArrayRef
<uint8_t> PLTData(
1477 reinterpret_cast<const uint8_t *>(PLTContents
.data()), SectionSize
);
1479 auto disassembleInstruction
= [&](uint64_t InstrOffset
, MCInst
&Instruction
,
1480 uint64_t &InstrSize
) {
1481 const uint64_t InstrAddr
= SectionAddress
+ InstrOffset
;
1482 if (!BC
->DisAsm
->getInstruction(Instruction
, InstrSize
,
1483 PLTData
.slice(InstrOffset
), InstrAddr
,
1485 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1486 << Section
.getName() << " at offset 0x"
1487 << Twine::utohexstr(InstrOffset
) << '\n';
1492 for (uint64_t EntryOffset
= 0; EntryOffset
+ EntrySize
<= SectionSize
;
1493 EntryOffset
+= EntrySize
) {
1495 uint64_t InstrSize
, InstrOffset
= EntryOffset
;
1496 while (InstrOffset
< EntryOffset
+ EntrySize
) {
1497 disassembleInstruction(InstrOffset
, Instruction
, InstrSize
);
1498 // Check if the entry size needs adjustment.
1499 if (EntryOffset
== 0 && BC
->MIB
->isTerminateBranch(Instruction
) &&
1503 if (BC
->MIB
->isIndirectBranch(Instruction
))
1506 InstrOffset
+= InstrSize
;
1509 if (InstrOffset
+ InstrSize
> EntryOffset
+ EntrySize
)
1512 uint64_t TargetAddress
;
1513 if (!BC
->MIB
->evaluateMemOperandTarget(Instruction
, TargetAddress
,
1514 SectionAddress
+ InstrOffset
,
1516 errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x"
1517 << Twine::utohexstr(SectionAddress
+ InstrOffset
) << '\n';
1521 createPLTBinaryFunction(TargetAddress
, SectionAddress
+ EntryOffset
,
1526 void RewriteInstance::disassemblePLT() {
1527 auto analyzeOnePLTSection
= [&](BinarySection
&Section
, uint64_t EntrySize
) {
1528 if (BC
->isAArch64())
1529 return disassemblePLTSectionAArch64(Section
);
1531 return disassemblePLTSectionRISCV(Section
);
1532 return disassemblePLTSectionX86(Section
, EntrySize
);
1535 for (BinarySection
&Section
: BC
->allocatableSections()) {
1536 const PLTSectionInfo
*PLTSI
= getPLTSectionInfo(Section
.getName());
1540 analyzeOnePLTSection(Section
, PLTSI
->EntrySize
);
1542 BinaryFunction
*PltBF
;
1543 auto BFIter
= BC
->getBinaryFunctions().find(Section
.getAddress());
1544 if (BFIter
!= BC
->getBinaryFunctions().end()) {
1545 PltBF
= &BFIter
->second
;
1547 // If we did not register any function at the start of the section,
1548 // then it must be a general PLT entry. Add a function at the location.
1549 PltBF
= BC
->createBinaryFunction(
1550 "__BOLT_PSEUDO_" + Section
.getName().str(), Section
,
1551 Section
.getAddress(), 0, PLTSI
->EntrySize
, Section
.getAlignment());
1553 PltBF
->setPseudo(true);
1557 void RewriteInstance::adjustFunctionBoundaries() {
1558 for (auto BFI
= BC
->getBinaryFunctions().begin(),
1559 BFE
= BC
->getBinaryFunctions().end();
1560 BFI
!= BFE
; ++BFI
) {
1561 BinaryFunction
&Function
= BFI
->second
;
1562 const BinaryFunction
*NextFunction
= nullptr;
1563 if (std::next(BFI
) != BFE
)
1564 NextFunction
= &std::next(BFI
)->second
;
1566 // Check if there's a symbol or a function with a larger address in the
1567 // same section. If there is - it determines the maximum size for the
1568 // current function. Otherwise, it is the size of a containing section
1571 // NOTE: ignore some symbols that could be tolerated inside the body
1573 auto NextSymRefI
= FileSymRefs
.upper_bound(Function
.getAddress());
1574 while (NextSymRefI
!= FileSymRefs
.end()) {
1575 SymbolRef
&Symbol
= NextSymRefI
->second
;
1576 const uint64_t SymbolAddress
= NextSymRefI
->first
;
1577 const uint64_t SymbolSize
= ELFSymbolRef(Symbol
).getSize();
1579 if (NextFunction
&& SymbolAddress
>= NextFunction
->getAddress())
1582 if (!Function
.isSymbolValidInScope(Symbol
, SymbolSize
))
1585 // Ignore unnamed symbols. Used, for example, by debugging info on RISC-V.
1586 if (BC
->isRISCV() && cantFail(Symbol
.getName()).empty()) {
1591 // Skip basic block labels. This happens on RISC-V with linker relaxation
1592 // enabled because every branch needs a relocation and corresponding
1593 // symbol. We don't want to add such symbols as entry points.
1594 const auto PrivateLabelPrefix
= BC
->AsmInfo
->getPrivateLabelPrefix();
1595 if (!PrivateLabelPrefix
.empty() &&
1596 cantFail(Symbol
.getName()).starts_with(PrivateLabelPrefix
)) {
1601 // This is potentially another entry point into the function.
1602 uint64_t EntryOffset
= NextSymRefI
->first
- Function
.getAddress();
1603 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function "
1604 << Function
<< " at offset 0x"
1605 << Twine::utohexstr(EntryOffset
) << '\n');
1606 Function
.addEntryPointAtOffset(EntryOffset
);
1611 // Function runs at most till the end of the containing section.
1612 uint64_t NextObjectAddress
= Function
.getOriginSection()->getEndAddress();
1613 // Or till the next object marked by a symbol.
1614 if (NextSymRefI
!= FileSymRefs
.end())
1615 NextObjectAddress
= std::min(NextSymRefI
->first
, NextObjectAddress
);
1617 // Or till the next function not marked by a symbol.
1620 std::min(NextFunction
->getAddress(), NextObjectAddress
);
1622 const uint64_t MaxSize
= NextObjectAddress
- Function
.getAddress();
1623 if (MaxSize
< Function
.getSize()) {
1624 errs() << "BOLT-ERROR: symbol seen in the middle of the function "
1625 << Function
<< ". Skipping.\n";
1626 Function
.setSimple(false);
1627 Function
.setMaxSize(Function
.getSize());
1630 Function
.setMaxSize(MaxSize
);
1631 if (!Function
.getSize() && Function
.isSimple()) {
1632 // Some assembly functions have their size set to 0, use the max
1633 // size as their real size.
1634 if (opts::Verbosity
>= 1)
1635 outs() << "BOLT-INFO: setting size of function " << Function
<< " to "
1636 << Function
.getMaxSize() << " (was 0)\n";
1637 Function
.setSize(Function
.getMaxSize());
1642 void RewriteInstance::relocateEHFrameSection() {
1643 assert(EHFrameSection
&& "Non-empty .eh_frame section expected.");
1645 BinarySection
*RelocatedEHFrameSection
=
1646 getSection(".relocated" + getEHFrameSectionName());
1647 assert(RelocatedEHFrameSection
&&
1648 "Relocated eh_frame section should be preregistered.");
1649 DWARFDataExtractor
DE(EHFrameSection
->getContents(),
1650 BC
->AsmInfo
->isLittleEndian(),
1651 BC
->AsmInfo
->getCodePointerSize());
1652 auto createReloc
= [&](uint64_t Value
, uint64_t Offset
, uint64_t DwarfType
) {
1653 if (DwarfType
== dwarf::DW_EH_PE_omit
)
1656 // Only fix references that are relative to other locations.
1657 if (!(DwarfType
& dwarf::DW_EH_PE_pcrel
) &&
1658 !(DwarfType
& dwarf::DW_EH_PE_textrel
) &&
1659 !(DwarfType
& dwarf::DW_EH_PE_funcrel
) &&
1660 !(DwarfType
& dwarf::DW_EH_PE_datarel
))
1663 if (!(DwarfType
& dwarf::DW_EH_PE_sdata4
))
1667 switch (DwarfType
& 0x0f) {
1669 llvm_unreachable("unsupported DWARF encoding type");
1670 case dwarf::DW_EH_PE_sdata4
:
1671 case dwarf::DW_EH_PE_udata4
:
1672 RelType
= Relocation::getPC32();
1675 case dwarf::DW_EH_PE_sdata8
:
1676 case dwarf::DW_EH_PE_udata8
:
1677 RelType
= Relocation::getPC64();
1682 // Create a relocation against an absolute value since the goal is to
1683 // preserve the contents of the section independent of the new values
1684 // of referenced symbols.
1685 RelocatedEHFrameSection
->addRelocation(Offset
, nullptr, RelType
, Value
);
1688 Error E
= EHFrameParser::parse(DE
, EHFrameSection
->getAddress(), createReloc
);
1689 check_error(std::move(E
), "failed to patch EH frame");
1692 ArrayRef
<uint8_t> RewriteInstance::getLSDAData() {
1693 return ArrayRef
<uint8_t>(LSDASection
->getData(),
1694 LSDASection
->getContents().size());
1697 uint64_t RewriteInstance::getLSDAAddress() { return LSDASection
->getAddress(); }
1699 Error
RewriteInstance::readSpecialSections() {
1700 NamedRegionTimer
T("readSpecialSections", "read special sections",
1701 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
1703 bool HasTextRelocations
= false;
1704 bool HasSymbolTable
= false;
1705 bool HasDebugInfo
= false;
1707 // Process special sections.
1708 for (const SectionRef
&Section
: InputFile
->sections()) {
1709 Expected
<StringRef
> SectionNameOrErr
= Section
.getName();
1710 check_error(SectionNameOrErr
.takeError(), "cannot get section name");
1711 StringRef SectionName
= *SectionNameOrErr
;
1713 if (Error E
= Section
.getContents().takeError())
1715 BC
->registerSection(Section
);
1717 dbgs() << "BOLT-DEBUG: registering section " << SectionName
<< " @ 0x"
1718 << Twine::utohexstr(Section
.getAddress()) << ":0x"
1719 << Twine::utohexstr(Section
.getAddress() + Section
.getSize())
1721 if (isDebugSection(SectionName
))
1722 HasDebugInfo
= true;
1723 if (isKSymtabSection(SectionName
))
1724 opts::LinuxKernelMode
= true;
1727 // Set IsRelro section attribute based on PT_GNU_RELRO segment.
1728 markGnuRelroSections();
1730 if (HasDebugInfo
&& !opts::UpdateDebugSections
&& !opts::AggregateOnly
) {
1731 errs() << "BOLT-WARNING: debug info will be stripped from the binary. "
1732 "Use -update-debug-sections to keep it.\n";
1735 HasTextRelocations
= (bool)BC
->getUniqueSectionByName(".rela.text");
1736 HasSymbolTable
= (bool)BC
->getUniqueSectionByName(".symtab");
1737 LSDASection
= BC
->getUniqueSectionByName(".gcc_except_table");
1738 EHFrameSection
= BC
->getUniqueSectionByName(".eh_frame");
1739 BuildIDSection
= BC
->getUniqueSectionByName(".note.gnu.build-id");
1741 if (ErrorOr
<BinarySection
&> BATSec
=
1742 BC
->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME
)) {
1743 // Do not read BAT when plotting a heatmap
1744 if (!opts::HeatmapMode
) {
1745 if (std::error_code EC
= BAT
->parse(BATSec
->getContents())) {
1746 errs() << "BOLT-ERROR: failed to parse BOLT address translation "
1753 if (opts::PrintSections
) {
1754 outs() << "BOLT-INFO: Sections from original binary:\n";
1755 BC
->printSections(outs());
1758 if (opts::RelocationMode
== cl::BOU_TRUE
&& !HasTextRelocations
) {
1759 errs() << "BOLT-ERROR: relocations against code are missing from the input "
1760 "file. Cannot proceed in relocations mode (-relocs).\n";
1764 BC
->HasRelocations
=
1765 HasTextRelocations
&& (opts::RelocationMode
!= cl::BOU_FALSE
);
1767 BC
->IsStripped
= !HasSymbolTable
;
1769 if (BC
->IsStripped
&& !opts::AllowStripped
) {
1770 errs() << "BOLT-ERROR: stripped binaries are not supported. If you know "
1771 "what you're doing, use --allow-stripped to proceed";
1775 // Force non-relocation mode for heatmap generation
1776 if (opts::HeatmapMode
)
1777 BC
->HasRelocations
= false;
1779 if (BC
->HasRelocations
)
1780 outs() << "BOLT-INFO: enabling " << (opts::StrictMode
? "strict " : "")
1781 << "relocation mode\n";
1783 // Read EH frame for function boundaries info.
1784 Expected
<const DWARFDebugFrame
*> EHFrameOrError
= BC
->DwCtx
->getEHFrame();
1785 if (!EHFrameOrError
)
1786 report_error("expected valid eh_frame section", EHFrameOrError
.takeError());
1787 CFIRdWrt
.reset(new CFIReaderWriter(*EHFrameOrError
.get()));
1791 if (std::optional
<std::string
> FileBuildID
= getPrintableBuildID())
1792 BC
->setFileBuildID(*FileBuildID
);
1794 // Read .dynamic/PT_DYNAMIC.
1795 return readELFDynamic();
1798 void RewriteInstance::adjustCommandLineOptions() {
1799 if (BC
->isAArch64() && !BC
->HasRelocations
)
1800 errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully "
1803 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary())
1804 RtLibrary
->adjustCommandLineOptions(*BC
);
1806 if (opts::AlignMacroOpFusion
!= MFT_NONE
&& !BC
->isX86()) {
1807 outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n";
1808 opts::AlignMacroOpFusion
= MFT_NONE
;
1811 if (BC
->isX86() && BC
->MAB
->allowAutoPadding()) {
1812 if (!BC
->HasRelocations
) {
1813 errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in "
1814 "non-relocation mode\n";
1817 outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout "
1818 "may take several minutes\n";
1819 opts::AlignMacroOpFusion
= MFT_NONE
;
1822 if (opts::AlignMacroOpFusion
!= MFT_NONE
&& !BC
->HasRelocations
) {
1823 outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation "
1825 opts::AlignMacroOpFusion
= MFT_NONE
;
1828 if (opts::SplitEH
&& !BC
->HasRelocations
) {
1829 errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n";
1830 opts::SplitEH
= false;
1833 if (opts::StrictMode
&& !BC
->HasRelocations
) {
1834 errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation "
1836 opts::StrictMode
= false;
1839 if (BC
->HasRelocations
&& opts::AggregateOnly
&&
1840 !opts::StrictMode
.getNumOccurrences()) {
1841 outs() << "BOLT-INFO: enabling strict relocation mode for aggregation "
1843 opts::StrictMode
= true;
1846 if (BC
->isX86() && BC
->HasRelocations
&&
1847 opts::AlignMacroOpFusion
== MFT_HOT
&& !ProfileReader
) {
1848 outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile "
1850 opts::AlignMacroOpFusion
= MFT_ALL
;
1853 if (!BC
->HasRelocations
&&
1854 opts::ReorderFunctions
!= ReorderFunctions::RT_NONE
) {
1855 errs() << "BOLT-ERROR: function reordering only works when "
1856 << "relocations are enabled\n";
1860 if (opts::Instrument
||
1861 (opts::ReorderFunctions
!= ReorderFunctions::RT_NONE
&&
1862 !opts::HotText
.getNumOccurrences())) {
1863 opts::HotText
= true;
1864 } else if (opts::HotText
&& !BC
->HasRelocations
) {
1865 errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n";
1866 opts::HotText
= false;
1869 if (opts::HotText
&& opts::HotTextMoveSections
.getNumOccurrences() == 0) {
1870 opts::HotTextMoveSections
.addValue(".stub");
1871 opts::HotTextMoveSections
.addValue(".mover");
1872 opts::HotTextMoveSections
.addValue(".never_hugify");
1875 if (opts::UseOldText
&& !BC
->OldTextSectionAddress
) {
1876 errs() << "BOLT-WARNING: cannot use old .text as the section was not found"
1878 opts::UseOldText
= false;
1880 if (opts::UseOldText
&& !BC
->HasRelocations
) {
1881 errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n";
1882 opts::UseOldText
= false;
1885 if (!opts::AlignText
.getNumOccurrences())
1886 opts::AlignText
= BC
->PageAlign
;
1888 if (opts::AlignText
< opts::AlignFunctions
)
1889 opts::AlignText
= (unsigned)opts::AlignFunctions
;
1891 if (BC
->isX86() && opts::Lite
.getNumOccurrences() == 0 && !opts::StrictMode
&&
1895 if (opts::Lite
&& opts::UseOldText
) {
1896 errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. "
1897 "Disabling -use-old-text.\n";
1898 opts::UseOldText
= false;
1901 if (opts::Lite
&& opts::StrictMode
) {
1902 errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n";
1907 outs() << "BOLT-INFO: enabling lite mode\n";
1909 if (!opts::SaveProfile
.empty() && BAT
->enabledFor(InputFile
)) {
1910 errs() << "BOLT-ERROR: unable to save profile in YAML format for input "
1911 "file processed by BOLT. Please remove -w option and use branch "
1918 template <typename ELFT
>
1919 int64_t getRelocationAddend(const ELFObjectFile
<ELFT
> *Obj
,
1920 const RelocationRef
&RelRef
) {
1921 using ELFShdrTy
= typename
ELFT::Shdr
;
1922 using Elf_Rela
= typename
ELFT::Rela
;
1924 const ELFFile
<ELFT
> &EF
= Obj
->getELFFile();
1925 DataRefImpl Rel
= RelRef
.getRawDataRefImpl();
1926 const ELFShdrTy
*RelocationSection
= cantFail(EF
.getSection(Rel
.d
.a
));
1927 switch (RelocationSection
->sh_type
) {
1929 llvm_unreachable("unexpected relocation section type");
1932 case ELF::SHT_RELA
: {
1933 const Elf_Rela
*RelA
= Obj
->getRela(Rel
);
1934 Addend
= RelA
->r_addend
;
1942 int64_t getRelocationAddend(const ELFObjectFileBase
*Obj
,
1943 const RelocationRef
&Rel
) {
1944 return getRelocationAddend(cast
<ELF64LEObjectFile
>(Obj
), Rel
);
1947 template <typename ELFT
>
1948 uint32_t getRelocationSymbol(const ELFObjectFile
<ELFT
> *Obj
,
1949 const RelocationRef
&RelRef
) {
1950 using ELFShdrTy
= typename
ELFT::Shdr
;
1951 uint32_t Symbol
= 0;
1952 const ELFFile
<ELFT
> &EF
= Obj
->getELFFile();
1953 DataRefImpl Rel
= RelRef
.getRawDataRefImpl();
1954 const ELFShdrTy
*RelocationSection
= cantFail(EF
.getSection(Rel
.d
.a
));
1955 switch (RelocationSection
->sh_type
) {
1957 llvm_unreachable("unexpected relocation section type");
1959 Symbol
= Obj
->getRel(Rel
)->getSymbol(EF
.isMips64EL());
1962 Symbol
= Obj
->getRela(Rel
)->getSymbol(EF
.isMips64EL());
1969 uint32_t getRelocationSymbol(const ELFObjectFileBase
*Obj
,
1970 const RelocationRef
&Rel
) {
1971 return getRelocationSymbol(cast
<ELF64LEObjectFile
>(Obj
), Rel
);
1973 } // anonymous namespace
1975 bool RewriteInstance::analyzeRelocation(
1976 const RelocationRef
&Rel
, uint64_t &RType
, std::string
&SymbolName
,
1977 bool &IsSectionRelocation
, uint64_t &SymbolAddress
, int64_t &Addend
,
1978 uint64_t &ExtractedValue
, bool &Skip
) const {
1980 if (!Relocation::isSupported(RType
))
1983 const bool IsAArch64
= BC
->isAArch64();
1985 const size_t RelSize
= Relocation::getSizeForType(RType
);
1987 ErrorOr
<uint64_t> Value
=
1988 BC
->getUnsignedValueAtAddress(Rel
.getOffset(), RelSize
);
1989 assert(Value
&& "failed to extract relocated value");
1990 if ((Skip
= Relocation::skipRelocationProcess(RType
, *Value
)))
1993 ExtractedValue
= Relocation::extractValue(RType
, *Value
, Rel
.getOffset());
1994 Addend
= getRelocationAddend(InputFile
, Rel
);
1996 const bool IsPCRelative
= Relocation::isPCRelative(RType
);
1997 const uint64_t PCRelOffset
= IsPCRelative
&& !IsAArch64
? Rel
.getOffset() : 0;
1998 bool SkipVerification
= false;
1999 auto SymbolIter
= Rel
.getSymbol();
2000 if (SymbolIter
== InputFile
->symbol_end()) {
2001 SymbolAddress
= ExtractedValue
- Addend
+ PCRelOffset
;
2002 MCSymbol
*RelSymbol
=
2003 BC
->getOrCreateGlobalSymbol(SymbolAddress
, "RELSYMat");
2004 SymbolName
= std::string(RelSymbol
->getName());
2005 IsSectionRelocation
= false;
2007 const SymbolRef
&Symbol
= *SymbolIter
;
2008 SymbolName
= std::string(cantFail(Symbol
.getName()));
2009 SymbolAddress
= cantFail(Symbol
.getAddress());
2010 SkipVerification
= (cantFail(Symbol
.getType()) == SymbolRef::ST_Other
);
2011 // Section symbols are marked as ST_Debug.
2012 IsSectionRelocation
= (cantFail(Symbol
.getType()) == SymbolRef::ST_Debug
);
2013 // Check for PLT entry registered with symbol name
2014 if (!SymbolAddress
&& (IsAArch64
|| BC
->isRISCV())) {
2015 const BinaryData
*BD
= BC
->getPLTBinaryDataByName(SymbolName
);
2016 SymbolAddress
= BD
? BD
->getAddress() : 0;
2019 // For PIE or dynamic libs, the linker may choose not to put the relocation
2020 // result at the address if it is a X86_64_64 one because it will emit a
2021 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to
2022 // resolve it at run time. The static relocation result goes as the addend
2023 // of the dynamic relocation in this case. We can't verify these cases.
2024 // FIXME: perhaps we can try to find if it really emitted a corresponding
2025 // RELATIVE relocation at this offset with the correct value as the addend.
2026 if (!BC
->HasFixedLoadAddress
&& RelSize
== 8)
2027 SkipVerification
= true;
2029 if (IsSectionRelocation
&& !IsAArch64
) {
2030 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(SymbolAddress
);
2031 assert(Section
&& "section expected for section relocation");
2032 SymbolName
= "section " + std::string(Section
->getName());
2033 // Convert section symbol relocations to regular relocations inside
2034 // non-section symbols.
2035 if (Section
->containsAddress(ExtractedValue
) && !IsPCRelative
) {
2036 SymbolAddress
= ExtractedValue
;
2039 Addend
= ExtractedValue
- (SymbolAddress
- PCRelOffset
);
2043 // If no symbol has been found or if it is a relocation requiring the
2044 // creation of a GOT entry, do not link against the symbol but against
2045 // whatever address was extracted from the instruction itself. We are
2046 // not creating a GOT entry as this was already processed by the linker.
2047 // For GOT relocs, do not subtract addend as the addend does not refer
2048 // to this instruction's target, but it refers to the target in the GOT
2050 if (Relocation::isGOT(RType
)) {
2052 SymbolAddress
= ExtractedValue
+ PCRelOffset
;
2053 } else if (Relocation::isTLS(RType
)) {
2054 SkipVerification
= true;
2055 } else if (!SymbolAddress
) {
2056 assert(!IsSectionRelocation
);
2057 if (ExtractedValue
|| Addend
== 0 || IsPCRelative
) {
2059 truncateToSize(ExtractedValue
- Addend
+ PCRelOffset
, RelSize
);
2061 // This is weird case. The extracted value is zero but the addend is
2062 // non-zero and the relocation is not pc-rel. Using the previous logic,
2063 // the SymbolAddress would end up as a huge number. Seen in
2064 // exceptions_pic.test.
2065 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x"
2066 << Twine::utohexstr(Rel
.getOffset())
2067 << " value does not match addend for "
2068 << "relocation to undefined symbol.\n");
2073 auto verifyExtractedValue
= [&]() {
2074 if (SkipVerification
)
2077 if (IsAArch64
|| BC
->isRISCV())
2080 if (SymbolName
== "__hot_start" || SymbolName
== "__hot_end")
2083 if (RType
== ELF::R_X86_64_PLT32
)
2086 return truncateToSize(ExtractedValue
, RelSize
) ==
2087 truncateToSize(SymbolAddress
+ Addend
- PCRelOffset
, RelSize
);
2090 (void)verifyExtractedValue
;
2091 assert(verifyExtractedValue() && "mismatched extracted relocation value");
2096 void RewriteInstance::processDynamicRelocations() {
2097 // Read .relr.dyn section containing compressed R_*_RELATIVE relocations.
2098 if (DynamicRelrSize
> 0) {
2099 ErrorOr
<BinarySection
&> DynamicRelrSectionOrErr
=
2100 BC
->getSectionForAddress(*DynamicRelrAddress
);
2101 if (!DynamicRelrSectionOrErr
)
2102 report_error("unable to find section corresponding to DT_RELR",
2103 DynamicRelrSectionOrErr
.getError());
2104 if (DynamicRelrSectionOrErr
->getSize() != DynamicRelrSize
)
2105 report_error("section size mismatch for DT_RELRSZ",
2106 errc::executable_format_error
);
2107 readDynamicRelrRelocations(*DynamicRelrSectionOrErr
);
2110 // Read relocations for PLT - DT_JMPREL.
2111 if (PLTRelocationsSize
> 0) {
2112 ErrorOr
<BinarySection
&> PLTRelSectionOrErr
=
2113 BC
->getSectionForAddress(*PLTRelocationsAddress
);
2114 if (!PLTRelSectionOrErr
)
2115 report_error("unable to find section corresponding to DT_JMPREL",
2116 PLTRelSectionOrErr
.getError());
2117 if (PLTRelSectionOrErr
->getSize() != PLTRelocationsSize
)
2118 report_error("section size mismatch for DT_PLTRELSZ",
2119 errc::executable_format_error
);
2120 readDynamicRelocations(PLTRelSectionOrErr
->getSectionRef(),
2124 // The rest of dynamic relocations - DT_RELA.
2125 if (DynamicRelocationsSize
> 0) {
2126 ErrorOr
<BinarySection
&> DynamicRelSectionOrErr
=
2127 BC
->getSectionForAddress(*DynamicRelocationsAddress
);
2128 if (!DynamicRelSectionOrErr
)
2129 report_error("unable to find section corresponding to DT_RELA",
2130 DynamicRelSectionOrErr
.getError());
2131 auto DynamicRelSectionSize
= DynamicRelSectionOrErr
->getSize();
2132 // On RISC-V DT_RELASZ seems to include both .rela.dyn and .rela.plt
2133 if (DynamicRelocationsSize
== DynamicRelSectionSize
+ PLTRelocationsSize
)
2134 DynamicRelocationsSize
= DynamicRelSectionSize
;
2135 if (DynamicRelSectionSize
!= DynamicRelocationsSize
)
2136 report_error("section size mismatch for DT_RELASZ",
2137 errc::executable_format_error
);
2138 readDynamicRelocations(DynamicRelSectionOrErr
->getSectionRef(),
2139 /*IsJmpRel*/ false);
2143 void RewriteInstance::processRelocations() {
2144 if (!BC
->HasRelocations
)
2147 for (const SectionRef
&Section
: InputFile
->sections()) {
2148 if (cantFail(Section
.getRelocatedSection()) != InputFile
->section_end() &&
2149 !BinarySection(*BC
, Section
).isAllocatable())
2150 readRelocations(Section
);
2153 if (NumFailedRelocations
)
2154 errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations
2155 << " relocations\n";
2158 void RewriteInstance::readDynamicRelocations(const SectionRef
&Section
,
2160 assert(BinarySection(*BC
, Section
).isAllocatable() && "allocatable expected");
2163 StringRef SectionName
= cantFail(Section
.getName());
2164 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2168 for (const RelocationRef
&Rel
: Section
.relocations()) {
2169 const uint64_t RType
= Rel
.getType();
2170 if (Relocation::isNone(RType
))
2173 StringRef SymbolName
= "<none>";
2174 MCSymbol
*Symbol
= nullptr;
2175 uint64_t SymbolAddress
= 0;
2176 const uint64_t Addend
= getRelocationAddend(InputFile
, Rel
);
2178 symbol_iterator SymbolIter
= Rel
.getSymbol();
2179 if (SymbolIter
!= InputFile
->symbol_end()) {
2180 SymbolName
= cantFail(SymbolIter
->getName());
2181 BinaryData
*BD
= BC
->getBinaryDataByName(SymbolName
);
2182 Symbol
= BD
? BD
->getSymbol()
2183 : BC
->getOrCreateUndefinedGlobalSymbol(SymbolName
);
2184 SymbolAddress
= cantFail(SymbolIter
->getAddress());
2185 (void)SymbolAddress
;
2189 SmallString
<16> TypeName
;
2190 Rel
.getTypeName(TypeName
);
2191 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x"
2192 << Twine::utohexstr(Rel
.getOffset()) << " : " << TypeName
2193 << " : " << SymbolName
<< " : " << Twine::utohexstr(SymbolAddress
)
2194 << " : + 0x" << Twine::utohexstr(Addend
) << '\n'
2198 IsJmpRelocation
[RType
] = true;
2201 SymbolIndex
[Symbol
] = getRelocationSymbol(InputFile
, Rel
);
2203 BC
->addDynamicRelocation(Rel
.getOffset(), Symbol
, RType
, Addend
);
2207 void RewriteInstance::readDynamicRelrRelocations(BinarySection
&Section
) {
2208 assert(Section
.isAllocatable() && "allocatable expected");
2211 StringRef SectionName
= Section
.getName();
2212 dbgs() << "BOLT-DEBUG: reading relocations in section " << SectionName
2216 const uint64_t RType
= Relocation::getRelative();
2217 const uint8_t PSize
= BC
->AsmInfo
->getCodePointerSize();
2218 const uint64_t MaxDelta
= ((CHAR_BIT
* DynamicRelrEntrySize
) - 1) * PSize
;
2220 auto ExtractAddendValue
= [&](uint64_t Address
) -> uint64_t {
2221 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(Address
);
2222 assert(Section
&& "cannot get section for data address from RELR");
2223 DataExtractor DE
= DataExtractor(Section
->getContents(),
2224 BC
->AsmInfo
->isLittleEndian(), PSize
);
2225 uint64_t Offset
= Address
- Section
->getAddress();
2226 return DE
.getUnsigned(&Offset
, PSize
);
2229 auto AddRelocation
= [&](uint64_t Address
) {
2230 uint64_t Addend
= ExtractAddendValue(Address
);
2231 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: R_*_RELATIVE relocation at 0x"
2232 << Twine::utohexstr(Address
) << " to 0x"
2233 << Twine::utohexstr(Addend
) << '\n';);
2234 BC
->addDynamicRelocation(Address
, nullptr, RType
, Addend
);
2237 DataExtractor DE
= DataExtractor(Section
.getContents(),
2238 BC
->AsmInfo
->isLittleEndian(), PSize
);
2239 uint64_t Offset
= 0, Address
= 0;
2240 uint64_t RelrCount
= DynamicRelrSize
/ DynamicRelrEntrySize
;
2241 while (RelrCount
--) {
2242 assert(DE
.isValidOffset(Offset
));
2243 uint64_t Entry
= DE
.getUnsigned(&Offset
, DynamicRelrEntrySize
);
2244 if ((Entry
& 1) == 0) {
2245 AddRelocation(Entry
);
2246 Address
= Entry
+ PSize
;
2248 const uint64_t StartAddress
= Address
;
2249 while (Entry
>>= 1) {
2251 AddRelocation(Address
);
2256 Address
= StartAddress
+ MaxDelta
;
2261 void RewriteInstance::printRelocationInfo(const RelocationRef
&Rel
,
2262 StringRef SymbolName
,
2263 uint64_t SymbolAddress
,
2265 uint64_t ExtractedValue
) const {
2266 SmallString
<16> TypeName
;
2267 Rel
.getTypeName(TypeName
);
2268 const uint64_t Address
= SymbolAddress
+ Addend
;
2269 const uint64_t Offset
= Rel
.getOffset();
2270 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(SymbolAddress
);
2271 BinaryFunction
*Func
=
2272 BC
->getBinaryFunctionContainingAddress(Offset
, false, BC
->isAArch64());
2273 dbgs() << formatv("Relocation: offset = {0:x}; type = {1}; value = {2:x}; ",
2274 Offset
, TypeName
, ExtractedValue
)
2275 << formatv("symbol = {0} ({1}); symbol address = {2:x}; ", SymbolName
,
2276 Section
? Section
->getName() : "", SymbolAddress
)
2277 << formatv("addend = {0:x}; address = {1:x}; in = ", Addend
, Address
);
2279 dbgs() << Func
->getPrintName();
2281 dbgs() << BC
->getSectionForAddress(Rel
.getOffset())->getName();
2285 void RewriteInstance::readRelocations(const SectionRef
&Section
) {
2287 StringRef SectionName
= cantFail(Section
.getName());
2288 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2291 if (BinarySection(*BC
, Section
).isAllocatable()) {
2292 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n");
2295 section_iterator SecIter
= cantFail(Section
.getRelocatedSection());
2296 assert(SecIter
!= InputFile
->section_end() && "relocated section expected");
2297 SectionRef RelocatedSection
= *SecIter
;
2299 StringRef RelocatedSectionName
= cantFail(RelocatedSection
.getName());
2300 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is "
2301 << RelocatedSectionName
<< '\n');
2303 if (!BinarySection(*BC
, RelocatedSection
).isAllocatable()) {
2304 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against "
2305 << "non-allocatable section\n");
2308 const bool SkipRelocs
= StringSwitch
<bool>(RelocatedSectionName
)
2309 .Cases(".plt", ".rela.plt", ".got.plt",
2310 ".eh_frame", ".gcc_except_table", true)
2314 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n");
2318 for (const RelocationRef
&Rel
: Section
.relocations())
2319 handleRelocation(RelocatedSection
, Rel
);
2322 void RewriteInstance::handleRelocation(const SectionRef
&RelocatedSection
,
2323 const RelocationRef
&Rel
) {
2324 const bool IsAArch64
= BC
->isAArch64();
2325 const bool IsFromCode
= RelocatedSection
.isText();
2327 SmallString
<16> TypeName
;
2328 Rel
.getTypeName(TypeName
);
2329 uint64_t RType
= Rel
.getType();
2330 if (Relocation::skipRelocationType(RType
))
2333 // Adjust the relocation type as the linker might have skewed it.
2334 if (BC
->isX86() && (RType
& ELF::R_X86_64_converted_reloc_bit
)) {
2335 if (opts::Verbosity
>= 1)
2336 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n";
2337 RType
&= ~ELF::R_X86_64_converted_reloc_bit
;
2340 if (Relocation::isTLS(RType
)) {
2341 // No special handling required for TLS relocations on X86.
2345 // The non-got related TLS relocations on AArch64 and RISC-V also could be
2347 if (!Relocation::isGOT(RType
))
2351 if (!IsAArch64
&& BC
->getDynamicRelocationAt(Rel
.getOffset())) {
2353 dbgs() << formatv("BOLT-DEBUG: address {0:x} has a ", Rel
.getOffset())
2354 << "dynamic relocation against it. Ignoring static relocation.\n";
2359 std::string SymbolName
;
2360 uint64_t SymbolAddress
;
2362 uint64_t ExtractedValue
;
2363 bool IsSectionRelocation
;
2365 if (!analyzeRelocation(Rel
, RType
, SymbolName
, IsSectionRelocation
,
2366 SymbolAddress
, Addend
, ExtractedValue
, Skip
)) {
2368 dbgs() << "BOLT-WARNING: failed to analyze relocation @ offset = "
2369 << formatv("{0:x}; type name = {1}\n", Rel
.getOffset(), TypeName
);
2371 ++NumFailedRelocations
;
2377 dbgs() << "BOLT-DEBUG: skipping relocation @ offset = "
2378 << formatv("{0:x}; type name = {1}\n", Rel
.getOffset(), TypeName
);
2383 const uint64_t Address
= SymbolAddress
+ Addend
;
2386 dbgs() << "BOLT-DEBUG: ";
2387 printRelocationInfo(Rel
, SymbolName
, SymbolAddress
, Addend
, ExtractedValue
);
2390 BinaryFunction
*ContainingBF
= nullptr;
2393 BC
->getBinaryFunctionContainingAddress(Rel
.getOffset(),
2394 /*CheckPastEnd*/ false,
2395 /*UseMaxSize*/ true);
2396 assert(ContainingBF
&& "cannot find function for address in code");
2397 if (!IsAArch64
&& !ContainingBF
->containsAddress(Rel
.getOffset())) {
2398 if (opts::Verbosity
>= 1)
2399 outs() << formatv("BOLT-INFO: {0} has relocations in padding area\n",
2401 ContainingBF
->setSize(ContainingBF
->getMaxSize());
2402 ContainingBF
->setSimple(false);
2407 MCSymbol
*ReferencedSymbol
= nullptr;
2408 if (!IsSectionRelocation
) {
2409 if (BinaryData
*BD
= BC
->getBinaryDataByName(SymbolName
))
2410 ReferencedSymbol
= BD
->getSymbol();
2411 else if (BC
->isGOTSymbol(SymbolName
))
2412 if (BinaryData
*BD
= BC
->getGOTSymbol())
2413 ReferencedSymbol
= BD
->getSymbol();
2416 ErrorOr
<BinarySection
&> ReferencedSection
{std::errc::bad_address
};
2417 symbol_iterator SymbolIter
= Rel
.getSymbol();
2418 if (SymbolIter
!= InputFile
->symbol_end()) {
2419 SymbolRef Symbol
= *SymbolIter
;
2420 section_iterator Section
=
2421 cantFail(Symbol
.getSection(), "cannot get symbol section");
2422 if (Section
!= InputFile
->section_end()) {
2423 Expected
<StringRef
> SectionName
= Section
->getName();
2424 if (SectionName
&& !SectionName
->empty())
2425 ReferencedSection
= BC
->getUniqueSectionByName(*SectionName
);
2426 } else if (ReferencedSymbol
&&
2427 (cantFail(Symbol
.getFlags()) & SymbolRef::SF_Absolute
)) {
2428 // This might be a relocation for an ABS symbols like __global_pointer$ on
2430 ContainingBF
->addRelocation(Rel
.getOffset(), ReferencedSymbol
,
2432 cantFail(Symbol
.getValue()));
2437 if (!ReferencedSection
)
2438 ReferencedSection
= BC
->getSectionForAddress(SymbolAddress
);
2440 const bool IsToCode
= ReferencedSection
&& ReferencedSection
->isText();
2442 // Special handling of PC-relative relocations.
2443 if (!IsAArch64
&& !BC
->isRISCV() && Relocation::isPCRelative(RType
)) {
2444 if (!IsFromCode
&& IsToCode
) {
2445 // PC-relative relocations from data to code are tricky since the
2446 // original information is typically lost after linking, even with
2447 // '--emit-relocs'. Such relocations are normally used by PIC-style
2448 // jump tables and they reference both the jump table and jump
2449 // targets by computing the difference between the two. If we blindly
2450 // apply the relocation, it will appear that it references an arbitrary
2451 // location in the code, possibly in a different function from the one
2452 // containing the jump table.
2454 // For that reason, we only register the fact that there is a
2455 // PC-relative relocation at a given address against the code.
2456 // The actual referenced label/address will be determined during jump
2458 BC
->addPCRelativeDataRelocation(Rel
.getOffset());
2459 } else if (ContainingBF
&& !IsSectionRelocation
&& ReferencedSymbol
) {
2460 // If we know the referenced symbol, register the relocation from
2461 // the code. It's required to properly handle cases where
2462 // "symbol + addend" references an object different from "symbol".
2463 ContainingBF
->addRelocation(Rel
.getOffset(), ReferencedSymbol
, RType
,
2464 Addend
, ExtractedValue
);
2467 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at"
2468 << formatv("{0:x} for {1}\n", Rel
.getOffset(), SymbolName
);
2475 bool ForceRelocation
= BC
->forceSymbolRelocations(SymbolName
);
2476 if ((BC
->isAArch64() || BC
->isRISCV()) && Relocation::isGOT(RType
))
2477 ForceRelocation
= true;
2479 if (!ReferencedSection
&& !ForceRelocation
) {
2480 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n");
2484 // Occasionally we may see a reference past the last byte of the function
2485 // typically as a result of __builtin_unreachable(). Check it here.
2486 BinaryFunction
*ReferencedBF
= BC
->getBinaryFunctionContainingAddress(
2487 Address
, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64
);
2489 if (!IsSectionRelocation
) {
2490 if (BinaryFunction
*BF
=
2491 BC
->getBinaryFunctionContainingAddress(SymbolAddress
)) {
2492 if (BF
!= ReferencedBF
) {
2493 // It's possible we are referencing a function without referencing any
2494 // code, e.g. when taking a bitmask action on a function address.
2495 errs() << "BOLT-WARNING: non-standard function reference (e.g. bitmask)"
2496 << formatv(" detected against function {0} from ", *BF
);
2498 errs() << formatv("function {0}\n", *ContainingBF
);
2500 errs() << formatv("data section at {0:x}\n", Rel
.getOffset());
2501 LLVM_DEBUG(printRelocationInfo(Rel
, SymbolName
, SymbolAddress
, Addend
,
2506 } else if (ReferencedBF
) {
2507 assert(ReferencedSection
&& "section expected for section relocation");
2508 if (*ReferencedBF
->getOriginSection() != *ReferencedSection
) {
2509 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n");
2510 ReferencedBF
= nullptr;
2514 // Workaround for a member function pointer de-virtualization bug. We check
2515 // if a non-pc-relative relocation in the code is pointing to (fptr - 1).
2516 if (IsToCode
&& ContainingBF
&& !Relocation::isPCRelative(RType
) &&
2517 (!ReferencedBF
|| (ReferencedBF
->getAddress() != Address
))) {
2518 if (const BinaryFunction
*RogueBF
=
2519 BC
->getBinaryFunctionAtAddress(Address
+ 1)) {
2520 // Do an extra check that the function was referenced previously.
2521 // It's a linear search, but it should rarely happen.
2522 auto CheckReloc
= [&](const Relocation
&Rel
) {
2523 return Rel
.Symbol
== RogueBF
->getSymbol() &&
2524 !Relocation::isPCRelative(Rel
.Type
);
2526 bool Found
= llvm::any_of(
2527 llvm::make_second_range(ContainingBF
->Relocations
), CheckReloc
);
2530 errs() << "BOLT-WARNING: detected possible compiler de-virtualization "
2531 "bug: -1 addend used with non-pc-relative relocation against "
2532 << formatv("function {0} in function {1}\n", *RogueBF
,
2539 if (ForceRelocation
) {
2541 Relocation::isGOT(RType
) ? "__BOLT_got_zero" : SymbolName
;
2542 ReferencedSymbol
= BC
->registerNameAtAddress(Name
, 0, 0, 0);
2544 if (Relocation::isGOT(RType
))
2546 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol "
2547 << SymbolName
<< " with addend " << Addend
<< '\n');
2548 } else if (ReferencedBF
) {
2549 ReferencedSymbol
= ReferencedBF
->getSymbol();
2550 uint64_t RefFunctionOffset
= 0;
2552 // Adjust the point of reference to a code location inside a function.
2553 if (ReferencedBF
->containsAddress(Address
, /*UseMaxSize = */ true)) {
2554 RefFunctionOffset
= Address
- ReferencedBF
->getAddress();
2555 if (Relocation::isInstructionReference(RType
)) {
2556 // Instruction labels are created while disassembling so we just leave
2557 // the symbol empty for now. Since the extracted value is typically
2558 // unrelated to the referenced symbol (e.g., %pcrel_lo in RISC-V
2559 // references an instruction but the patched value references the low
2560 // bits of a data address), we set the extracted value to the symbol
2561 // address in order to be able to correctly reconstruct the reference
2563 ReferencedSymbol
= nullptr;
2564 ExtractedValue
= Address
;
2565 } else if (RefFunctionOffset
) {
2566 if (ContainingBF
&& ContainingBF
!= ReferencedBF
) {
2568 ReferencedBF
->addEntryPointAtOffset(RefFunctionOffset
);
2571 ReferencedBF
->getOrCreateLocalLabel(Address
,
2572 /*CreatePastEnd =*/true);
2574 // If ContainingBF != nullptr, it equals ReferencedBF (see
2575 // if-condition above) so we're handling a relocation from a function
2576 // to itself. RISC-V uses such relocations for branches, for example.
2577 // These should not be registered as externally references offsets.
2579 ReferencedBF
->registerReferencedOffset(RefFunctionOffset
);
2581 if (opts::Verbosity
> 1 &&
2582 BinarySection(*BC
, RelocatedSection
).isWritable())
2583 errs() << "BOLT-WARNING: writable reference into the middle of the "
2584 << formatv("function {0} detected at address {1:x}\n",
2585 *ReferencedBF
, Rel
.getOffset());
2587 SymbolAddress
= Address
;
2591 dbgs() << " referenced function " << *ReferencedBF
;
2592 if (Address
!= ReferencedBF
->getAddress())
2593 dbgs() << formatv(" at offset {0:x}", RefFunctionOffset
);
2597 if (IsToCode
&& SymbolAddress
) {
2598 // This can happen e.g. with PIC-style jump tables.
2599 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for "
2600 "relocation against code\n");
2603 // In AArch64 there are zero reasons to keep a reference to the
2604 // "original" symbol plus addend. The original symbol is probably just a
2605 // section symbol. If we are here, this means we are probably accessing
2606 // data, so it is imperative to keep the original address.
2608 SymbolName
= formatv("SYMBOLat{0:x}", Address
);
2609 SymbolAddress
= Address
;
2613 if (BinaryData
*BD
= BC
->getBinaryDataContainingAddress(SymbolAddress
)) {
2614 // Note: this assertion is trying to check sanity of BinaryData objects
2615 // but AArch64 has inferred and incomplete object locations coming from
2616 // GOT/TLS or any other non-trivial relocation (that requires creation
2617 // of sections and whose symbol address is not really what should be
2618 // encoded in the instruction). So we essentially disabled this check
2619 // for AArch64 and live with bogus names for objects.
2620 assert((IsAArch64
|| IsSectionRelocation
||
2621 BD
->nameStartsWith(SymbolName
) ||
2622 BD
->nameStartsWith("PG" + SymbolName
) ||
2623 (BD
->nameStartsWith("ANONYMOUS") &&
2624 (BD
->getSectionName().startswith(".plt") ||
2625 BD
->getSectionName().endswith(".plt")))) &&
2626 "BOLT symbol names of all non-section relocations must match up "
2627 "with symbol names referenced in the relocation");
2629 if (IsSectionRelocation
)
2630 BC
->markAmbiguousRelocations(*BD
, Address
);
2632 ReferencedSymbol
= BD
->getSymbol();
2633 Addend
+= (SymbolAddress
- BD
->getAddress());
2634 SymbolAddress
= BD
->getAddress();
2635 assert(Address
== SymbolAddress
+ Addend
);
2637 // These are mostly local data symbols but undefined symbols
2638 // in relocation sections can get through here too, from .plt.
2640 (IsAArch64
|| BC
->isRISCV() || IsSectionRelocation
||
2641 BC
->getSectionNameForAddress(SymbolAddress
)->startswith(".plt")) &&
2642 "known symbols should not resolve to anonymous locals");
2644 if (IsSectionRelocation
) {
2646 BC
->getOrCreateGlobalSymbol(SymbolAddress
, "SYMBOLat");
2648 SymbolRef Symbol
= *Rel
.getSymbol();
2649 const uint64_t SymbolSize
=
2650 IsAArch64
? 0 : ELFSymbolRef(Symbol
).getSize();
2651 const uint64_t SymbolAlignment
= IsAArch64
? 1 : Symbol
.getAlignment();
2652 const uint32_t SymbolFlags
= cantFail(Symbol
.getFlags());
2654 if (SymbolFlags
& SymbolRef::SF_Global
) {
2657 if (StringRef(SymbolName
)
2658 .startswith(BC
->AsmInfo
->getPrivateGlobalPrefix()))
2659 Name
= NR
.uniquify("PG" + SymbolName
);
2661 Name
= NR
.uniquify(SymbolName
);
2663 ReferencedSymbol
= BC
->registerNameAtAddress(
2664 Name
, SymbolAddress
, SymbolSize
, SymbolAlignment
, SymbolFlags
);
2667 if (IsSectionRelocation
) {
2668 BinaryData
*BD
= BC
->getBinaryDataByName(ReferencedSymbol
->getName());
2669 BC
->markAmbiguousRelocations(*BD
, Address
);
2674 auto checkMaxDataRelocations
= [&]() {
2675 ++NumDataRelocations
;
2676 LLVM_DEBUG(if (opts::MaxDataRelocations
&&
2677 NumDataRelocations
+ 1 == opts::MaxDataRelocations
) {
2678 dbgs() << "BOLT-DEBUG: processing ending on data relocation "
2679 << NumDataRelocations
<< ": ";
2680 printRelocationInfo(Rel
, ReferencedSymbol
->getName(), SymbolAddress
,
2681 Addend
, ExtractedValue
);
2684 return (!opts::MaxDataRelocations
||
2685 NumDataRelocations
< opts::MaxDataRelocations
);
2688 if ((ReferencedSection
&& refersToReorderedSection(ReferencedSection
)) ||
2689 (opts::ForceToDataRelocations
&& checkMaxDataRelocations()) ||
2690 // RISC-V has ADD/SUB data-to-data relocations
2692 ForceRelocation
= true;
2695 ContainingBF
->addRelocation(Rel
.getOffset(), ReferencedSymbol
, RType
,
2696 Addend
, ExtractedValue
);
2697 } else if (IsToCode
|| ForceRelocation
) {
2698 BC
->addRelocation(Rel
.getOffset(), ReferencedSymbol
, RType
, Addend
,
2701 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n");
2705 void RewriteInstance::selectFunctionsToProcess() {
2706 // Extend the list of functions to process or skip from a file.
2707 auto populateFunctionNames
= [](cl::opt
<std::string
> &FunctionNamesFile
,
2708 cl::list
<std::string
> &FunctionNames
) {
2709 if (FunctionNamesFile
.empty())
2711 std::ifstream
FuncsFile(FunctionNamesFile
, std::ios::in
);
2712 std::string FuncName
;
2713 while (std::getline(FuncsFile
, FuncName
))
2714 FunctionNames
.push_back(FuncName
);
2716 populateFunctionNames(opts::FunctionNamesFile
, opts::ForceFunctionNames
);
2717 populateFunctionNames(opts::SkipFunctionNamesFile
, opts::SkipFunctionNames
);
2718 populateFunctionNames(opts::FunctionNamesFileNR
, opts::ForceFunctionNamesNR
);
2720 // Make a set of functions to process to speed up lookups.
2721 std::unordered_set
<std::string
> ForceFunctionsNR(
2722 opts::ForceFunctionNamesNR
.begin(), opts::ForceFunctionNamesNR
.end());
2724 if ((!opts::ForceFunctionNames
.empty() ||
2725 !opts::ForceFunctionNamesNR
.empty()) &&
2726 !opts::SkipFunctionNames
.empty()) {
2727 errs() << "BOLT-ERROR: cannot select functions to process and skip at the "
2728 "same time. Please use only one type of selection.\n";
2732 uint64_t LiteThresholdExecCount
= 0;
2733 if (opts::LiteThresholdPct
) {
2734 if (opts::LiteThresholdPct
> 100)
2735 opts::LiteThresholdPct
= 100;
2737 std::vector
<const BinaryFunction
*> TopFunctions
;
2738 for (auto &BFI
: BC
->getBinaryFunctions()) {
2739 const BinaryFunction
&Function
= BFI
.second
;
2740 if (ProfileReader
->mayHaveProfileData(Function
))
2741 TopFunctions
.push_back(&Function
);
2744 TopFunctions
, [](const BinaryFunction
*A
, const BinaryFunction
*B
) {
2745 return A
->getKnownExecutionCount() < B
->getKnownExecutionCount();
2748 size_t Index
= TopFunctions
.size() * opts::LiteThresholdPct
/ 100;
2751 LiteThresholdExecCount
= TopFunctions
[Index
]->getKnownExecutionCount();
2752 outs() << "BOLT-INFO: limiting processing to functions with at least "
2753 << LiteThresholdExecCount
<< " invocations\n";
2755 LiteThresholdExecCount
= std::max(
2756 LiteThresholdExecCount
, static_cast<uint64_t>(opts::LiteThresholdCount
));
2758 StringSet
<> ReorderFunctionsUserSet
;
2759 StringSet
<> ReorderFunctionsLTOCommonSet
;
2760 if (opts::ReorderFunctions
== ReorderFunctions::RT_USER
) {
2761 for (const std::string
&Function
:
2762 ReorderFunctions::readFunctionOrderFile()) {
2763 ReorderFunctionsUserSet
.insert(Function
);
2764 if (std::optional
<StringRef
> LTOCommonName
= getLTOCommonName(Function
))
2765 ReorderFunctionsLTOCommonSet
.insert(*LTOCommonName
);
2769 uint64_t NumFunctionsToProcess
= 0;
2770 auto mustSkip
= [&](const BinaryFunction
&Function
) {
2771 if (opts::MaxFunctions
.getNumOccurrences() &&
2772 NumFunctionsToProcess
>= opts::MaxFunctions
)
2774 for (std::string
&Name
: opts::SkipFunctionNames
)
2775 if (Function
.hasNameRegex(Name
))
2781 auto shouldProcess
= [&](const BinaryFunction
&Function
) {
2782 if (mustSkip(Function
))
2785 // If the list is not empty, only process functions from the list.
2786 if (!opts::ForceFunctionNames
.empty() || !ForceFunctionsNR
.empty()) {
2787 // Regex check (-funcs and -funcs-file options).
2788 for (std::string
&Name
: opts::ForceFunctionNames
)
2789 if (Function
.hasNameRegex(Name
))
2792 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex).
2793 for (const StringRef Name
: Function
.getNames())
2794 if (ForceFunctionsNR
.count(Name
.str()))
2801 // Forcibly include functions specified in the -function-order file.
2802 if (opts::ReorderFunctions
== ReorderFunctions::RT_USER
) {
2803 for (const StringRef Name
: Function
.getNames())
2804 if (ReorderFunctionsUserSet
.contains(Name
))
2806 for (const StringRef Name
: Function
.getNames())
2807 if (std::optional
<StringRef
> LTOCommonName
= getLTOCommonName(Name
))
2808 if (ReorderFunctionsLTOCommonSet
.contains(*LTOCommonName
))
2812 if (ProfileReader
&& !ProfileReader
->mayHaveProfileData(Function
))
2815 if (Function
.getKnownExecutionCount() < LiteThresholdExecCount
)
2822 for (auto &BFI
: BC
->getBinaryFunctions()) {
2823 BinaryFunction
&Function
= BFI
.second
;
2825 // Pseudo functions are explicitly marked by us not to be processed.
2826 if (Function
.isPseudo()) {
2827 Function
.IsIgnored
= true;
2828 Function
.HasExternalRefRelocations
= true;
2832 // Decide what to do with fragments after parent functions are processed.
2833 if (Function
.isFragment())
2836 if (!shouldProcess(Function
)) {
2837 if (opts::Verbosity
>= 1) {
2838 outs() << "BOLT-INFO: skipping processing " << Function
2839 << " per user request\n";
2841 Function
.setIgnored();
2843 ++NumFunctionsToProcess
;
2844 if (opts::MaxFunctions
.getNumOccurrences() &&
2845 NumFunctionsToProcess
== opts::MaxFunctions
)
2846 outs() << "BOLT-INFO: processing ending on " << Function
<< '\n';
2850 if (!BC
->HasSplitFunctions
)
2853 // Fragment overrides:
2854 // - If the fragment must be skipped, then the parent must be skipped as well.
2855 // Otherwise, fragment should follow the parent function:
2856 // - if the parent is skipped, skip fragment,
2857 // - if the parent is processed, process the fragment(s) as well.
2858 for (auto &BFI
: BC
->getBinaryFunctions()) {
2859 BinaryFunction
&Function
= BFI
.second
;
2860 if (!Function
.isFragment())
2862 if (mustSkip(Function
)) {
2863 for (BinaryFunction
*Parent
: Function
.ParentFragments
) {
2864 if (opts::Verbosity
>= 1) {
2865 outs() << "BOLT-INFO: skipping processing " << *Parent
2866 << " together with fragment function\n";
2868 Parent
->setIgnored();
2869 --NumFunctionsToProcess
;
2871 Function
.setIgnored();
2875 bool IgnoredParent
=
2876 llvm::any_of(Function
.ParentFragments
, [&](BinaryFunction
*Parent
) {
2877 return Parent
->isIgnored();
2879 if (IgnoredParent
) {
2880 if (opts::Verbosity
>= 1) {
2881 outs() << "BOLT-INFO: skipping processing " << Function
2882 << " together with parent function\n";
2884 Function
.setIgnored();
2886 ++NumFunctionsToProcess
;
2887 if (opts::Verbosity
>= 1) {
2888 outs() << "BOLT-INFO: processing " << Function
2889 << " as a sibling of non-ignored function\n";
2891 if (opts::MaxFunctions
&& NumFunctionsToProcess
== opts::MaxFunctions
)
2892 outs() << "BOLT-INFO: processing ending on " << Function
<< '\n';
2897 void RewriteInstance::readDebugInfo() {
2898 NamedRegionTimer
T("readDebugInfo", "read debug info", TimerGroupName
,
2899 TimerGroupDesc
, opts::TimeRewrite
);
2900 if (!opts::UpdateDebugSections
)
2903 BC
->preprocessDebugInfo();
2906 void RewriteInstance::preprocessProfileData() {
2910 NamedRegionTimer
T("preprocessprofile", "pre-process profile data",
2911 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
2913 outs() << "BOLT-INFO: pre-processing profile using "
2914 << ProfileReader
->getReaderName() << '\n';
2916 if (BAT
->enabledFor(InputFile
)) {
2917 outs() << "BOLT-INFO: profile collection done on a binary already "
2918 "processed by BOLT\n";
2919 ProfileReader
->setBAT(&*BAT
);
2922 if (Error E
= ProfileReader
->preprocessProfile(*BC
.get()))
2923 report_error("cannot pre-process profile", std::move(E
));
2925 if (!BC
->hasSymbolsWithFileName() && ProfileReader
->hasLocalsWithFileName()) {
2926 errs() << "BOLT-ERROR: input binary does not have local file symbols "
2927 "but profile data includes function names with embedded file "
2928 "names. It appears that the input binary was stripped while a "
2929 "profiled binary was not\n";
2934 void RewriteInstance::initializeMetadataManager() {
2935 if (opts::LinuxKernelMode
)
2936 MetadataManager
.registerRewriter(createLinuxKernelRewriter(*BC
));
2938 MetadataManager
.registerRewriter(createPseudoProbeRewriter(*BC
));
2940 MetadataManager
.registerRewriter(createSDTRewriter(*BC
));
2943 void RewriteInstance::processMetadataPreCFG() {
2944 initializeMetadataManager();
2946 MetadataManager
.runInitializersPreCFG();
2948 processProfileDataPreCFG();
2951 void RewriteInstance::processMetadataPostCFG() {
2952 MetadataManager
.runInitializersPostCFG();
2955 void RewriteInstance::processProfileDataPreCFG() {
2959 NamedRegionTimer
T("processprofile-precfg", "process profile data pre-CFG",
2960 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
2962 if (Error E
= ProfileReader
->readProfilePreCFG(*BC
.get()))
2963 report_error("cannot read profile pre-CFG", std::move(E
));
2966 void RewriteInstance::processProfileData() {
2970 NamedRegionTimer
T("processprofile", "process profile data", TimerGroupName
,
2971 TimerGroupDesc
, opts::TimeRewrite
);
2973 if (Error E
= ProfileReader
->readProfile(*BC
.get()))
2974 report_error("cannot read profile", std::move(E
));
2976 if (opts::PrintProfile
|| opts::PrintAll
) {
2977 for (auto &BFI
: BC
->getBinaryFunctions()) {
2978 BinaryFunction
&Function
= BFI
.second
;
2979 if (Function
.empty())
2982 Function
.print(outs(), "after attaching profile");
2986 if (!opts::SaveProfile
.empty()) {
2987 YAMLProfileWriter
PW(opts::SaveProfile
);
2988 PW
.writeProfile(*this);
2990 if (opts::AggregateOnly
&&
2991 opts::ProfileFormat
== opts::ProfileFormatKind::PF_YAML
) {
2992 YAMLProfileWriter
PW(opts::OutputFilename
);
2993 PW
.writeProfile(*this);
2996 // Release memory used by profile reader.
2997 ProfileReader
.reset();
2999 if (opts::AggregateOnly
)
3003 void RewriteInstance::disassembleFunctions() {
3004 NamedRegionTimer
T("disassembleFunctions", "disassemble functions",
3005 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3006 for (auto &BFI
: BC
->getBinaryFunctions()) {
3007 BinaryFunction
&Function
= BFI
.second
;
3009 ErrorOr
<ArrayRef
<uint8_t>> FunctionData
= Function
.getData();
3010 if (!FunctionData
) {
3011 errs() << "BOLT-ERROR: corresponding section is non-executable or "
3012 << "empty for function " << Function
<< '\n';
3016 // Treat zero-sized functions as non-simple ones.
3017 if (Function
.getSize() == 0) {
3018 Function
.setSimple(false);
3022 // Offset of the function in the file.
3023 const auto *FileBegin
=
3024 reinterpret_cast<const uint8_t *>(InputFile
->getData().data());
3025 Function
.setFileOffset(FunctionData
->begin() - FileBegin
);
3027 if (!shouldDisassemble(Function
)) {
3028 NamedRegionTimer
T("scan", "scan functions", "buildfuncs",
3029 "Scan Binary Functions", opts::TimeBuild
);
3030 Function
.scanExternalRefs();
3031 Function
.setSimple(false);
3035 if (!Function
.disassemble()) {
3036 if (opts::processAllFunctions())
3037 BC
->exitWithBugReport("function cannot be properly disassembled. "
3038 "Unable to continue in relocation mode.",
3040 if (opts::Verbosity
>= 1)
3041 outs() << "BOLT-INFO: could not disassemble function " << Function
3042 << ". Will ignore.\n";
3043 // Forcefully ignore the function.
3044 Function
.setIgnored();
3048 if (opts::PrintAll
|| opts::PrintDisasm
)
3049 Function
.print(outs(), "after disassembly");
3052 BC
->processInterproceduralReferences();
3053 BC
->populateJumpTables();
3055 for (auto &BFI
: BC
->getBinaryFunctions()) {
3056 BinaryFunction
&Function
= BFI
.second
;
3058 if (!shouldDisassemble(Function
))
3061 Function
.postProcessEntryPoints();
3062 Function
.postProcessJumpTables();
3065 BC
->clearJumpTableTempData();
3066 BC
->adjustCodePadding();
3068 for (auto &BFI
: BC
->getBinaryFunctions()) {
3069 BinaryFunction
&Function
= BFI
.second
;
3071 if (!shouldDisassemble(Function
))
3074 if (!Function
.isSimple()) {
3075 assert((!BC
->HasRelocations
|| Function
.getSize() == 0 ||
3076 Function
.hasIndirectTargetToSplitFragment()) &&
3077 "unexpected non-simple function in relocation mode");
3081 // Fill in CFI information for this function
3082 if (!Function
.trapsOnEntry() && !CFIRdWrt
->fillCFIInfoFor(Function
)) {
3083 if (BC
->HasRelocations
) {
3084 BC
->exitWithBugReport("unable to fill CFI.", Function
);
3086 errs() << "BOLT-WARNING: unable to fill CFI for function " << Function
3088 Function
.setSimple(false);
3094 if (Function
.getLSDAAddress() != 0 &&
3095 !BC
->getFragmentsToSkip().count(&Function
))
3096 Function
.parseLSDA(getLSDAData(), getLSDAAddress());
3100 void RewriteInstance::buildFunctionsCFG() {
3101 NamedRegionTimer
T("buildCFG", "buildCFG", "buildfuncs",
3102 "Build Binary Functions", opts::TimeBuild
);
3104 // Create annotation indices to allow lock-free execution
3105 BC
->MIB
->getOrCreateAnnotationIndex("JTIndexReg");
3106 BC
->MIB
->getOrCreateAnnotationIndex("NOP");
3107 BC
->MIB
->getOrCreateAnnotationIndex("Size");
3109 ParallelUtilities::WorkFuncWithAllocTy WorkFun
=
3110 [&](BinaryFunction
&BF
, MCPlusBuilder::AllocatorIdTy AllocId
) {
3111 if (!BF
.buildCFG(AllocId
))
3114 if (opts::PrintAll
) {
3115 auto L
= BC
->scopeLock();
3116 BF
.print(outs(), "while building cfg");
3120 ParallelUtilities::PredicateTy SkipPredicate
= [&](const BinaryFunction
&BF
) {
3121 return !shouldDisassemble(BF
) || !BF
.isSimple();
3124 ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
3125 *BC
, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR
, WorkFun
,
3126 SkipPredicate
, "disassembleFunctions-buildCFG",
3127 /*ForceSequential*/ opts::SequentialDisassembly
|| opts::PrintAll
);
3129 BC
->postProcessSymbolTable();
3132 void RewriteInstance::postProcessFunctions() {
3133 // We mark fragments as non-simple here, not during disassembly,
3134 // So we can build their CFGs.
3135 BC
->skipMarkedFragments();
3136 BC
->clearFragmentsToSkip();
3139 BC
->SumExecutionCount
= 0;
3140 for (auto &BFI
: BC
->getBinaryFunctions()) {
3141 BinaryFunction
&Function
= BFI
.second
;
3143 // Set function as non-simple if it has dynamic relocations
3144 // in constant island, we don't want this function to be optimized
3145 // e.g. function splitting is unsupported.
3146 if (Function
.hasDynamicRelocationAtIsland())
3147 Function
.setSimple(false);
3149 if (Function
.empty())
3152 Function
.postProcessCFG();
3154 if (opts::PrintAll
|| opts::PrintCFG
)
3155 Function
.print(outs(), "after building cfg");
3157 if (opts::DumpDotAll
)
3158 Function
.dumpGraphForPass("00_build-cfg");
3160 if (opts::PrintLoopInfo
) {
3161 Function
.calculateLoopInfo();
3162 Function
.printLoopInfo(outs());
3165 BC
->TotalScore
+= Function
.getFunctionScore();
3166 BC
->SumExecutionCount
+= Function
.getKnownExecutionCount();
3169 if (opts::PrintGlobals
) {
3170 outs() << "BOLT-INFO: Global symbols:\n";
3171 BC
->printGlobalSymbols(outs());
3175 void RewriteInstance::runOptimizationPasses() {
3176 NamedRegionTimer
T("runOptimizationPasses", "run optimization passes",
3177 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3178 BinaryFunctionPassManager::runAllPasses(*BC
);
3181 void RewriteInstance::preregisterSections() {
3182 // Preregister sections before emission to set their order in the output.
3183 const unsigned ROFlags
= BinarySection::getFlags(/*IsReadOnly*/ true,
3185 /*IsAllocatable*/ true);
3186 if (BinarySection
*EHFrameSection
= getSection(getEHFrameSectionName())) {
3188 BC
->registerOrUpdateSection(getNewSecPrefix() + getEHFrameSectionName(),
3189 ELF::SHT_PROGBITS
, ROFlags
);
3190 // Fully register a relocatable copy of the original .eh_frame.
3191 BC
->registerSection(".relocated.eh_frame", *EHFrameSection
);
3193 BC
->registerOrUpdateSection(getNewSecPrefix() + ".gcc_except_table",
3194 ELF::SHT_PROGBITS
, ROFlags
);
3195 BC
->registerOrUpdateSection(getNewSecPrefix() + ".rodata", ELF::SHT_PROGBITS
,
3197 BC
->registerOrUpdateSection(getNewSecPrefix() + ".rodata.cold",
3198 ELF::SHT_PROGBITS
, ROFlags
);
3201 void RewriteInstance::emitAndLink() {
3202 NamedRegionTimer
T("emitAndLink", "emit and link", TimerGroupName
,
3203 TimerGroupDesc
, opts::TimeRewrite
);
3205 SmallString
<0> ObjectBuffer
;
3206 raw_svector_ostream
OS(ObjectBuffer
);
3208 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB)
3209 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these
3211 std::unique_ptr
<MCStreamer
> Streamer
= BC
->createStreamer(OS
);
3213 if (EHFrameSection
) {
3214 if (opts::UseOldText
|| opts::StrictMode
) {
3215 // The section is going to be regenerated from scratch.
3216 // Empty the contents, but keep the section reference.
3217 EHFrameSection
->clearContents();
3219 // Make .eh_frame relocatable.
3220 relocateEHFrameSection();
3224 emitBinaryContext(*Streamer
, *BC
, getOrgSecPrefix());
3227 if (Streamer
->getContext().hadError()) {
3228 errs() << "BOLT-ERROR: Emission failed.\n";
3232 if (opts::KeepTmp
) {
3233 SmallString
<128> OutObjectPath
;
3234 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath
);
3236 raw_fd_ostream
FOS(OutObjectPath
, EC
);
3237 check_error(EC
, "cannot create output object file");
3238 FOS
<< ObjectBuffer
;
3239 outs() << "BOLT-INFO: intermediary output object file saved for debugging "
3241 << OutObjectPath
<< "\n";
3244 ErrorOr
<BinarySection
&> TextSection
=
3245 BC
->getUniqueSectionByName(BC
->getMainCodeSectionName());
3246 if (BC
->HasRelocations
&& TextSection
)
3247 BC
->renameSection(*TextSection
, getOrgSecPrefix() + ".text");
3249 //////////////////////////////////////////////////////////////////////////////
3250 // Assign addresses to new sections.
3251 //////////////////////////////////////////////////////////////////////////////
3253 // Get output object as ObjectFile.
3254 std::unique_ptr
<MemoryBuffer
> ObjectMemBuffer
=
3255 MemoryBuffer::getMemBuffer(ObjectBuffer
, "in-memory object file", false);
3257 auto EFMM
= std::make_unique
<ExecutableFileMemoryManager
>(*BC
);
3258 EFMM
->setNewSecPrefix(getNewSecPrefix());
3259 EFMM
->setOrgSecPrefix(getOrgSecPrefix());
3261 Linker
= std::make_unique
<JITLinkLinker
>(*BC
, std::move(EFMM
));
3262 Linker
->loadObject(ObjectMemBuffer
->getMemBufferRef(),
3263 [this](auto MapSection
) { mapFileSections(MapSection
); });
3265 // Update output addresses based on the new section map and
3266 // layout. Only do this for the object created by ourselves.
3267 updateOutputValues(*Linker
);
3269 if (opts::UpdateDebugSections
) {
3270 MCAsmLayout
FinalLayout(
3271 static_cast<MCObjectStreamer
*>(Streamer
.get())->getAssembler());
3272 DebugInfoRewriter
->updateLineTableOffsets(FinalLayout
);
3275 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary())
3276 RtLibrary
->link(*BC
, ToolPath
, *Linker
, [this](auto MapSection
) {
3277 // Map newly registered sections.
3278 this->mapAllocatableSections(MapSection
);
3281 // Once the code is emitted, we can rename function sections to actual
3282 // output sections and de-register sections used for emission.
3283 for (BinaryFunction
*Function
: BC
->getAllBinaryFunctions()) {
3284 ErrorOr
<BinarySection
&> Section
= Function
->getCodeSection();
3286 (Function
->getImageAddress() == 0 || Function
->getImageSize() == 0))
3289 // Restore origin section for functions that were emitted or supposed to
3290 // be emitted to patch sections.
3292 BC
->deregisterSection(*Section
);
3293 assert(Function
->getOriginSectionName() && "expected origin section");
3294 Function
->CodeSectionName
= Function
->getOriginSectionName()->str();
3295 for (const FunctionFragment
&FF
:
3296 Function
->getLayout().getSplitFragments()) {
3297 if (ErrorOr
<BinarySection
&> ColdSection
=
3298 Function
->getCodeSection(FF
.getFragmentNum()))
3299 BC
->deregisterSection(*ColdSection
);
3301 if (Function
->getLayout().isSplit())
3302 Function
->setColdCodeSectionName(getBOLTTextSectionName());
3305 if (opts::PrintCacheMetrics
) {
3306 outs() << "BOLT-INFO: cache metrics after emitting functions:\n";
3307 CacheMetrics::printAll(BC
->getSortedFunctions());
3311 void RewriteInstance::updateMetadata() {
3312 MetadataManager
.runFinalizersAfterEmit();
3314 if (opts::UpdateDebugSections
) {
3315 NamedRegionTimer
T("updateDebugInfo", "update debug info", TimerGroupName
,
3316 TimerGroupDesc
, opts::TimeRewrite
);
3317 DebugInfoRewriter
->updateDebugInfo();
3320 if (opts::WriteBoltInfoSection
)
3321 addBoltInfoSection();
3324 void RewriteInstance::mapFileSections(BOLTLinker::SectionMapper MapSection
) {
3325 BC
->deregisterUnusedSections();
3327 // If no new .eh_frame was written, remove relocated original .eh_frame.
3328 BinarySection
*RelocatedEHFrameSection
=
3329 getSection(".relocated" + getEHFrameSectionName());
3330 if (RelocatedEHFrameSection
&& RelocatedEHFrameSection
->hasValidSectionID()) {
3331 BinarySection
*NewEHFrameSection
=
3332 getSection(getNewSecPrefix() + getEHFrameSectionName());
3333 if (!NewEHFrameSection
|| !NewEHFrameSection
->isFinalized()) {
3334 // JITLink will still have to process relocations for the section, hence
3335 // we need to assign it the address that wouldn't result in relocation
3336 // processing failure.
3337 MapSection(*RelocatedEHFrameSection
, NextAvailableAddress
);
3338 BC
->deregisterSection(*RelocatedEHFrameSection
);
3342 mapCodeSections(MapSection
);
3344 // Map the rest of the sections.
3345 mapAllocatableSections(MapSection
);
3348 std::vector
<BinarySection
*> RewriteInstance::getCodeSections() {
3349 std::vector
<BinarySection
*> CodeSections
;
3350 for (BinarySection
&Section
: BC
->textSections())
3351 if (Section
.hasValidSectionID())
3352 CodeSections
.emplace_back(&Section
);
3354 auto compareSections
= [&](const BinarySection
*A
, const BinarySection
*B
) {
3355 // If both A and B have names starting with ".text.cold", then
3356 // - if opts::HotFunctionsAtEnd is true, we want order
3357 // ".text.cold.T", ".text.cold.T-1", ... ".text.cold.1", ".text.cold"
3358 // - if opts::HotFunctionsAtEnd is false, we want order
3359 // ".text.cold", ".text.cold.1", ... ".text.cold.T-1", ".text.cold.T"
3360 if (A
->getName().startswith(BC
->getColdCodeSectionName()) &&
3361 B
->getName().startswith(BC
->getColdCodeSectionName())) {
3362 if (A
->getName().size() != B
->getName().size())
3363 return (opts::HotFunctionsAtEnd
)
3364 ? (A
->getName().size() > B
->getName().size())
3365 : (A
->getName().size() < B
->getName().size());
3366 return (opts::HotFunctionsAtEnd
) ? (A
->getName() > B
->getName())
3367 : (A
->getName() < B
->getName());
3370 // Place movers before anything else.
3371 if (A
->getName() == BC
->getHotTextMoverSectionName())
3373 if (B
->getName() == BC
->getHotTextMoverSectionName())
3376 // Depending on the option, put main text at the beginning or at the end.
3377 if (opts::HotFunctionsAtEnd
)
3378 return B
->getName() == BC
->getMainCodeSectionName();
3380 return A
->getName() == BC
->getMainCodeSectionName();
3383 // Determine the order of sections.
3384 llvm::stable_sort(CodeSections
, compareSections
);
3386 return CodeSections
;
3389 void RewriteInstance::mapCodeSections(BOLTLinker::SectionMapper MapSection
) {
3390 if (BC
->HasRelocations
) {
3391 // Map sections for functions with pre-assigned addresses.
3392 for (BinaryFunction
*InjectedFunction
: BC
->getInjectedBinaryFunctions()) {
3393 const uint64_t OutputAddress
= InjectedFunction
->getOutputAddress();
3397 ErrorOr
<BinarySection
&> FunctionSection
=
3398 InjectedFunction
->getCodeSection();
3399 assert(FunctionSection
&& "function should have section");
3400 FunctionSection
->setOutputAddress(OutputAddress
);
3401 MapSection(*FunctionSection
, OutputAddress
);
3402 InjectedFunction
->setImageAddress(FunctionSection
->getAllocAddress());
3403 InjectedFunction
->setImageSize(FunctionSection
->getOutputSize());
3406 // Populate the list of sections to be allocated.
3407 std::vector
<BinarySection
*> CodeSections
= getCodeSections();
3409 // Remove sections that were pre-allocated (patch sections).
3410 llvm::erase_if(CodeSections
, [](BinarySection
*Section
) {
3411 return Section
->getOutputAddress();
3413 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n";
3414 for (const BinarySection
*Section
: CodeSections
)
3415 dbgs() << Section
->getName() << '\n';
3418 uint64_t PaddingSize
= 0; // size of padding required at the end
3420 // Allocate sections starting at a given Address.
3421 auto allocateAt
= [&](uint64_t Address
) {
3422 for (BinarySection
*Section
: CodeSections
) {
3423 Address
= alignTo(Address
, Section
->getAlignment());
3424 Section
->setOutputAddress(Address
);
3425 Address
+= Section
->getOutputSize();
3427 // Hugify: Additional huge page from right side due to
3428 // weird ASLR mapping addresses (4KB aligned)
3429 if (opts::Hugify
&& !BC
->HasFixedLoadAddress
&&
3430 Section
->getName() == BC
->getMainCodeSectionName())
3431 Address
= alignTo(Address
, Section
->getAlignment());
3434 // Make sure we allocate enough space for huge pages.
3435 ErrorOr
<BinarySection
&> TextSection
=
3436 BC
->getUniqueSectionByName(BC
->getMainCodeSectionName());
3437 if (opts::HotText
&& TextSection
&& TextSection
->hasValidSectionID()) {
3438 uint64_t HotTextEnd
=
3439 TextSection
->getOutputAddress() + TextSection
->getOutputSize();
3440 HotTextEnd
= alignTo(HotTextEnd
, BC
->PageAlign
);
3441 if (HotTextEnd
> Address
) {
3442 PaddingSize
= HotTextEnd
- Address
;
3443 Address
= HotTextEnd
;
3449 // Check if we can fit code in the original .text
3450 bool AllocationDone
= false;
3451 if (opts::UseOldText
) {
3452 const uint64_t CodeSize
=
3453 allocateAt(BC
->OldTextSectionAddress
) - BC
->OldTextSectionAddress
;
3455 if (CodeSize
<= BC
->OldTextSectionSize
) {
3456 outs() << "BOLT-INFO: using original .text for new code with 0x"
3457 << Twine::utohexstr(opts::AlignText
) << " alignment\n";
3458 AllocationDone
= true;
3460 errs() << "BOLT-WARNING: original .text too small to fit the new code"
3461 << " using 0x" << Twine::utohexstr(opts::AlignText
)
3462 << " alignment. " << CodeSize
<< " bytes needed, have "
3463 << BC
->OldTextSectionSize
<< " bytes available.\n";
3464 opts::UseOldText
= false;
3468 if (!AllocationDone
)
3469 NextAvailableAddress
= allocateAt(NextAvailableAddress
);
3471 // Do the mapping for ORC layer based on the allocation.
3472 for (BinarySection
*Section
: CodeSections
) {
3474 dbgs() << "BOLT: mapping " << Section
->getName() << " at 0x"
3475 << Twine::utohexstr(Section
->getAllocAddress()) << " to 0x"
3476 << Twine::utohexstr(Section
->getOutputAddress()) << '\n');
3477 MapSection(*Section
, Section
->getOutputAddress());
3478 Section
->setOutputFileOffset(
3479 getFileOffsetForAddress(Section
->getOutputAddress()));
3482 // Check if we need to insert a padding section for hot text.
3483 if (PaddingSize
&& !opts::UseOldText
)
3484 outs() << "BOLT-INFO: padding code to 0x"
3485 << Twine::utohexstr(NextAvailableAddress
)
3486 << " to accommodate hot text\n";
3491 // Processing in non-relocation mode.
3492 uint64_t NewTextSectionStartAddress
= NextAvailableAddress
;
3494 for (auto &BFI
: BC
->getBinaryFunctions()) {
3495 BinaryFunction
&Function
= BFI
.second
;
3496 if (!Function
.isEmitted())
3499 bool TooLarge
= false;
3500 ErrorOr
<BinarySection
&> FuncSection
= Function
.getCodeSection();
3501 assert(FuncSection
&& "cannot find section for function");
3502 FuncSection
->setOutputAddress(Function
.getAddress());
3503 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x"
3504 << Twine::utohexstr(FuncSection
->getAllocAddress())
3505 << " to 0x" << Twine::utohexstr(Function
.getAddress())
3507 MapSection(*FuncSection
, Function
.getAddress());
3508 Function
.setImageAddress(FuncSection
->getAllocAddress());
3509 Function
.setImageSize(FuncSection
->getOutputSize());
3510 if (Function
.getImageSize() > Function
.getMaxSize()) {
3512 FailedAddresses
.emplace_back(Function
.getAddress());
3515 // Map jump tables if updating in-place.
3516 if (opts::JumpTables
== JTS_BASIC
) {
3517 for (auto &JTI
: Function
.JumpTables
) {
3518 JumpTable
*JT
= JTI
.second
;
3519 BinarySection
&Section
= JT
->getOutputSection();
3520 Section
.setOutputAddress(JT
->getAddress());
3521 Section
.setOutputFileOffset(getFileOffsetForAddress(JT
->getAddress()));
3522 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping JT " << Section
.getName()
3523 << " to 0x" << Twine::utohexstr(JT
->getAddress())
3525 MapSection(Section
, JT
->getAddress());
3529 if (!Function
.isSplit())
3532 assert(Function
.getLayout().isHotColdSplit() &&
3533 "Cannot allocate more than two fragments per function in "
3534 "non-relocation mode.");
3536 FunctionFragment
&FF
=
3537 Function
.getLayout().getFragment(FragmentNum::cold());
3538 ErrorOr
<BinarySection
&> ColdSection
=
3539 Function
.getCodeSection(FF
.getFragmentNum());
3540 assert(ColdSection
&& "cannot find section for cold part");
3541 // Cold fragments are aligned at 16 bytes.
3542 NextAvailableAddress
= alignTo(NextAvailableAddress
, 16);
3544 // The corresponding FDE will refer to address 0.
3546 FF
.setImageAddress(0);
3548 FF
.setFileOffset(0);
3550 FF
.setAddress(NextAvailableAddress
);
3551 FF
.setImageAddress(ColdSection
->getAllocAddress());
3552 FF
.setImageSize(ColdSection
->getOutputSize());
3553 FF
.setFileOffset(getFileOffsetForAddress(NextAvailableAddress
));
3554 ColdSection
->setOutputAddress(FF
.getAddress());
3559 "BOLT: mapping cold fragment {0:x+} to {1:x+} with size {2:x+}\n",
3560 FF
.getImageAddress(), FF
.getAddress(), FF
.getImageSize()));
3561 MapSection(*ColdSection
, FF
.getAddress());
3564 BC
->deregisterSection(*ColdSection
);
3566 NextAvailableAddress
+= FF
.getImageSize();
3569 // Add the new text section aggregating all existing code sections.
3570 // This is pseudo-section that serves a purpose of creating a corresponding
3571 // entry in section header table.
3572 int64_t NewTextSectionSize
=
3573 NextAvailableAddress
- NewTextSectionStartAddress
;
3574 if (NewTextSectionSize
) {
3575 const unsigned Flags
= BinarySection::getFlags(/*IsReadOnly=*/true,
3577 /*IsAllocatable=*/true);
3578 BinarySection
&Section
=
3579 BC
->registerOrUpdateSection(getBOLTTextSectionName(),
3585 Section
.setOutputAddress(NewTextSectionStartAddress
);
3586 Section
.setOutputFileOffset(
3587 getFileOffsetForAddress(NewTextSectionStartAddress
));
3591 void RewriteInstance::mapAllocatableSections(
3592 BOLTLinker::SectionMapper MapSection
) {
3593 // Allocate read-only sections first, then writable sections.
3594 enum : uint8_t { ST_READONLY
, ST_READWRITE
};
3595 for (uint8_t SType
= ST_READONLY
; SType
<= ST_READWRITE
; ++SType
) {
3596 const uint64_t LastNextAvailableAddress
= NextAvailableAddress
;
3597 if (SType
== ST_READWRITE
) {
3598 // Align R+W segment to regular page size
3599 NextAvailableAddress
= alignTo(NextAvailableAddress
, BC
->RegularPageSize
);
3600 NewWritableSegmentAddress
= NextAvailableAddress
;
3603 for (BinarySection
&Section
: BC
->allocatableSections()) {
3604 if (Section
.isLinkOnly())
3607 if (!Section
.hasValidSectionID())
3610 if (Section
.isWritable() == (SType
== ST_READONLY
))
3613 if (Section
.getOutputAddress()) {
3615 dbgs() << "BOLT-DEBUG: section " << Section
.getName()
3616 << " is already mapped at 0x"
3617 << Twine::utohexstr(Section
.getOutputAddress()) << '\n';
3622 if (Section
.hasSectionRef()) {
3624 dbgs() << "BOLT-DEBUG: mapping original section " << Section
.getName()
3625 << " to 0x" << Twine::utohexstr(Section
.getAddress()) << '\n';
3627 Section
.setOutputAddress(Section
.getAddress());
3628 Section
.setOutputFileOffset(Section
.getInputFileOffset());
3629 MapSection(Section
, Section
.getAddress());
3631 NextAvailableAddress
=
3632 alignTo(NextAvailableAddress
, Section
.getAlignment());
3634 dbgs() << "BOLT: mapping section " << Section
.getName() << " (0x"
3635 << Twine::utohexstr(Section
.getAllocAddress()) << ") to 0x"
3636 << Twine::utohexstr(NextAvailableAddress
) << ":0x"
3637 << Twine::utohexstr(NextAvailableAddress
+
3638 Section
.getOutputSize())
3642 MapSection(Section
, NextAvailableAddress
);
3643 Section
.setOutputAddress(NextAvailableAddress
);
3644 Section
.setOutputFileOffset(
3645 getFileOffsetForAddress(NextAvailableAddress
));
3647 NextAvailableAddress
+= Section
.getOutputSize();
3651 if (SType
== ST_READONLY
) {
3652 if (PHDRTableAddress
) {
3653 // Segment size includes the size of the PHDR area.
3654 NewTextSegmentSize
= NextAvailableAddress
- PHDRTableAddress
;
3656 // Existing PHDR table would be updated.
3657 NewTextSegmentSize
= NextAvailableAddress
- NewTextSegmentAddress
;
3659 } else if (SType
== ST_READWRITE
) {
3660 NewWritableSegmentSize
= NextAvailableAddress
- NewWritableSegmentAddress
;
3661 // Restore NextAvailableAddress if no new writable sections
3662 if (!NewWritableSegmentSize
)
3663 NextAvailableAddress
= LastNextAvailableAddress
;
3668 void RewriteInstance::updateOutputValues(const BOLTLinker
&Linker
) {
3669 if (std::optional
<AddressMap
> Map
= AddressMap::parse(*BC
))
3670 BC
->setIOAddressMap(std::move(*Map
));
3672 for (BinaryFunction
*Function
: BC
->getAllBinaryFunctions())
3673 Function
->updateOutputValues(Linker
);
3676 void RewriteInstance::patchELFPHDRTable() {
3677 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
3678 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
3679 raw_fd_ostream
&OS
= Out
->os();
3681 // Write/re-write program headers.
3682 Phnum
= Obj
.getHeader().e_phnum
;
3683 if (PHDRTableOffset
) {
3684 // Writing new pheader table and adding one new entry for R+X segment.
3686 if (NewWritableSegmentSize
) {
3687 // Adding one more entry for R+W segment.
3691 assert(!PHDRTableAddress
&& "unexpected address for program header table");
3692 PHDRTableOffset
= Obj
.getHeader().e_phoff
;
3693 if (NewWritableSegmentSize
) {
3694 errs() << "Unable to add writable segment with UseGnuStack option\n";
3699 // NOTE Currently .eh_frame_hdr appends to the last segment, recalculate
3700 // last segments size based on the NextAvailableAddress variable.
3701 if (!NewWritableSegmentSize
) {
3702 if (PHDRTableAddress
)
3703 NewTextSegmentSize
= NextAvailableAddress
- PHDRTableAddress
;
3705 NewTextSegmentSize
= NextAvailableAddress
- NewTextSegmentAddress
;
3707 NewWritableSegmentSize
= NextAvailableAddress
- NewWritableSegmentAddress
;
3710 OS
.seek(PHDRTableOffset
);
3712 bool ModdedGnuStack
= false;
3713 (void)ModdedGnuStack
;
3714 bool AddedSegment
= false;
3717 auto createNewTextPhdr
= [&]() {
3718 ELF64LEPhdrTy NewPhdr
;
3719 NewPhdr
.p_type
= ELF::PT_LOAD
;
3720 if (PHDRTableAddress
) {
3721 NewPhdr
.p_offset
= PHDRTableOffset
;
3722 NewPhdr
.p_vaddr
= PHDRTableAddress
;
3723 NewPhdr
.p_paddr
= PHDRTableAddress
;
3725 NewPhdr
.p_offset
= NewTextSegmentOffset
;
3726 NewPhdr
.p_vaddr
= NewTextSegmentAddress
;
3727 NewPhdr
.p_paddr
= NewTextSegmentAddress
;
3729 NewPhdr
.p_filesz
= NewTextSegmentSize
;
3730 NewPhdr
.p_memsz
= NewTextSegmentSize
;
3731 NewPhdr
.p_flags
= ELF::PF_X
| ELF::PF_R
;
3732 // FIXME: Currently instrumentation is experimental and the runtime data
3733 // is emitted with code, thus everything needs to be writable
3734 if (opts::Instrument
)
3735 NewPhdr
.p_flags
|= ELF::PF_W
;
3736 NewPhdr
.p_align
= BC
->PageAlign
;
3741 auto createNewWritableSectionsPhdr
= [&]() {
3742 ELF64LEPhdrTy NewPhdr
;
3743 NewPhdr
.p_type
= ELF::PT_LOAD
;
3744 NewPhdr
.p_offset
= getFileOffsetForAddress(NewWritableSegmentAddress
);
3745 NewPhdr
.p_vaddr
= NewWritableSegmentAddress
;
3746 NewPhdr
.p_paddr
= NewWritableSegmentAddress
;
3747 NewPhdr
.p_filesz
= NewWritableSegmentSize
;
3748 NewPhdr
.p_memsz
= NewWritableSegmentSize
;
3749 NewPhdr
.p_align
= BC
->RegularPageSize
;
3750 NewPhdr
.p_flags
= ELF::PF_R
| ELF::PF_W
;
3754 // Copy existing program headers with modifications.
3755 for (const ELF64LE::Phdr
&Phdr
: cantFail(Obj
.program_headers())) {
3756 ELF64LE::Phdr NewPhdr
= Phdr
;
3757 if (PHDRTableAddress
&& Phdr
.p_type
== ELF::PT_PHDR
) {
3758 NewPhdr
.p_offset
= PHDRTableOffset
;
3759 NewPhdr
.p_vaddr
= PHDRTableAddress
;
3760 NewPhdr
.p_paddr
= PHDRTableAddress
;
3761 NewPhdr
.p_filesz
= sizeof(NewPhdr
) * Phnum
;
3762 NewPhdr
.p_memsz
= sizeof(NewPhdr
) * Phnum
;
3763 } else if (Phdr
.p_type
== ELF::PT_GNU_EH_FRAME
) {
3764 ErrorOr
<BinarySection
&> EHFrameHdrSec
=
3765 BC
->getUniqueSectionByName(getNewSecPrefix() + ".eh_frame_hdr");
3766 if (EHFrameHdrSec
&& EHFrameHdrSec
->isAllocatable() &&
3767 EHFrameHdrSec
->isFinalized()) {
3768 NewPhdr
.p_offset
= EHFrameHdrSec
->getOutputFileOffset();
3769 NewPhdr
.p_vaddr
= EHFrameHdrSec
->getOutputAddress();
3770 NewPhdr
.p_paddr
= EHFrameHdrSec
->getOutputAddress();
3771 NewPhdr
.p_filesz
= EHFrameHdrSec
->getOutputSize();
3772 NewPhdr
.p_memsz
= EHFrameHdrSec
->getOutputSize();
3774 } else if (opts::UseGnuStack
&& Phdr
.p_type
== ELF::PT_GNU_STACK
) {
3775 NewPhdr
= createNewTextPhdr();
3776 ModdedGnuStack
= true;
3777 } else if (!opts::UseGnuStack
&& Phdr
.p_type
== ELF::PT_DYNAMIC
) {
3778 // Insert the new header before DYNAMIC.
3779 ELF64LE::Phdr NewTextPhdr
= createNewTextPhdr();
3780 OS
.write(reinterpret_cast<const char *>(&NewTextPhdr
),
3781 sizeof(NewTextPhdr
));
3782 if (NewWritableSegmentSize
) {
3783 ELF64LEPhdrTy NewWritablePhdr
= createNewWritableSectionsPhdr();
3784 OS
.write(reinterpret_cast<const char *>(&NewWritablePhdr
),
3785 sizeof(NewWritablePhdr
));
3787 AddedSegment
= true;
3789 OS
.write(reinterpret_cast<const char *>(&NewPhdr
), sizeof(NewPhdr
));
3792 if (!opts::UseGnuStack
&& !AddedSegment
) {
3793 // Append the new header to the end of the table.
3794 ELF64LE::Phdr NewTextPhdr
= createNewTextPhdr();
3795 OS
.write(reinterpret_cast<const char *>(&NewTextPhdr
), sizeof(NewTextPhdr
));
3796 if (NewWritableSegmentSize
) {
3797 ELF64LEPhdrTy NewWritablePhdr
= createNewWritableSectionsPhdr();
3798 OS
.write(reinterpret_cast<const char *>(&NewWritablePhdr
),
3799 sizeof(NewWritablePhdr
));
3803 assert((!opts::UseGnuStack
|| ModdedGnuStack
) &&
3804 "could not find GNU_STACK program header to modify");
3809 /// Write padding to \p OS such that its current \p Offset becomes aligned
3810 /// at \p Alignment. Return new (aligned) offset.
3811 uint64_t appendPadding(raw_pwrite_stream
&OS
, uint64_t Offset
,
3812 uint64_t Alignment
) {
3816 const uint64_t PaddingSize
=
3817 offsetToAlignment(Offset
, llvm::Align(Alignment
));
3818 for (unsigned I
= 0; I
< PaddingSize
; ++I
)
3819 OS
.write((unsigned char)0);
3820 return Offset
+ PaddingSize
;
3825 void RewriteInstance::rewriteNoteSections() {
3826 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
3827 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
3828 raw_fd_ostream
&OS
= Out
->os();
3830 uint64_t NextAvailableOffset
= getFileOffsetForAddress(NextAvailableAddress
);
3831 assert(NextAvailableOffset
>= FirstNonAllocatableOffset
&&
3832 "next available offset calculation failure");
3833 OS
.seek(NextAvailableOffset
);
3835 // Copy over non-allocatable section contents and update file offsets.
3836 for (const ELF64LE::Shdr
&Section
: cantFail(Obj
.sections())) {
3837 if (Section
.sh_type
== ELF::SHT_NULL
)
3839 if (Section
.sh_flags
& ELF::SHF_ALLOC
)
3842 SectionRef SecRef
= ELF64LEFile
->toSectionRef(&Section
);
3843 BinarySection
*BSec
= BC
->getSectionForSectionRef(SecRef
);
3844 assert(BSec
&& !BSec
->isAllocatable() &&
3845 "Matching non-allocatable BinarySection should exist.");
3847 StringRef SectionName
=
3848 cantFail(Obj
.getSectionName(Section
), "cannot get section name");
3849 if (shouldStrip(Section
, SectionName
))
3852 // Insert padding as needed.
3853 NextAvailableOffset
=
3854 appendPadding(OS
, NextAvailableOffset
, Section
.sh_addralign
);
3856 // New section size.
3858 bool DataWritten
= false;
3859 uint8_t *SectionData
= nullptr;
3860 // Copy over section contents unless it's one of the sections we overwrite.
3861 if (!willOverwriteSection(SectionName
)) {
3862 Size
= Section
.sh_size
;
3863 StringRef Dataref
= InputFile
->getData().substr(Section
.sh_offset
, Size
);
3865 if (BSec
->getPatcher()) {
3866 Data
= BSec
->getPatcher()->patchBinary(Dataref
);
3867 Dataref
= StringRef(Data
);
3870 // Section was expanded, so need to treat it as overwrite.
3871 if (Size
!= Dataref
.size()) {
3872 BSec
= &BC
->registerOrUpdateNoteSection(
3873 SectionName
, copyByteArray(Dataref
), Dataref
.size());
3879 // Add padding as the section extension might rely on the alignment.
3880 Size
= appendPadding(OS
, Size
, Section
.sh_addralign
);
3884 // Perform section post-processing.
3885 assert(BSec
->getAlignment() <= Section
.sh_addralign
&&
3886 "alignment exceeds value in file");
3888 if (BSec
->getAllocAddress()) {
3889 assert(!DataWritten
&& "Writing section twice.");
3891 SectionData
= BSec
->getOutputData();
3893 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size
? "appending" : "writing")
3894 << " contents to section " << SectionName
<< '\n');
3895 OS
.write(reinterpret_cast<char *>(SectionData
), BSec
->getOutputSize());
3896 Size
+= BSec
->getOutputSize();
3899 BSec
->setOutputFileOffset(NextAvailableOffset
);
3900 BSec
->flushPendingRelocations(OS
, [this](const MCSymbol
*S
) {
3901 return getNewValueForSymbol(S
->getName());
3904 // Set/modify section info.
3905 BinarySection
&NewSection
= BC
->registerOrUpdateNoteSection(
3906 SectionName
, SectionData
, Size
, Section
.sh_addralign
,
3907 !BSec
->isWritable(), BSec
->getELFType());
3908 NewSection
.setOutputAddress(0);
3909 NewSection
.setOutputFileOffset(NextAvailableOffset
);
3911 NextAvailableOffset
+= Size
;
3914 // Write new note sections.
3915 for (BinarySection
&Section
: BC
->nonAllocatableSections()) {
3916 if (Section
.getOutputFileOffset() || !Section
.getAllocAddress())
3919 assert(!Section
.hasPendingRelocations() && "cannot have pending relocs");
3921 NextAvailableOffset
=
3922 appendPadding(OS
, NextAvailableOffset
, Section
.getAlignment());
3923 Section
.setOutputFileOffset(NextAvailableOffset
);
3926 dbgs() << "BOLT-DEBUG: writing out new section " << Section
.getName()
3927 << " of size " << Section
.getOutputSize() << " at offset 0x"
3928 << Twine::utohexstr(Section
.getOutputFileOffset()) << '\n');
3930 OS
.write(Section
.getOutputContents().data(), Section
.getOutputSize());
3931 NextAvailableOffset
+= Section
.getOutputSize();
3935 template <typename ELFT
>
3936 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile
<ELFT
> *File
) {
3937 // Pre-populate section header string table.
3938 for (const BinarySection
&Section
: BC
->sections())
3939 if (!Section
.isAnonymous())
3940 SHStrTab
.add(Section
.getOutputName());
3941 SHStrTab
.finalize();
3943 const size_t SHStrTabSize
= SHStrTab
.getSize();
3944 uint8_t *DataCopy
= new uint8_t[SHStrTabSize
];
3945 memset(DataCopy
, 0, SHStrTabSize
);
3946 SHStrTab
.write(DataCopy
);
3947 BC
->registerOrUpdateNoteSection(".shstrtab",
3951 /*IsReadOnly=*/true,
3955 void RewriteInstance::addBoltInfoSection() {
3956 std::string DescStr
;
3957 raw_string_ostream
DescOS(DescStr
);
3959 DescOS
<< "BOLT revision: " << BoltRevision
<< ", "
3961 for (int I
= 0; I
< Argc
; ++I
)
3962 DescOS
<< " " << Argv
[I
];
3965 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n'
3966 const std::string BoltInfo
=
3967 BinarySection::encodeELFNote("GNU", DescStr
, 4 /*NT_GNU_GOLD_VERSION*/);
3968 BC
->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo
),
3971 /*IsReadOnly=*/true, ELF::SHT_NOTE
);
3974 void RewriteInstance::addBATSection() {
3975 BC
->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME
, nullptr,
3978 /*IsReadOnly=*/true, ELF::SHT_NOTE
);
3981 void RewriteInstance::encodeBATSection() {
3982 std::string DescStr
;
3983 raw_string_ostream
DescOS(DescStr
);
3985 BAT
->write(*BC
, DescOS
);
3988 const std::string BoltInfo
=
3989 BinarySection::encodeELFNote("BOLT", DescStr
, BinarySection::NT_BOLT_BAT
);
3990 BC
->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME
,
3991 copyByteArray(BoltInfo
), BoltInfo
.size(),
3993 /*IsReadOnly=*/true, ELF::SHT_NOTE
);
3996 template <typename ELFShdrTy
>
3997 bool RewriteInstance::shouldStrip(const ELFShdrTy
&Section
,
3998 StringRef SectionName
) {
3999 // Strip non-allocatable relocation sections.
4000 if (!(Section
.sh_flags
& ELF::SHF_ALLOC
) && Section
.sh_type
== ELF::SHT_RELA
)
4003 // Strip debug sections if not updating them.
4004 if (isDebugSection(SectionName
) && !opts::UpdateDebugSections
)
4007 // Strip symtab section if needed
4008 if (opts::RemoveSymtab
&& Section
.sh_type
== ELF::SHT_SYMTAB
)
4014 template <typename ELFT
>
4015 std::vector
<typename
object::ELFObjectFile
<ELFT
>::Elf_Shdr
>
4016 RewriteInstance::getOutputSections(ELFObjectFile
<ELFT
> *File
,
4017 std::vector
<uint32_t> &NewSectionIndex
) {
4018 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
4019 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4020 typename
ELFT::ShdrRange Sections
= cantFail(Obj
.sections());
4022 // Keep track of section header entries attached to the corresponding section.
4023 std::vector
<std::pair
<BinarySection
*, ELFShdrTy
>> OutputSections
;
4024 auto addSection
= [&](const ELFShdrTy
&Section
, BinarySection
*BinSec
) {
4025 ELFShdrTy NewSection
= Section
;
4026 NewSection
.sh_name
= SHStrTab
.getOffset(BinSec
->getOutputName());
4027 OutputSections
.emplace_back(BinSec
, std::move(NewSection
));
4030 // Copy over entries for original allocatable sections using modified name.
4031 for (const ELFShdrTy
&Section
: Sections
) {
4032 // Always ignore this section.
4033 if (Section
.sh_type
== ELF::SHT_NULL
) {
4034 OutputSections
.emplace_back(nullptr, Section
);
4038 if (!(Section
.sh_flags
& ELF::SHF_ALLOC
))
4041 SectionRef SecRef
= File
->toSectionRef(&Section
);
4042 BinarySection
*BinSec
= BC
->getSectionForSectionRef(SecRef
);
4043 assert(BinSec
&& "Matching BinarySection should exist.");
4045 addSection(Section
, BinSec
);
4048 for (BinarySection
&Section
: BC
->allocatableSections()) {
4049 if (!Section
.isFinalized())
4052 if (Section
.hasSectionRef() || Section
.isAnonymous()) {
4053 if (opts::Verbosity
)
4054 outs() << "BOLT-INFO: not writing section header for section "
4055 << Section
.getOutputName() << '\n';
4059 if (opts::Verbosity
>= 1)
4060 outs() << "BOLT-INFO: writing section header for "
4061 << Section
.getOutputName() << '\n';
4062 ELFShdrTy NewSection
;
4063 NewSection
.sh_type
= ELF::SHT_PROGBITS
;
4064 NewSection
.sh_addr
= Section
.getOutputAddress();
4065 NewSection
.sh_offset
= Section
.getOutputFileOffset();
4066 NewSection
.sh_size
= Section
.getOutputSize();
4067 NewSection
.sh_entsize
= 0;
4068 NewSection
.sh_flags
= Section
.getELFFlags();
4069 NewSection
.sh_link
= 0;
4070 NewSection
.sh_info
= 0;
4071 NewSection
.sh_addralign
= Section
.getAlignment();
4072 addSection(NewSection
, &Section
);
4075 // Sort all allocatable sections by their offset.
4076 llvm::stable_sort(OutputSections
, [](const auto &A
, const auto &B
) {
4077 return A
.second
.sh_offset
< B
.second
.sh_offset
;
4080 // Fix section sizes to prevent overlapping.
4081 ELFShdrTy
*PrevSection
= nullptr;
4082 BinarySection
*PrevBinSec
= nullptr;
4083 for (auto &SectionKV
: OutputSections
) {
4084 ELFShdrTy
&Section
= SectionKV
.second
;
4086 // TBSS section does not take file or memory space. Ignore it for layout
4088 if (Section
.sh_type
== ELF::SHT_NOBITS
&& (Section
.sh_flags
& ELF::SHF_TLS
))
4092 PrevSection
->sh_addr
+ PrevSection
->sh_size
> Section
.sh_addr
) {
4093 if (opts::Verbosity
> 1)
4094 outs() << "BOLT-INFO: adjusting size for section "
4095 << PrevBinSec
->getOutputName() << '\n';
4096 PrevSection
->sh_size
= Section
.sh_addr
> PrevSection
->sh_addr
4097 ? Section
.sh_addr
- PrevSection
->sh_addr
4101 PrevSection
= &Section
;
4102 PrevBinSec
= SectionKV
.first
;
4105 uint64_t LastFileOffset
= 0;
4107 // Copy over entries for non-allocatable sections performing necessary
4109 for (const ELFShdrTy
&Section
: Sections
) {
4110 if (Section
.sh_type
== ELF::SHT_NULL
)
4112 if (Section
.sh_flags
& ELF::SHF_ALLOC
)
4115 StringRef SectionName
=
4116 cantFail(Obj
.getSectionName(Section
), "cannot get section name");
4118 if (shouldStrip(Section
, SectionName
))
4121 SectionRef SecRef
= File
->toSectionRef(&Section
);
4122 BinarySection
*BinSec
= BC
->getSectionForSectionRef(SecRef
);
4123 assert(BinSec
&& "Matching BinarySection should exist.");
4125 ELFShdrTy NewSection
= Section
;
4126 NewSection
.sh_offset
= BinSec
->getOutputFileOffset();
4127 NewSection
.sh_size
= BinSec
->getOutputSize();
4129 if (NewSection
.sh_type
== ELF::SHT_SYMTAB
)
4130 NewSection
.sh_info
= NumLocalSymbols
;
4132 addSection(NewSection
, BinSec
);
4134 LastFileOffset
= BinSec
->getOutputFileOffset();
4137 // Create entries for new non-allocatable sections.
4138 for (BinarySection
&Section
: BC
->nonAllocatableSections()) {
4139 if (Section
.getOutputFileOffset() <= LastFileOffset
)
4142 if (opts::Verbosity
>= 1)
4143 outs() << "BOLT-INFO: writing section header for "
4144 << Section
.getOutputName() << '\n';
4146 ELFShdrTy NewSection
;
4147 NewSection
.sh_type
= Section
.getELFType();
4148 NewSection
.sh_addr
= 0;
4149 NewSection
.sh_offset
= Section
.getOutputFileOffset();
4150 NewSection
.sh_size
= Section
.getOutputSize();
4151 NewSection
.sh_entsize
= 0;
4152 NewSection
.sh_flags
= Section
.getELFFlags();
4153 NewSection
.sh_link
= 0;
4154 NewSection
.sh_info
= 0;
4155 NewSection
.sh_addralign
= Section
.getAlignment();
4157 addSection(NewSection
, &Section
);
4160 // Assign indices to sections.
4161 std::unordered_map
<std::string
, uint64_t> NameToIndex
;
4162 for (uint32_t Index
= 1; Index
< OutputSections
.size(); ++Index
)
4163 OutputSections
[Index
].first
->setIndex(Index
);
4165 // Update section index mapping
4166 NewSectionIndex
.clear();
4167 NewSectionIndex
.resize(Sections
.size(), 0);
4168 for (const ELFShdrTy
&Section
: Sections
) {
4169 if (Section
.sh_type
== ELF::SHT_NULL
)
4172 size_t OrgIndex
= std::distance(Sections
.begin(), &Section
);
4174 SectionRef SecRef
= File
->toSectionRef(&Section
);
4175 BinarySection
*BinSec
= BC
->getSectionForSectionRef(SecRef
);
4176 assert(BinSec
&& "BinarySection should exist for an input section.");
4178 // Some sections are stripped
4179 if (!BinSec
->hasValidIndex())
4182 NewSectionIndex
[OrgIndex
] = BinSec
->getIndex();
4185 std::vector
<ELFShdrTy
> SectionsOnly(OutputSections
.size());
4186 llvm::copy(llvm::make_second_range(OutputSections
), SectionsOnly
.begin());
4188 return SectionsOnly
;
4191 // Rewrite section header table inserting new entries as needed. The sections
4192 // header table size itself may affect the offsets of other sections,
4193 // so we are placing it at the end of the binary.
4195 // As we rewrite entries we need to track how many sections were inserted
4196 // as it changes the sh_link value. We map old indices to new ones for
4197 // existing sections.
4198 template <typename ELFT
>
4199 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile
<ELFT
> *File
) {
4200 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
4201 using ELFEhdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Ehdr
;
4202 raw_fd_ostream
&OS
= Out
->os();
4203 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4205 std::vector
<uint32_t> NewSectionIndex
;
4206 std::vector
<ELFShdrTy
> OutputSections
=
4207 getOutputSections(File
, NewSectionIndex
);
4209 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n";
4210 for (uint64_t I
= 0; I
< NewSectionIndex
.size(); ++I
)
4211 dbgs() << " " << I
<< " -> " << NewSectionIndex
[I
] << '\n';
4214 // Align starting address for section header table. There's no architecutal
4215 // need to align this, it is just for pleasant human readability.
4216 uint64_t SHTOffset
= OS
.tell();
4217 SHTOffset
= appendPadding(OS
, SHTOffset
, 16);
4219 // Write all section header entries while patching section references.
4220 for (ELFShdrTy
&Section
: OutputSections
) {
4221 Section
.sh_link
= NewSectionIndex
[Section
.sh_link
];
4222 if (Section
.sh_type
== ELF::SHT_REL
|| Section
.sh_type
== ELF::SHT_RELA
) {
4223 if (Section
.sh_info
)
4224 Section
.sh_info
= NewSectionIndex
[Section
.sh_info
];
4226 OS
.write(reinterpret_cast<const char *>(&Section
), sizeof(Section
));
4230 ELFEhdrTy NewEhdr
= Obj
.getHeader();
4232 if (BC
->HasRelocations
) {
4233 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary())
4234 NewEhdr
.e_entry
= RtLibrary
->getRuntimeStartAddress();
4236 NewEhdr
.e_entry
= getNewFunctionAddress(NewEhdr
.e_entry
);
4237 assert((NewEhdr
.e_entry
|| !Obj
.getHeader().e_entry
) &&
4238 "cannot find new address for entry point");
4240 NewEhdr
.e_phoff
= PHDRTableOffset
;
4241 NewEhdr
.e_phnum
= Phnum
;
4242 NewEhdr
.e_shoff
= SHTOffset
;
4243 NewEhdr
.e_shnum
= OutputSections
.size();
4244 NewEhdr
.e_shstrndx
= NewSectionIndex
[NewEhdr
.e_shstrndx
];
4245 OS
.pwrite(reinterpret_cast<const char *>(&NewEhdr
), sizeof(NewEhdr
), 0);
4248 template <typename ELFT
, typename WriteFuncTy
, typename StrTabFuncTy
>
4249 void RewriteInstance::updateELFSymbolTable(
4250 ELFObjectFile
<ELFT
> *File
, bool IsDynSym
,
4251 const typename
object::ELFObjectFile
<ELFT
>::Elf_Shdr
&SymTabSection
,
4252 const std::vector
<uint32_t> &NewSectionIndex
, WriteFuncTy Write
,
4253 StrTabFuncTy AddToStrTab
) {
4254 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4255 using ELFSymTy
= typename ELFObjectFile
<ELFT
>::Elf_Sym
;
4257 StringRef StringSection
=
4258 cantFail(Obj
.getStringTableForSymtab(SymTabSection
));
4260 unsigned NumHotTextSymsUpdated
= 0;
4261 unsigned NumHotDataSymsUpdated
= 0;
4263 std::map
<const BinaryFunction
*, uint64_t> IslandSizes
;
4264 auto getConstantIslandSize
= [&IslandSizes
](const BinaryFunction
&BF
) {
4265 auto Itr
= IslandSizes
.find(&BF
);
4266 if (Itr
!= IslandSizes
.end())
4268 return IslandSizes
[&BF
] = BF
.estimateConstantIslandSize();
4271 // Symbols for the new symbol table.
4272 std::vector
<ELFSymTy
> Symbols
;
4274 auto getNewSectionIndex
= [&](uint32_t OldIndex
) {
4275 // For dynamic symbol table, the section index could be wrong on the input,
4276 // and its value is ignored by the runtime if it's different from
4277 // SHN_UNDEF and SHN_ABS.
4278 // However, we still need to update dynamic symbol table, so return a
4279 // section index, even though the index is broken.
4280 if (IsDynSym
&& OldIndex
>= NewSectionIndex
.size())
4283 assert(OldIndex
< NewSectionIndex
.size() && "section index out of bounds");
4284 const uint32_t NewIndex
= NewSectionIndex
[OldIndex
];
4286 // We may have stripped the section that dynsym was referencing due to
4287 // the linker bug. In that case return the old index avoiding marking
4288 // the symbol as undefined.
4289 if (IsDynSym
&& NewIndex
!= OldIndex
&& NewIndex
== ELF::SHN_UNDEF
)
4294 // Add extra symbols for the function.
4296 // Note that addExtraSymbols() could be called multiple times for the same
4297 // function with different FunctionSymbol matching the main function entry
4299 auto addExtraSymbols
= [&](const BinaryFunction
&Function
,
4300 const ELFSymTy
&FunctionSymbol
) {
4301 if (Function
.isFolded()) {
4302 BinaryFunction
*ICFParent
= Function
.getFoldedIntoFunction();
4303 while (ICFParent
->isFolded())
4304 ICFParent
= ICFParent
->getFoldedIntoFunction();
4305 ELFSymTy ICFSymbol
= FunctionSymbol
;
4306 SmallVector
<char, 256> Buf
;
4308 AddToStrTab(Twine(cantFail(FunctionSymbol
.getName(StringSection
)))
4311 ICFSymbol
.st_value
= ICFParent
->getOutputAddress();
4312 ICFSymbol
.st_size
= ICFParent
->getOutputSize();
4313 ICFSymbol
.st_shndx
= ICFParent
->getCodeSection()->getIndex();
4314 Symbols
.emplace_back(ICFSymbol
);
4316 if (Function
.isSplit()) {
4317 for (const FunctionFragment
&FF
:
4318 Function
.getLayout().getSplitFragments()) {
4319 if (FF
.getAddress()) {
4320 ELFSymTy NewColdSym
= FunctionSymbol
;
4321 const SmallString
<256> SymbolName
= formatv(
4322 "{0}.cold.{1}", cantFail(FunctionSymbol
.getName(StringSection
)),
4323 FF
.getFragmentNum().get() - 1);
4324 NewColdSym
.st_name
= AddToStrTab(SymbolName
);
4325 NewColdSym
.st_shndx
=
4326 Function
.getCodeSection(FF
.getFragmentNum())->getIndex();
4327 NewColdSym
.st_value
= FF
.getAddress();
4328 NewColdSym
.st_size
= FF
.getImageSize();
4329 NewColdSym
.setBindingAndType(ELF::STB_LOCAL
, ELF::STT_FUNC
);
4330 Symbols
.emplace_back(NewColdSym
);
4334 if (Function
.hasConstantIsland()) {
4335 uint64_t DataMark
= Function
.getOutputDataAddress();
4336 uint64_t CISize
= getConstantIslandSize(Function
);
4337 uint64_t CodeMark
= DataMark
+ CISize
;
4338 ELFSymTy DataMarkSym
= FunctionSymbol
;
4339 DataMarkSym
.st_name
= AddToStrTab("$d");
4340 DataMarkSym
.st_value
= DataMark
;
4341 DataMarkSym
.st_size
= 0;
4342 DataMarkSym
.setType(ELF::STT_NOTYPE
);
4343 DataMarkSym
.setBinding(ELF::STB_LOCAL
);
4344 ELFSymTy CodeMarkSym
= DataMarkSym
;
4345 CodeMarkSym
.st_name
= AddToStrTab("$x");
4346 CodeMarkSym
.st_value
= CodeMark
;
4347 Symbols
.emplace_back(DataMarkSym
);
4348 Symbols
.emplace_back(CodeMarkSym
);
4350 if (Function
.hasConstantIsland() && Function
.isSplit()) {
4351 uint64_t DataMark
= Function
.getOutputColdDataAddress();
4352 uint64_t CISize
= getConstantIslandSize(Function
);
4353 uint64_t CodeMark
= DataMark
+ CISize
;
4354 ELFSymTy DataMarkSym
= FunctionSymbol
;
4355 DataMarkSym
.st_name
= AddToStrTab("$d");
4356 DataMarkSym
.st_value
= DataMark
;
4357 DataMarkSym
.st_size
= 0;
4358 DataMarkSym
.setType(ELF::STT_NOTYPE
);
4359 DataMarkSym
.setBinding(ELF::STB_LOCAL
);
4360 ELFSymTy CodeMarkSym
= DataMarkSym
;
4361 CodeMarkSym
.st_name
= AddToStrTab("$x");
4362 CodeMarkSym
.st_value
= CodeMark
;
4363 Symbols
.emplace_back(DataMarkSym
);
4364 Symbols
.emplace_back(CodeMarkSym
);
4368 // For regular (non-dynamic) symbol table, exclude symbols referring
4369 // to non-allocatable sections.
4370 auto shouldStrip
= [&](const ELFSymTy
&Symbol
) {
4371 if (Symbol
.isAbsolute() || !Symbol
.isDefined())
4374 // If we cannot link the symbol to a section, leave it as is.
4375 Expected
<const typename
ELFT::Shdr
*> Section
=
4376 Obj
.getSection(Symbol
.st_shndx
);
4380 // Remove the section symbol iif the corresponding section was stripped.
4381 if (Symbol
.getType() == ELF::STT_SECTION
) {
4382 if (!getNewSectionIndex(Symbol
.st_shndx
))
4387 // Symbols in non-allocatable sections are typically remnants of relocations
4388 // emitted under "-emit-relocs" linker option. Delete those as we delete
4389 // relocations against non-allocatable sections.
4390 if (!((*Section
)->sh_flags
& ELF::SHF_ALLOC
))
4396 for (const ELFSymTy
&Symbol
: cantFail(Obj
.symbols(&SymTabSection
))) {
4397 // For regular (non-dynamic) symbol table strip unneeded symbols.
4398 if (!IsDynSym
&& shouldStrip(Symbol
))
4401 const BinaryFunction
*Function
=
4402 BC
->getBinaryFunctionAtAddress(Symbol
.st_value
);
4403 // Ignore false function references, e.g. when the section address matches
4404 // the address of the function.
4405 if (Function
&& Symbol
.getType() == ELF::STT_SECTION
)
4408 // For non-dynamic symtab, make sure the symbol section matches that of
4409 // the function. It can mismatch e.g. if the symbol is a section marker
4410 // in which case we treat the symbol separately from the function.
4411 // For dynamic symbol table, the section index could be wrong on the input,
4412 // and its value is ignored by the runtime if it's different from
4413 // SHN_UNDEF and SHN_ABS.
4414 if (!IsDynSym
&& Function
&&
4416 Function
->getOriginSection()->getSectionRef().getIndex())
4419 // Create a new symbol based on the existing symbol.
4420 ELFSymTy NewSymbol
= Symbol
;
4423 // If the symbol matched a function that was not emitted, update the
4424 // corresponding section index but otherwise leave it unchanged.
4425 if (Function
->isEmitted()) {
4426 NewSymbol
.st_value
= Function
->getOutputAddress();
4427 NewSymbol
.st_size
= Function
->getOutputSize();
4428 NewSymbol
.st_shndx
= Function
->getCodeSection()->getIndex();
4429 } else if (Symbol
.st_shndx
< ELF::SHN_LORESERVE
) {
4430 NewSymbol
.st_shndx
= getNewSectionIndex(Symbol
.st_shndx
);
4433 // Add new symbols to the symbol table if necessary.
4435 addExtraSymbols(*Function
, NewSymbol
);
4437 // Check if the function symbol matches address inside a function, i.e.
4438 // it marks a secondary entry point.
4440 (Symbol
.getType() == ELF::STT_FUNC
)
4441 ? BC
->getBinaryFunctionContainingAddress(Symbol
.st_value
,
4442 /*CheckPastEnd=*/false,
4443 /*UseMaxSize=*/true)
4446 if (Function
&& Function
->isEmitted()) {
4447 assert(Function
->getLayout().isHotColdSplit() &&
4448 "Adding symbols based on cold fragment when there are more than "
4450 const uint64_t OutputAddress
=
4451 Function
->translateInputToOutputAddress(Symbol
.st_value
);
4453 NewSymbol
.st_value
= OutputAddress
;
4454 // Force secondary entry points to have zero size.
4455 NewSymbol
.st_size
= 0;
4457 // Find fragment containing entrypoint
4458 FunctionLayout::fragment_const_iterator FF
= llvm::find_if(
4459 Function
->getLayout().fragments(), [&](const FunctionFragment
&FF
) {
4460 uint64_t Lo
= FF
.getAddress();
4461 uint64_t Hi
= Lo
+ FF
.getImageSize();
4462 return Lo
<= OutputAddress
&& OutputAddress
< Hi
;
4465 if (FF
== Function
->getLayout().fragment_end()) {
4467 OutputAddress
>= Function
->getCodeSection()->getOutputAddress() &&
4468 OutputAddress
< (Function
->getCodeSection()->getOutputAddress() +
4469 Function
->getCodeSection()->getOutputSize()) &&
4470 "Cannot locate fragment containg secondary entrypoint");
4471 FF
= Function
->getLayout().fragment_begin();
4474 NewSymbol
.st_shndx
=
4475 Function
->getCodeSection(FF
->getFragmentNum())->getIndex();
4477 // Check if the symbol belongs to moved data object and update it.
4478 BinaryData
*BD
= opts::ReorderData
.empty()
4480 : BC
->getBinaryDataAtAddress(Symbol
.st_value
);
4481 if (BD
&& BD
->isMoved() && !BD
->isJumpTable()) {
4482 assert((!BD
->getSize() || !Symbol
.st_size
||
4483 Symbol
.st_size
== BD
->getSize()) &&
4484 "sizes must match");
4486 BinarySection
&OutputSection
= BD
->getOutputSection();
4487 assert(OutputSection
.getIndex());
4489 << "BOLT-DEBUG: moving " << BD
->getName() << " from "
4490 << *BC
->getSectionNameForAddress(Symbol
.st_value
) << " ("
4491 << Symbol
.st_shndx
<< ") to " << OutputSection
.getName()
4492 << " (" << OutputSection
.getIndex() << ")\n");
4493 NewSymbol
.st_shndx
= OutputSection
.getIndex();
4494 NewSymbol
.st_value
= BD
->getOutputAddress();
4496 // Otherwise just update the section for the symbol.
4497 if (Symbol
.st_shndx
< ELF::SHN_LORESERVE
)
4498 NewSymbol
.st_shndx
= getNewSectionIndex(Symbol
.st_shndx
);
4501 // Detect local syms in the text section that we didn't update
4502 // and that were preserved by the linker to support relocations against
4503 // .text. Remove them from the symtab.
4504 if (Symbol
.getType() == ELF::STT_NOTYPE
&&
4505 Symbol
.getBinding() == ELF::STB_LOCAL
&& Symbol
.st_size
== 0) {
4506 if (BC
->getBinaryFunctionContainingAddress(Symbol
.st_value
,
4507 /*CheckPastEnd=*/false,
4508 /*UseMaxSize=*/true)) {
4509 // Can only delete the symbol if not patching. Such symbols should
4510 // not exist in the dynamic symbol table.
4511 assert(!IsDynSym
&& "cannot delete symbol");
4518 // Handle special symbols based on their name.
4519 Expected
<StringRef
> SymbolName
= Symbol
.getName(StringSection
);
4520 assert(SymbolName
&& "cannot get symbol name");
4522 auto updateSymbolValue
= [&](const StringRef Name
,
4523 std::optional
<uint64_t> Value
= std::nullopt
) {
4524 NewSymbol
.st_value
= Value
? *Value
: getNewValueForSymbol(Name
);
4525 NewSymbol
.st_shndx
= ELF::SHN_ABS
;
4526 outs() << "BOLT-INFO: setting " << Name
<< " to 0x"
4527 << Twine::utohexstr(NewSymbol
.st_value
) << '\n';
4530 if (opts::HotText
&&
4531 (*SymbolName
== "__hot_start" || *SymbolName
== "__hot_end")) {
4532 updateSymbolValue(*SymbolName
);
4533 ++NumHotTextSymsUpdated
;
4536 if (opts::HotData
&& (*SymbolName
== "__hot_data_start" ||
4537 *SymbolName
== "__hot_data_end")) {
4538 updateSymbolValue(*SymbolName
);
4539 ++NumHotDataSymsUpdated
;
4542 if (*SymbolName
== "_end")
4543 updateSymbolValue(*SymbolName
, NextAvailableAddress
);
4546 Write((&Symbol
- cantFail(Obj
.symbols(&SymTabSection
)).begin()) *
4550 Symbols
.emplace_back(NewSymbol
);
4554 assert(Symbols
.empty());
4558 // Add symbols of injected functions
4559 for (BinaryFunction
*Function
: BC
->getInjectedBinaryFunctions()) {
4561 BinarySection
*OriginSection
= Function
->getOriginSection();
4562 NewSymbol
.st_shndx
=
4564 ? getNewSectionIndex(OriginSection
->getSectionRef().getIndex())
4565 : Function
->getCodeSection()->getIndex();
4566 NewSymbol
.st_value
= Function
->getOutputAddress();
4567 NewSymbol
.st_name
= AddToStrTab(Function
->getOneName());
4568 NewSymbol
.st_size
= Function
->getOutputSize();
4569 NewSymbol
.st_other
= 0;
4570 NewSymbol
.setBindingAndType(ELF::STB_LOCAL
, ELF::STT_FUNC
);
4571 Symbols
.emplace_back(NewSymbol
);
4573 if (Function
->isSplit()) {
4574 assert(Function
->getLayout().isHotColdSplit() &&
4575 "Adding symbols based on cold fragment when there are more than "
4577 ELFSymTy NewColdSym
= NewSymbol
;
4578 NewColdSym
.setType(ELF::STT_NOTYPE
);
4579 SmallVector
<char, 256> Buf
;
4580 NewColdSym
.st_name
= AddToStrTab(
4581 Twine(Function
->getPrintName()).concat(".cold.0").toStringRef(Buf
));
4582 const FunctionFragment
&ColdFF
=
4583 Function
->getLayout().getFragment(FragmentNum::cold());
4584 NewColdSym
.st_value
= ColdFF
.getAddress();
4585 NewColdSym
.st_size
= ColdFF
.getImageSize();
4586 Symbols
.emplace_back(NewColdSym
);
4590 auto AddSymbol
= [&](const StringRef
&Name
, uint64_t Address
) {
4595 Symbol
.st_value
= Address
;
4596 Symbol
.st_shndx
= ELF::SHN_ABS
;
4597 Symbol
.st_name
= AddToStrTab(Name
);
4599 Symbol
.st_other
= 0;
4600 Symbol
.setBindingAndType(ELF::STB_WEAK
, ELF::STT_NOTYPE
);
4602 outs() << "BOLT-INFO: setting " << Name
<< " to 0x"
4603 << Twine::utohexstr(Symbol
.st_value
) << '\n';
4605 Symbols
.emplace_back(Symbol
);
4608 // Add runtime library start and fini address symbols
4609 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary()) {
4610 AddSymbol("__bolt_runtime_start", RtLibrary
->getRuntimeStartAddress());
4611 AddSymbol("__bolt_runtime_fini", RtLibrary
->getRuntimeFiniAddress());
4614 assert((!NumHotTextSymsUpdated
|| NumHotTextSymsUpdated
== 2) &&
4615 "either none or both __hot_start/__hot_end symbols were expected");
4616 assert((!NumHotDataSymsUpdated
|| NumHotDataSymsUpdated
== 2) &&
4617 "either none or both __hot_data_start/__hot_data_end symbols were "
4620 auto AddEmittedSymbol
= [&](const StringRef
&Name
) {
4621 AddSymbol(Name
, getNewValueForSymbol(Name
));
4624 if (opts::HotText
&& !NumHotTextSymsUpdated
) {
4625 AddEmittedSymbol("__hot_start");
4626 AddEmittedSymbol("__hot_end");
4629 if (opts::HotData
&& !NumHotDataSymsUpdated
) {
4630 AddEmittedSymbol("__hot_data_start");
4631 AddEmittedSymbol("__hot_data_end");
4634 // Put local symbols at the beginning.
4635 llvm::stable_sort(Symbols
, [](const ELFSymTy
&A
, const ELFSymTy
&B
) {
4636 if (A
.getBinding() == ELF::STB_LOCAL
&& B
.getBinding() != ELF::STB_LOCAL
)
4641 for (const ELFSymTy
&Symbol
: Symbols
)
4645 template <typename ELFT
>
4646 void RewriteInstance::patchELFSymTabs(ELFObjectFile
<ELFT
> *File
) {
4647 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4648 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
4649 using ELFSymTy
= typename ELFObjectFile
<ELFT
>::Elf_Sym
;
4651 // Compute a preview of how section indices will change after rewriting, so
4652 // we can properly update the symbol table based on new section indices.
4653 std::vector
<uint32_t> NewSectionIndex
;
4654 getOutputSections(File
, NewSectionIndex
);
4656 // Set pointer at the end of the output file, so we can pwrite old symbol
4657 // tables if we need to.
4658 uint64_t NextAvailableOffset
= getFileOffsetForAddress(NextAvailableAddress
);
4659 assert(NextAvailableOffset
>= FirstNonAllocatableOffset
&&
4660 "next available offset calculation failure");
4661 Out
->os().seek(NextAvailableOffset
);
4663 // Update dynamic symbol table.
4664 const ELFShdrTy
*DynSymSection
= nullptr;
4665 for (const ELFShdrTy
&Section
: cantFail(Obj
.sections())) {
4666 if (Section
.sh_type
== ELF::SHT_DYNSYM
) {
4667 DynSymSection
= &Section
;
4671 assert((DynSymSection
|| BC
->IsStaticExecutable
) &&
4672 "dynamic symbol table expected");
4673 if (DynSymSection
) {
4674 updateELFSymbolTable(
4679 [&](size_t Offset
, const ELFSymTy
&Sym
) {
4680 Out
->os().pwrite(reinterpret_cast<const char *>(&Sym
),
4682 DynSymSection
->sh_offset
+ Offset
);
4684 [](StringRef
) -> size_t { return 0; });
4687 if (opts::RemoveSymtab
)
4690 // (re)create regular symbol table.
4691 const ELFShdrTy
*SymTabSection
= nullptr;
4692 for (const ELFShdrTy
&Section
: cantFail(Obj
.sections())) {
4693 if (Section
.sh_type
== ELF::SHT_SYMTAB
) {
4694 SymTabSection
= &Section
;
4698 if (!SymTabSection
) {
4699 errs() << "BOLT-WARNING: no symbol table found\n";
4703 const ELFShdrTy
*StrTabSection
=
4704 cantFail(Obj
.getSection(SymTabSection
->sh_link
));
4705 std::string NewContents
;
4706 std::string NewStrTab
= std::string(
4707 File
->getData().substr(StrTabSection
->sh_offset
, StrTabSection
->sh_size
));
4708 StringRef SecName
= cantFail(Obj
.getSectionName(*SymTabSection
));
4709 StringRef StrSecName
= cantFail(Obj
.getSectionName(*StrTabSection
));
4711 NumLocalSymbols
= 0;
4712 updateELFSymbolTable(
4717 [&](size_t Offset
, const ELFSymTy
&Sym
) {
4718 if (Sym
.getBinding() == ELF::STB_LOCAL
)
4720 NewContents
.append(reinterpret_cast<const char *>(&Sym
),
4723 [&](StringRef Str
) {
4724 size_t Idx
= NewStrTab
.size();
4725 NewStrTab
.append(NameResolver::restore(Str
).str());
4726 NewStrTab
.append(1, '\0');
4730 BC
->registerOrUpdateNoteSection(SecName
,
4731 copyByteArray(NewContents
),
4734 /*IsReadOnly=*/true,
4737 BC
->registerOrUpdateNoteSection(StrSecName
,
4738 copyByteArray(NewStrTab
),
4741 /*IsReadOnly=*/true,
4745 template <typename ELFT
>
4746 void RewriteInstance::patchELFAllocatableRelrSection(
4747 ELFObjectFile
<ELFT
> *File
) {
4748 if (!DynamicRelrAddress
)
4751 raw_fd_ostream
&OS
= Out
->os();
4752 const uint8_t PSize
= BC
->AsmInfo
->getCodePointerSize();
4753 const uint64_t MaxDelta
= ((CHAR_BIT
* DynamicRelrEntrySize
) - 1) * PSize
;
4755 auto FixAddend
= [&](const BinarySection
&Section
, const Relocation
&Rel
,
4756 uint64_t FileOffset
) {
4757 // Fix relocation symbol value in place if no static relocation found
4758 // on the same address. We won't check the BF relocations here since it
4759 // is rare case and no optimization is required.
4760 if (Section
.getRelocationAt(Rel
.Offset
))
4763 // No fixup needed if symbol address was not changed
4764 const uint64_t Addend
= getNewFunctionOrDataAddress(Rel
.Addend
);
4768 OS
.pwrite(reinterpret_cast<const char *>(&Addend
), PSize
, FileOffset
);
4771 // Fill new relative relocation offsets set
4772 std::set
<uint64_t> RelOffsets
;
4773 for (const BinarySection
&Section
: BC
->allocatableSections()) {
4774 const uint64_t SectionInputAddress
= Section
.getAddress();
4775 uint64_t SectionAddress
= Section
.getOutputAddress();
4776 if (!SectionAddress
)
4777 SectionAddress
= SectionInputAddress
;
4779 for (const Relocation
&Rel
: Section
.dynamicRelocations()) {
4780 if (!Rel
.isRelative())
4783 uint64_t RelOffset
=
4784 getNewFunctionOrDataAddress(SectionInputAddress
+ Rel
.Offset
);
4786 RelOffset
= RelOffset
== 0 ? SectionAddress
+ Rel
.Offset
: RelOffset
;
4787 assert((RelOffset
& 1) == 0 && "Wrong relocation offset");
4788 RelOffsets
.emplace(RelOffset
);
4789 FixAddend(Section
, Rel
, RelOffset
);
4793 ErrorOr
<BinarySection
&> Section
=
4794 BC
->getSectionForAddress(*DynamicRelrAddress
);
4795 assert(Section
&& "cannot get .relr.dyn section");
4796 assert(Section
->isRelr() && "Expected section to be SHT_RELR type");
4797 uint64_t RelrDynOffset
= Section
->getInputFileOffset();
4798 const uint64_t RelrDynEndOffset
= RelrDynOffset
+ Section
->getSize();
4800 auto WriteRelr
= [&](uint64_t Value
) {
4801 if (RelrDynOffset
+ DynamicRelrEntrySize
> RelrDynEndOffset
) {
4802 errs() << "BOLT-ERROR: Offset overflow for relr.dyn section\n";
4806 OS
.pwrite(reinterpret_cast<const char *>(&Value
), DynamicRelrEntrySize
,
4808 RelrDynOffset
+= DynamicRelrEntrySize
;
4811 for (auto RelIt
= RelOffsets
.begin(); RelIt
!= RelOffsets
.end();) {
4813 uint64_t Base
= *RelIt
++ + PSize
;
4815 uint64_t Bitmap
= 0;
4816 for (; RelIt
!= RelOffsets
.end(); ++RelIt
) {
4817 const uint64_t Delta
= *RelIt
- Base
;
4818 if (Delta
>= MaxDelta
|| Delta
% PSize
)
4821 Bitmap
|= (1ULL << (Delta
/ PSize
));
4827 WriteRelr((Bitmap
<< 1) | 1);
4832 // Fill the rest of the section with empty bitmap value
4833 while (RelrDynOffset
!= RelrDynEndOffset
)
4837 template <typename ELFT
>
4839 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile
<ELFT
> *File
) {
4840 using Elf_Rela
= typename
ELFT::Rela
;
4841 raw_fd_ostream
&OS
= Out
->os();
4842 const ELFFile
<ELFT
> &EF
= File
->getELFFile();
4844 uint64_t RelDynOffset
= 0, RelDynEndOffset
= 0;
4845 uint64_t RelPltOffset
= 0, RelPltEndOffset
= 0;
4847 auto setSectionFileOffsets
= [&](uint64_t Address
, uint64_t &Start
,
4849 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(Address
);
4850 assert(Section
&& "cannot get relocation section");
4851 Start
= Section
->getInputFileOffset();
4852 End
= Start
+ Section
->getSize();
4855 if (!DynamicRelocationsAddress
&& !PLTRelocationsAddress
)
4858 if (DynamicRelocationsAddress
)
4859 setSectionFileOffsets(*DynamicRelocationsAddress
, RelDynOffset
,
4862 if (PLTRelocationsAddress
)
4863 setSectionFileOffsets(*PLTRelocationsAddress
, RelPltOffset
,
4866 DynamicRelativeRelocationsCount
= 0;
4868 auto writeRela
= [&OS
](const Elf_Rela
*RelA
, uint64_t &Offset
) {
4869 OS
.pwrite(reinterpret_cast<const char *>(RelA
), sizeof(*RelA
), Offset
);
4870 Offset
+= sizeof(*RelA
);
4873 auto writeRelocations
= [&](bool PatchRelative
) {
4874 for (BinarySection
&Section
: BC
->allocatableSections()) {
4875 const uint64_t SectionInputAddress
= Section
.getAddress();
4876 uint64_t SectionAddress
= Section
.getOutputAddress();
4877 if (!SectionAddress
)
4878 SectionAddress
= SectionInputAddress
;
4880 for (const Relocation
&Rel
: Section
.dynamicRelocations()) {
4881 const bool IsRelative
= Rel
.isRelative();
4882 if (PatchRelative
!= IsRelative
)
4886 ++DynamicRelativeRelocationsCount
;
4889 MCSymbol
*Symbol
= Rel
.Symbol
;
4890 uint32_t SymbolIdx
= 0;
4891 uint64_t Addend
= Rel
.Addend
;
4892 uint64_t RelOffset
=
4893 getNewFunctionOrDataAddress(SectionInputAddress
+ Rel
.Offset
);
4895 RelOffset
= RelOffset
== 0 ? SectionAddress
+ Rel
.Offset
: RelOffset
;
4897 SymbolIdx
= getOutputDynamicSymbolIndex(Symbol
);
4899 // Usually this case is used for R_*_(I)RELATIVE relocations
4900 const uint64_t Address
= getNewFunctionOrDataAddress(Addend
);
4905 NewRelA
.setSymbolAndType(SymbolIdx
, Rel
.Type
, EF
.isMips64EL());
4906 NewRelA
.r_offset
= RelOffset
;
4907 NewRelA
.r_addend
= Addend
;
4909 const bool IsJmpRel
= IsJmpRelocation
.contains(Rel
.Type
);
4910 uint64_t &Offset
= IsJmpRel
? RelPltOffset
: RelDynOffset
;
4911 const uint64_t &EndOffset
=
4912 IsJmpRel
? RelPltEndOffset
: RelDynEndOffset
;
4913 if (!Offset
|| !EndOffset
) {
4914 errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n";
4918 if (Offset
+ sizeof(NewRelA
) > EndOffset
) {
4919 errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n";
4923 writeRela(&NewRelA
, Offset
);
4928 // Place R_*_RELATIVE relocations in RELA section if RELR is not presented.
4929 // The dynamic linker expects all R_*_RELATIVE relocations in RELA
4930 // to be emitted first.
4931 if (!DynamicRelrAddress
)
4932 writeRelocations(/* PatchRelative */ true);
4933 writeRelocations(/* PatchRelative */ false);
4935 auto fillNone
= [&](uint64_t &Offset
, uint64_t EndOffset
) {
4939 typename ELFObjectFile
<ELFT
>::Elf_Rela RelA
;
4940 RelA
.setSymbolAndType(0, Relocation::getNone(), EF
.isMips64EL());
4943 while (Offset
< EndOffset
)
4944 writeRela(&RelA
, Offset
);
4946 assert(Offset
== EndOffset
&& "Unexpected section overflow");
4949 // Fill the rest of the sections with R_*_NONE relocations
4950 fillNone(RelDynOffset
, RelDynEndOffset
);
4951 fillNone(RelPltOffset
, RelPltEndOffset
);
4954 template <typename ELFT
>
4955 void RewriteInstance::patchELFGOT(ELFObjectFile
<ELFT
> *File
) {
4956 raw_fd_ostream
&OS
= Out
->os();
4958 SectionRef GOTSection
;
4959 for (const SectionRef
&Section
: File
->sections()) {
4960 StringRef SectionName
= cantFail(Section
.getName());
4961 if (SectionName
== ".got") {
4962 GOTSection
= Section
;
4966 if (!GOTSection
.getObject()) {
4967 if (!BC
->IsStaticExecutable
)
4968 errs() << "BOLT-INFO: no .got section found\n";
4972 StringRef GOTContents
= cantFail(GOTSection
.getContents());
4973 for (const uint64_t *GOTEntry
=
4974 reinterpret_cast<const uint64_t *>(GOTContents
.data());
4975 GOTEntry
< reinterpret_cast<const uint64_t *>(GOTContents
.data() +
4976 GOTContents
.size());
4978 if (uint64_t NewAddress
= getNewFunctionAddress(*GOTEntry
)) {
4979 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x"
4980 << Twine::utohexstr(*GOTEntry
) << " with 0x"
4981 << Twine::utohexstr(NewAddress
) << '\n');
4982 OS
.pwrite(reinterpret_cast<const char *>(&NewAddress
), sizeof(NewAddress
),
4983 reinterpret_cast<const char *>(GOTEntry
) -
4984 File
->getData().data());
4989 template <typename ELFT
>
4990 void RewriteInstance::patchELFDynamic(ELFObjectFile
<ELFT
> *File
) {
4991 if (BC
->IsStaticExecutable
)
4994 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4995 raw_fd_ostream
&OS
= Out
->os();
4997 using Elf_Phdr
= typename ELFFile
<ELFT
>::Elf_Phdr
;
4998 using Elf_Dyn
= typename ELFFile
<ELFT
>::Elf_Dyn
;
5000 // Locate DYNAMIC by looking through program headers.
5001 uint64_t DynamicOffset
= 0;
5002 const Elf_Phdr
*DynamicPhdr
= nullptr;
5003 for (const Elf_Phdr
&Phdr
: cantFail(Obj
.program_headers())) {
5004 if (Phdr
.p_type
== ELF::PT_DYNAMIC
) {
5005 DynamicOffset
= Phdr
.p_offset
;
5006 DynamicPhdr
= &Phdr
;
5007 assert(Phdr
.p_memsz
== Phdr
.p_filesz
&& "dynamic sizes should match");
5011 assert(DynamicPhdr
&& "missing dynamic in ELF binary");
5013 bool ZNowSet
= false;
5015 // Go through all dynamic entries and patch functions addresses with
5017 typename
ELFT::DynRange DynamicEntries
=
5018 cantFail(Obj
.dynamicEntries(), "error accessing dynamic table");
5019 auto DTB
= DynamicEntries
.begin();
5020 for (const Elf_Dyn
&Dyn
: DynamicEntries
) {
5021 Elf_Dyn NewDE
= Dyn
;
5022 bool ShouldPatch
= true;
5023 switch (Dyn
.d_tag
) {
5025 ShouldPatch
= false;
5027 case ELF::DT_RELACOUNT
:
5028 NewDE
.d_un
.d_val
= DynamicRelativeRelocationsCount
;
5031 case ELF::DT_FINI
: {
5032 if (BC
->HasRelocations
) {
5033 if (uint64_t NewAddress
= getNewFunctionAddress(Dyn
.getPtr())) {
5034 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type "
5035 << Dyn
.getTag() << '\n');
5036 NewDE
.d_un
.d_ptr
= NewAddress
;
5039 RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary();
5040 if (RtLibrary
&& Dyn
.getTag() == ELF::DT_FINI
) {
5041 if (uint64_t Addr
= RtLibrary
->getRuntimeFiniAddress())
5042 NewDE
.d_un
.d_ptr
= Addr
;
5044 if (RtLibrary
&& Dyn
.getTag() == ELF::DT_INIT
&& !BC
->HasInterpHeader
) {
5045 if (auto Addr
= RtLibrary
->getRuntimeStartAddress()) {
5046 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x"
5047 << Twine::utohexstr(Addr
) << '\n');
5048 NewDE
.d_un
.d_ptr
= Addr
;
5054 if (BC
->RequiresZNow
) {
5055 NewDE
.d_un
.d_val
|= ELF::DF_BIND_NOW
;
5059 case ELF::DT_FLAGS_1
:
5060 if (BC
->RequiresZNow
) {
5061 NewDE
.d_un
.d_val
|= ELF::DF_1_NOW
;
5067 OS
.pwrite(reinterpret_cast<const char *>(&NewDE
), sizeof(NewDE
),
5068 DynamicOffset
+ (&Dyn
- DTB
) * sizeof(Dyn
));
5071 if (BC
->RequiresZNow
&& !ZNowSet
) {
5072 errs() << "BOLT-ERROR: output binary requires immediate relocation "
5073 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in "
5074 ".dynamic. Please re-link the binary with -znow.\n";
5079 template <typename ELFT
>
5080 Error
RewriteInstance::readELFDynamic(ELFObjectFile
<ELFT
> *File
) {
5081 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
5083 using Elf_Phdr
= typename ELFFile
<ELFT
>::Elf_Phdr
;
5084 using Elf_Dyn
= typename ELFFile
<ELFT
>::Elf_Dyn
;
5086 // Locate DYNAMIC by looking through program headers.
5087 const Elf_Phdr
*DynamicPhdr
= nullptr;
5088 for (const Elf_Phdr
&Phdr
: cantFail(Obj
.program_headers())) {
5089 if (Phdr
.p_type
== ELF::PT_DYNAMIC
) {
5090 DynamicPhdr
= &Phdr
;
5096 outs() << "BOLT-INFO: static input executable detected\n";
5097 // TODO: static PIE executable might have dynamic header
5098 BC
->IsStaticExecutable
= true;
5099 return Error::success();
5102 if (DynamicPhdr
->p_memsz
!= DynamicPhdr
->p_filesz
)
5103 return createStringError(errc::executable_format_error
,
5104 "dynamic section sizes should match");
5106 // Go through all dynamic entries to locate entries of interest.
5107 auto DynamicEntriesOrErr
= Obj
.dynamicEntries();
5108 if (!DynamicEntriesOrErr
)
5109 return DynamicEntriesOrErr
.takeError();
5110 typename
ELFT::DynRange DynamicEntries
= DynamicEntriesOrErr
.get();
5112 for (const Elf_Dyn
&Dyn
: DynamicEntries
) {
5113 switch (Dyn
.d_tag
) {
5115 if (!BC
->HasInterpHeader
) {
5116 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n");
5117 BC
->StartFunctionAddress
= Dyn
.getPtr();
5121 BC
->FiniFunctionAddress
= Dyn
.getPtr();
5124 DynamicRelocationsAddress
= Dyn
.getPtr();
5126 case ELF::DT_RELASZ
:
5127 DynamicRelocationsSize
= Dyn
.getVal();
5129 case ELF::DT_JMPREL
:
5130 PLTRelocationsAddress
= Dyn
.getPtr();
5132 case ELF::DT_PLTRELSZ
:
5133 PLTRelocationsSize
= Dyn
.getVal();
5135 case ELF::DT_RELACOUNT
:
5136 DynamicRelativeRelocationsCount
= Dyn
.getVal();
5139 DynamicRelrAddress
= Dyn
.getPtr();
5141 case ELF::DT_RELRSZ
:
5142 DynamicRelrSize
= Dyn
.getVal();
5144 case ELF::DT_RELRENT
:
5145 DynamicRelrEntrySize
= Dyn
.getVal();
5150 if (!DynamicRelocationsAddress
|| !DynamicRelocationsSize
) {
5151 DynamicRelocationsAddress
.reset();
5152 DynamicRelocationsSize
= 0;
5155 if (!PLTRelocationsAddress
|| !PLTRelocationsSize
) {
5156 PLTRelocationsAddress
.reset();
5157 PLTRelocationsSize
= 0;
5160 if (!DynamicRelrAddress
|| !DynamicRelrSize
) {
5161 DynamicRelrAddress
.reset();
5162 DynamicRelrSize
= 0;
5163 } else if (!DynamicRelrEntrySize
) {
5164 errs() << "BOLT-ERROR: expected DT_RELRENT to be presented "
5165 << "in DYNAMIC section\n";
5167 } else if (DynamicRelrSize
% DynamicRelrEntrySize
) {
5168 errs() << "BOLT-ERROR: expected RELR table size to be divisible "
5169 << "by RELR entry size\n";
5173 return Error::success();
5176 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress
) {
5177 const BinaryFunction
*Function
= BC
->getBinaryFunctionAtAddress(OldAddress
);
5181 return Function
->getOutputAddress();
5184 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress
) {
5185 if (uint64_t Function
= getNewFunctionAddress(OldAddress
))
5188 const BinaryData
*BD
= BC
->getBinaryDataAtAddress(OldAddress
);
5189 if (BD
&& BD
->isMoved())
5190 return BD
->getOutputAddress();
5195 void RewriteInstance::rewriteFile() {
5197 Out
= std::make_unique
<ToolOutputFile
>(opts::OutputFilename
, EC
,
5199 check_error(EC
, "cannot create output executable file");
5201 raw_fd_ostream
&OS
= Out
->os();
5203 // Copy allocatable part of the input.
5204 OS
<< InputFile
->getData().substr(0, FirstNonAllocatableOffset
);
5206 auto Streamer
= BC
->createStreamer(OS
);
5207 // Make sure output stream has enough reserved space, otherwise
5208 // pwrite() will fail.
5209 uint64_t Offset
= OS
.seek(getFileOffsetForAddress(NextAvailableAddress
));
5211 assert(Offset
== getFileOffsetForAddress(NextAvailableAddress
) &&
5212 "error resizing output file");
5214 // Overwrite functions with fixed output address. This is mostly used by
5215 // non-relocation mode, with one exception: injected functions are covered
5216 // here in both modes.
5217 uint64_t CountOverwrittenFunctions
= 0;
5218 uint64_t OverwrittenScore
= 0;
5219 for (BinaryFunction
*Function
: BC
->getAllBinaryFunctions()) {
5220 if (Function
->getImageAddress() == 0 || Function
->getImageSize() == 0)
5223 if (Function
->getImageSize() > Function
->getMaxSize()) {
5224 if (opts::Verbosity
>= 1)
5225 errs() << "BOLT-WARNING: new function size (0x"
5226 << Twine::utohexstr(Function
->getImageSize())
5227 << ") is larger than maximum allowed size (0x"
5228 << Twine::utohexstr(Function
->getMaxSize()) << ") for function "
5229 << *Function
<< '\n';
5231 // Remove jump table sections that this function owns in non-reloc mode
5232 // because we don't want to write them anymore.
5233 if (!BC
->HasRelocations
&& opts::JumpTables
== JTS_BASIC
) {
5234 for (auto &JTI
: Function
->JumpTables
) {
5235 JumpTable
*JT
= JTI
.second
;
5236 BinarySection
&Section
= JT
->getOutputSection();
5237 BC
->deregisterSection(Section
);
5243 const auto HasAddress
= [](const FunctionFragment
&FF
) {
5244 return FF
.empty() ||
5245 (FF
.getImageAddress() != 0 && FF
.getImageSize() != 0);
5247 const bool SplitFragmentsHaveAddress
=
5248 llvm::all_of(Function
->getLayout().getSplitFragments(), HasAddress
);
5249 if (Function
->isSplit() && !SplitFragmentsHaveAddress
) {
5250 const auto HasNoAddress
= [](const FunctionFragment
&FF
) {
5251 return FF
.getImageAddress() == 0 && FF
.getImageSize() == 0;
5253 assert(llvm::all_of(Function
->getLayout().getSplitFragments(),
5255 "Some split fragments have an address while others do not");
5260 OverwrittenScore
+= Function
->getFunctionScore();
5261 ++CountOverwrittenFunctions
;
5263 // Overwrite function in the output file.
5264 if (opts::Verbosity
>= 2)
5265 outs() << "BOLT: rewriting function \"" << *Function
<< "\"\n";
5267 OS
.pwrite(reinterpret_cast<char *>(Function
->getImageAddress()),
5268 Function
->getImageSize(), Function
->getFileOffset());
5270 // Write nops at the end of the function.
5271 if (Function
->getMaxSize() != std::numeric_limits
<uint64_t>::max()) {
5272 uint64_t Pos
= OS
.tell();
5273 OS
.seek(Function
->getFileOffset() + Function
->getImageSize());
5274 BC
->MAB
->writeNopData(
5275 OS
, Function
->getMaxSize() - Function
->getImageSize(), &*BC
->STI
);
5280 if (!Function
->isSplit())
5284 if (opts::Verbosity
>= 2) {
5285 outs() << formatv("BOLT: rewriting function \"{0}\" (split parts)\n",
5289 for (const FunctionFragment
&FF
:
5290 Function
->getLayout().getSplitFragments()) {
5291 OS
.pwrite(reinterpret_cast<char *>(FF
.getImageAddress()),
5292 FF
.getImageSize(), FF
.getFileOffset());
5296 // Print function statistics for non-relocation mode.
5297 if (!BC
->HasRelocations
) {
5298 outs() << "BOLT: " << CountOverwrittenFunctions
<< " out of "
5299 << BC
->getBinaryFunctions().size()
5300 << " functions were overwritten.\n";
5301 if (BC
->TotalScore
!= 0) {
5302 double Coverage
= OverwrittenScore
/ (double)BC
->TotalScore
* 100.0;
5303 outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage
)
5304 << "% of the execution count of simple functions of "
5309 if (BC
->HasRelocations
&& opts::TrapOldCode
) {
5310 uint64_t SavedPos
= OS
.tell();
5311 // Overwrite function body to make sure we never execute these instructions.
5312 for (auto &BFI
: BC
->getBinaryFunctions()) {
5313 BinaryFunction
&BF
= BFI
.second
;
5314 if (!BF
.getFileOffset() || !BF
.isEmitted())
5316 OS
.seek(BF
.getFileOffset());
5317 StringRef TrapInstr
= BC
->MIB
->getTrapFillValue();
5318 unsigned NInstr
= BF
.getMaxSize() / TrapInstr
.size();
5319 for (unsigned I
= 0; I
< NInstr
; ++I
)
5320 OS
.write(TrapInstr
.data(), TrapInstr
.size());
5325 // Write all allocatable sections - reloc-mode text is written here as well
5326 for (BinarySection
&Section
: BC
->allocatableSections()) {
5327 if (!Section
.isFinalized() || !Section
.getOutputData())
5329 if (Section
.isLinkOnly())
5332 if (opts::Verbosity
>= 1)
5333 outs() << "BOLT: writing new section " << Section
.getName()
5334 << "\n data at 0x" << Twine::utohexstr(Section
.getAllocAddress())
5335 << "\n of size " << Section
.getOutputSize() << "\n at offset "
5336 << Section
.getOutputFileOffset() << '\n';
5337 OS
.pwrite(reinterpret_cast<const char *>(Section
.getOutputData()),
5338 Section
.getOutputSize(), Section
.getOutputFileOffset());
5341 for (BinarySection
&Section
: BC
->allocatableSections())
5342 Section
.flushPendingRelocations(OS
, [this](const MCSymbol
*S
) {
5343 return getNewValueForSymbol(S
->getName());
5346 // If .eh_frame is present create .eh_frame_hdr.
5348 writeEHFrameHeader();
5350 // Add BOLT Addresses Translation maps to allow profile collection to
5351 // happen in the output binary
5352 if (opts::EnableBAT
)
5355 // Patch program header table.
5356 patchELFPHDRTable();
5358 // Finalize memory image of section string table.
5359 finalizeSectionStringTable();
5361 // Update symbol tables.
5366 if (opts::EnableBAT
)
5369 // Copy non-allocatable sections once allocatable part is finished.
5370 rewriteNoteSections();
5372 if (BC
->HasRelocations
) {
5373 patchELFAllocatableRelaSections();
5374 patchELFAllocatableRelrSection();
5378 // Patch dynamic section/segment.
5381 // Update ELF book-keeping info.
5382 patchELFSectionHeaderTable();
5384 if (opts::PrintSections
) {
5385 outs() << "BOLT-INFO: Sections after processing:\n";
5386 BC
->printSections(outs());
5390 EC
= sys::fs::setPermissions(
5391 opts::OutputFilename
,
5392 static_cast<sys::fs::perms
>(sys::fs::perms::all_all
&
5393 ~sys::fs::getUmask()));
5394 check_error(EC
, "cannot set permissions of output file");
5397 void RewriteInstance::writeEHFrameHeader() {
5398 BinarySection
*NewEHFrameSection
=
5399 getSection(getNewSecPrefix() + getEHFrameSectionName());
5401 // No need to update the header if no new .eh_frame was created.
5402 if (!NewEHFrameSection
)
5405 DWARFDebugFrame
NewEHFrame(BC
->TheTriple
->getArch(), true,
5406 NewEHFrameSection
->getOutputAddress());
5407 Error E
= NewEHFrame
.parse(DWARFDataExtractor(
5408 NewEHFrameSection
->getOutputContents(), BC
->AsmInfo
->isLittleEndian(),
5409 BC
->AsmInfo
->getCodePointerSize()));
5410 check_error(std::move(E
), "failed to parse EH frame");
5412 uint64_t RelocatedEHFrameAddress
= 0;
5413 StringRef RelocatedEHFrameContents
;
5414 BinarySection
*RelocatedEHFrameSection
=
5415 getSection(".relocated" + getEHFrameSectionName());
5416 if (RelocatedEHFrameSection
) {
5417 RelocatedEHFrameAddress
= RelocatedEHFrameSection
->getOutputAddress();
5418 RelocatedEHFrameContents
= RelocatedEHFrameSection
->getOutputContents();
5420 DWARFDebugFrame
RelocatedEHFrame(BC
->TheTriple
->getArch(), true,
5421 RelocatedEHFrameAddress
);
5422 Error Er
= RelocatedEHFrame
.parse(DWARFDataExtractor(
5423 RelocatedEHFrameContents
, BC
->AsmInfo
->isLittleEndian(),
5424 BC
->AsmInfo
->getCodePointerSize()));
5425 check_error(std::move(Er
), "failed to parse EH frame");
5427 LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n");
5429 NextAvailableAddress
=
5430 appendPadding(Out
->os(), NextAvailableAddress
, EHFrameHdrAlign
);
5432 const uint64_t EHFrameHdrOutputAddress
= NextAvailableAddress
;
5433 const uint64_t EHFrameHdrFileOffset
=
5434 getFileOffsetForAddress(NextAvailableAddress
);
5436 std::vector
<char> NewEHFrameHdr
= CFIRdWrt
->generateEHFrameHeader(
5437 RelocatedEHFrame
, NewEHFrame
, EHFrameHdrOutputAddress
, FailedAddresses
);
5439 assert(Out
->os().tell() == EHFrameHdrFileOffset
&& "offset mismatch");
5440 Out
->os().write(NewEHFrameHdr
.data(), NewEHFrameHdr
.size());
5442 const unsigned Flags
= BinarySection::getFlags(/*IsReadOnly=*/true,
5444 /*IsAllocatable=*/true);
5445 BinarySection
*OldEHFrameHdrSection
= getSection(".eh_frame_hdr");
5446 if (OldEHFrameHdrSection
)
5447 OldEHFrameHdrSection
->setOutputName(getOrgSecPrefix() + ".eh_frame_hdr");
5449 BinarySection
&EHFrameHdrSec
= BC
->registerOrUpdateSection(
5450 getNewSecPrefix() + ".eh_frame_hdr", ELF::SHT_PROGBITS
, Flags
, nullptr,
5451 NewEHFrameHdr
.size(), /*Alignment=*/1);
5452 EHFrameHdrSec
.setOutputFileOffset(EHFrameHdrFileOffset
);
5453 EHFrameHdrSec
.setOutputAddress(EHFrameHdrOutputAddress
);
5454 EHFrameHdrSec
.setOutputName(".eh_frame_hdr");
5456 NextAvailableAddress
+= EHFrameHdrSec
.getOutputSize();
5458 // Merge new .eh_frame with the relocated original so that gdb can locate all
5460 if (RelocatedEHFrameSection
) {
5461 const uint64_t NewEHFrameSectionSize
=
5462 RelocatedEHFrameSection
->getOutputAddress() +
5463 RelocatedEHFrameSection
->getOutputSize() -
5464 NewEHFrameSection
->getOutputAddress();
5465 NewEHFrameSection
->updateContents(NewEHFrameSection
->getOutputData(),
5466 NewEHFrameSectionSize
);
5467 BC
->deregisterSection(*RelocatedEHFrameSection
);
5470 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is "
5471 << NewEHFrameSection
->getOutputSize() << '\n');
5474 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name
) {
5475 auto Value
= Linker
->lookupSymbol(Name
);
5479 // Return the original value if we haven't emitted the symbol.
5480 BinaryData
*BD
= BC
->getBinaryDataByName(Name
);
5484 return BD
->getAddress();
5487 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address
) const {
5488 // Check if it's possibly part of the new segment.
5489 if (Address
>= NewTextSegmentAddress
)
5490 return Address
- NewTextSegmentAddress
+ NewTextSegmentOffset
;
5492 // Find an existing segment that matches the address.
5493 const auto SegmentInfoI
= BC
->SegmentMapInfo
.upper_bound(Address
);
5494 if (SegmentInfoI
== BC
->SegmentMapInfo
.begin())
5497 const SegmentInfo
&SegmentInfo
= std::prev(SegmentInfoI
)->second
;
5498 if (Address
< SegmentInfo
.Address
||
5499 Address
>= SegmentInfo
.Address
+ SegmentInfo
.FileSize
)
5502 return SegmentInfo
.FileOffset
+ Address
- SegmentInfo
.Address
;
5505 bool RewriteInstance::willOverwriteSection(StringRef SectionName
) {
5506 if (llvm::is_contained(SectionsToOverwrite
, SectionName
))
5508 if (llvm::is_contained(DebugSectionsToOverwrite
, SectionName
))
5511 ErrorOr
<BinarySection
&> Section
= BC
->getUniqueSectionByName(SectionName
);
5512 return Section
&& Section
->isAllocatable() && Section
->isFinalized();
5515 bool RewriteInstance::isDebugSection(StringRef SectionName
) {
5516 if (SectionName
.startswith(".debug_") || SectionName
.startswith(".zdebug_") ||
5517 SectionName
== ".gdb_index" || SectionName
== ".stab" ||
5518 SectionName
== ".stabstr")
5524 bool RewriteInstance::isKSymtabSection(StringRef SectionName
) {
5525 if (SectionName
.startswith("__ksymtab"))