Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / bolt / lib / RuntimeLibs / InstrumentationRuntimeLibrary.cpp
blobcc36406543f399543526e552bc6a0d06802625fc
1 //===- bolt/RuntimeLibs/InstrumentationRuntimeLibrary.cpp -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the InstrumentationRuntimeLibrary class.
11 //===----------------------------------------------------------------------===//
13 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
14 #include "bolt/Core/BinaryFunction.h"
15 #include "bolt/Core/JumpTable.h"
16 #include "bolt/Core/Linker.h"
17 #include "bolt/Utils/CommandLineOpts.h"
18 #include "llvm/MC/MCStreamer.h"
19 #include "llvm/Support/Alignment.h"
20 #include "llvm/Support/CommandLine.h"
22 using namespace llvm;
23 using namespace bolt;
25 namespace opts {
27 cl::opt<std::string> RuntimeInstrumentationLib(
28 "runtime-instrumentation-lib",
29 cl::desc("specify file name of the runtime instrumentation library"),
30 cl::init("libbolt_rt_instr.a"), cl::cat(BoltOptCategory));
32 extern cl::opt<bool> InstrumentationFileAppendPID;
33 extern cl::opt<bool> ConservativeInstrumentation;
34 extern cl::opt<std::string> InstrumentationFilename;
35 extern cl::opt<std::string> InstrumentationBinpath;
36 extern cl::opt<uint32_t> InstrumentationSleepTime;
37 extern cl::opt<bool> InstrumentationNoCountersClear;
38 extern cl::opt<bool> InstrumentationWaitForks;
39 extern cl::opt<JumpTableSupportLevel> JumpTables;
41 } // namespace opts
43 void InstrumentationRuntimeLibrary::adjustCommandLineOptions(
44 const BinaryContext &BC) const {
45 if (!BC.HasRelocations) {
46 errs() << "BOLT-ERROR: instrumentation runtime libraries require "
47 "relocations\n";
48 exit(1);
50 if (opts::JumpTables != JTS_MOVE) {
51 opts::JumpTables = JTS_MOVE;
52 outs() << "BOLT-INFO: forcing -jump-tables=move for instrumentation\n";
54 if (!BC.StartFunctionAddress) {
55 errs() << "BOLT-ERROR: instrumentation runtime libraries require a known "
56 "entry point of "
57 "the input binary\n";
58 exit(1);
60 if (!BC.FiniFunctionAddress && !BC.IsStaticExecutable) {
61 errs() << "BOLT-ERROR: input binary lacks DT_FINI entry in the dynamic "
62 "section but instrumentation currently relies on patching "
63 "DT_FINI to write the profile\n";
64 exit(1);
67 if ((opts::InstrumentationWaitForks || opts::InstrumentationSleepTime) &&
68 opts::InstrumentationFileAppendPID) {
69 errs()
70 << "BOLT-ERROR: instrumentation-file-append-pid is not compatible with "
71 "instrumentation-sleep-time and instrumentation-wait-forks. If you "
72 "want a separate profile for each fork, it can only be dumped in "
73 "the end of process when instrumentation-file-append-pid is used.\n";
74 exit(1);
78 void InstrumentationRuntimeLibrary::emitBinary(BinaryContext &BC,
79 MCStreamer &Streamer) {
80 MCSection *Section = BC.isELF()
81 ? static_cast<MCSection *>(BC.Ctx->getELFSection(
82 ".bolt.instr.counters", ELF::SHT_PROGBITS,
83 BinarySection::getFlags(/*IsReadOnly=*/false,
84 /*IsText=*/false,
85 /*IsAllocatable=*/true)
88 : static_cast<MCSection *>(BC.Ctx->getMachOSection(
89 "__BOLT", "__counters", MachO::S_REGULAR,
90 SectionKind::getData()));
92 if (BC.IsStaticExecutable && !opts::InstrumentationSleepTime) {
93 errs() << "BOLT-ERROR: instrumentation of static binary currently does not "
94 "support profile output on binary finalization, so it "
95 "requires -instrumentation-sleep-time=N (N>0) usage\n";
96 exit(1);
99 Section->setAlignment(llvm::Align(BC.RegularPageSize));
100 Streamer.switchSection(Section);
102 // EmitOffset is used to determine padding size for data alignment
103 uint64_t EmitOffset = 0;
105 auto emitLabel = [&Streamer](MCSymbol *Symbol, bool IsGlobal = true) {
106 Streamer.emitLabel(Symbol);
107 if (IsGlobal)
108 Streamer.emitSymbolAttribute(Symbol, MCSymbolAttr::MCSA_Global);
111 auto emitLabelByName = [&BC, emitLabel](StringRef Name,
112 bool IsGlobal = true) {
113 MCSymbol *Symbol = BC.Ctx->getOrCreateSymbol(Name);
114 emitLabel(Symbol, IsGlobal);
117 auto emitPadding = [&Streamer, &EmitOffset](unsigned Size) {
118 const uint64_t Padding = alignTo(EmitOffset, Size) - EmitOffset;
119 if (Padding) {
120 Streamer.emitFill(Padding, 0);
121 EmitOffset += Padding;
125 auto emitDataSize = [&EmitOffset](unsigned Size) { EmitOffset += Size; };
127 auto emitDataPadding = [emitPadding, emitDataSize](unsigned Size) {
128 emitPadding(Size);
129 emitDataSize(Size);
132 auto emitFill = [&Streamer, emitDataSize,
133 emitLabel](unsigned Size, MCSymbol *Symbol = nullptr,
134 uint8_t Byte = 0) {
135 emitDataSize(Size);
136 if (Symbol)
137 emitLabel(Symbol, /*IsGlobal*/ false);
138 Streamer.emitFill(Size, Byte);
141 auto emitValue = [&BC, &Streamer, emitDataPadding,
142 emitLabel](MCSymbol *Symbol, const MCExpr *Value) {
143 const unsigned Psize = BC.AsmInfo->getCodePointerSize();
144 emitDataPadding(Psize);
145 emitLabel(Symbol);
146 if (Value)
147 Streamer.emitValue(Value, Psize);
148 else
149 Streamer.emitFill(Psize, 0);
152 auto emitIntValue = [&Streamer, emitDataPadding, emitLabelByName](
153 StringRef Name, uint64_t Value, unsigned Size = 4) {
154 emitDataPadding(Size);
155 emitLabelByName(Name);
156 Streamer.emitIntValue(Value, Size);
159 auto emitString = [&Streamer, emitDataSize, emitLabelByName,
160 emitFill](StringRef Name, StringRef Contents) {
161 emitDataSize(Contents.size());
162 emitLabelByName(Name);
163 Streamer.emitBytes(Contents);
164 emitFill(1);
167 // All of the following symbols will be exported as globals to be used by the
168 // instrumentation runtime library to dump the instrumentation data to disk.
169 // Label marking start of the memory region containing instrumentation
170 // counters, total vector size is Counters.size() 8-byte counters
171 emitLabelByName("__bolt_instr_locations");
172 for (MCSymbol *const &Label : Summary->Counters)
173 emitFill(sizeof(uint64_t), Label);
175 emitPadding(BC.RegularPageSize);
176 emitIntValue("__bolt_instr_sleep_time", opts::InstrumentationSleepTime);
177 emitIntValue("__bolt_instr_no_counters_clear",
178 !!opts::InstrumentationNoCountersClear, 1);
179 emitIntValue("__bolt_instr_conservative", !!opts::ConservativeInstrumentation,
181 emitIntValue("__bolt_instr_wait_forks", !!opts::InstrumentationWaitForks, 1);
182 emitIntValue("__bolt_num_counters", Summary->Counters.size());
183 emitValue(Summary->IndCallCounterFuncPtr, nullptr);
184 emitValue(Summary->IndTailCallCounterFuncPtr, nullptr);
185 emitIntValue("__bolt_instr_num_ind_calls",
186 Summary->IndCallDescriptions.size());
187 emitIntValue("__bolt_instr_num_ind_targets",
188 Summary->IndCallTargetDescriptions.size());
189 emitIntValue("__bolt_instr_num_funcs", Summary->FunctionDescriptions.size());
190 emitString("__bolt_instr_filename", opts::InstrumentationFilename);
191 emitString("__bolt_instr_binpath", opts::InstrumentationBinpath);
192 emitIntValue("__bolt_instr_use_pid", !!opts::InstrumentationFileAppendPID, 1);
194 if (BC.isMachO()) {
195 MCSection *TablesSection = BC.Ctx->getMachOSection(
196 "__BOLT", "__tables", MachO::S_REGULAR, SectionKind::getData());
197 TablesSection->setAlignment(llvm::Align(BC.RegularPageSize));
198 Streamer.switchSection(TablesSection);
199 emitString("__bolt_instr_tables", buildTables(BC));
203 void InstrumentationRuntimeLibrary::link(
204 BinaryContext &BC, StringRef ToolPath, BOLTLinker &Linker,
205 BOLTLinker::SectionsMapper MapSections) {
206 std::string LibPath = getLibPath(ToolPath, opts::RuntimeInstrumentationLib);
207 loadLibrary(LibPath, Linker, MapSections);
209 if (BC.isMachO())
210 return;
212 RuntimeFiniAddress = Linker.lookupSymbol("__bolt_instr_fini").value_or(0);
213 if (!RuntimeFiniAddress) {
214 errs() << "BOLT-ERROR: instrumentation library does not define "
215 "__bolt_instr_fini: "
216 << LibPath << "\n";
217 exit(1);
219 RuntimeStartAddress = Linker.lookupSymbol("__bolt_instr_start").value_or(0);
220 if (!RuntimeStartAddress) {
221 errs() << "BOLT-ERROR: instrumentation library does not define "
222 "__bolt_instr_start: "
223 << LibPath << "\n";
224 exit(1);
226 outs() << "BOLT-INFO: output linked against instrumentation runtime "
227 "library, lib entry point is 0x"
228 << Twine::utohexstr(RuntimeFiniAddress) << "\n";
229 outs() << "BOLT-INFO: clear procedure is 0x"
230 << Twine::utohexstr(
231 Linker.lookupSymbol("__bolt_instr_clear_counters").value_or(0))
232 << "\n";
234 emitTablesAsELFNote(BC);
237 std::string InstrumentationRuntimeLibrary::buildTables(BinaryContext &BC) {
238 std::string TablesStr;
239 raw_string_ostream OS(TablesStr);
241 // This is sync'ed with runtime/instr.cpp:readDescriptions()
242 auto getOutputAddress = [](const BinaryFunction &Func,
243 uint64_t Offset) -> uint64_t {
244 return Offset == 0
245 ? Func.getOutputAddress()
246 : Func.translateInputToOutputAddress(Func.getAddress() + Offset);
249 // Indirect targets need to be sorted for fast lookup during runtime
250 llvm::sort(Summary->IndCallTargetDescriptions,
251 [&](const IndCallTargetDescription &A,
252 const IndCallTargetDescription &B) {
253 return getOutputAddress(*A.Target, A.ToLoc.Offset) <
254 getOutputAddress(*B.Target, B.ToLoc.Offset);
257 // Start of the vector with descriptions (one CounterDescription for each
258 // counter), vector size is Counters.size() CounterDescription-sized elmts
259 const size_t IDSize =
260 Summary->IndCallDescriptions.size() * sizeof(IndCallDescription);
261 OS.write(reinterpret_cast<const char *>(&IDSize), 4);
262 for (const IndCallDescription &Desc : Summary->IndCallDescriptions) {
263 OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.FuncString), 4);
264 OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.Offset), 4);
267 const size_t ITDSize = Summary->IndCallTargetDescriptions.size() *
268 sizeof(IndCallTargetDescription);
269 OS.write(reinterpret_cast<const char *>(&ITDSize), 4);
270 for (const IndCallTargetDescription &Desc :
271 Summary->IndCallTargetDescriptions) {
272 OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.FuncString), 4);
273 OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.Offset), 4);
274 uint64_t TargetFuncAddress =
275 getOutputAddress(*Desc.Target, Desc.ToLoc.Offset);
276 OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
279 uint32_t FuncDescSize = Summary->getFDSize();
280 OS.write(reinterpret_cast<const char *>(&FuncDescSize), 4);
281 for (const FunctionDescription &Desc : Summary->FunctionDescriptions) {
282 const size_t LeafNum = Desc.LeafNodes.size();
283 OS.write(reinterpret_cast<const char *>(&LeafNum), 4);
284 for (const InstrumentedNode &LeafNode : Desc.LeafNodes) {
285 OS.write(reinterpret_cast<const char *>(&LeafNode.Node), 4);
286 OS.write(reinterpret_cast<const char *>(&LeafNode.Counter), 4);
288 const size_t EdgesNum = Desc.Edges.size();
289 OS.write(reinterpret_cast<const char *>(&EdgesNum), 4);
290 for (const EdgeDescription &Edge : Desc.Edges) {
291 OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.FuncString), 4);
292 OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.Offset), 4);
293 OS.write(reinterpret_cast<const char *>(&Edge.FromNode), 4);
294 OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.FuncString), 4);
295 OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.Offset), 4);
296 OS.write(reinterpret_cast<const char *>(&Edge.ToNode), 4);
297 OS.write(reinterpret_cast<const char *>(&Edge.Counter), 4);
299 const size_t CallsNum = Desc.Calls.size();
300 OS.write(reinterpret_cast<const char *>(&CallsNum), 4);
301 for (const CallDescription &Call : Desc.Calls) {
302 OS.write(reinterpret_cast<const char *>(&Call.FromLoc.FuncString), 4);
303 OS.write(reinterpret_cast<const char *>(&Call.FromLoc.Offset), 4);
304 OS.write(reinterpret_cast<const char *>(&Call.FromNode), 4);
305 OS.write(reinterpret_cast<const char *>(&Call.ToLoc.FuncString), 4);
306 OS.write(reinterpret_cast<const char *>(&Call.ToLoc.Offset), 4);
307 OS.write(reinterpret_cast<const char *>(&Call.Counter), 4);
308 uint64_t TargetFuncAddress =
309 getOutputAddress(*Call.Target, Call.ToLoc.Offset);
310 OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
312 const size_t EntryNum = Desc.EntryNodes.size();
313 OS.write(reinterpret_cast<const char *>(&EntryNum), 4);
314 for (const EntryNode &EntryNode : Desc.EntryNodes) {
315 OS.write(reinterpret_cast<const char *>(&EntryNode.Node), 8);
316 uint64_t TargetFuncAddress =
317 getOutputAddress(*Desc.Function, EntryNode.Address);
318 OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8);
321 // Our string table lives immediately after descriptions vector
322 OS << Summary->StringTable;
323 OS.flush();
325 return TablesStr;
328 void InstrumentationRuntimeLibrary::emitTablesAsELFNote(BinaryContext &BC) {
329 std::string TablesStr = buildTables(BC);
330 const std::string BoltInfo = BinarySection::encodeELFNote(
331 "BOLT", TablesStr, BinarySection::NT_BOLT_INSTRUMENTATION_TABLES);
332 BC.registerOrUpdateNoteSection(".bolt.instr.tables", copyByteArray(BoltInfo),
333 BoltInfo.size(),
334 /*Alignment=*/1,
335 /*IsReadOnly=*/true, ELF::SHT_NOTE);