Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / clang / test / CodeGen / CSKY / csky-abi.c
bloba24d4d8d64077d3e2e257f2251211696e38ddb5d
1 // RUN: %clang_cc1 -triple csky -emit-llvm %s -o - | FileCheck %s
2 // RUN: %clang_cc1 -triple csky -target-feature +fpuv2_df -target-feature +fpuv2_sf \
3 // RUN: -target-feature +hard-float -target-feature +hard-float-abi -emit-llvm %s -o - | FileCheck %s
5 // This file contains test cases that will have the same output for the hard-float
6 // and soft-float ABIs.
8 #include <stddef.h>
9 #include <stdint.h>
11 // CHECK-LABEL: define{{.*}} void @f_void()
12 void f_void(void) {}
14 // Scalar arguments and return values smaller than the word size are extended
15 // according to the sign of their type, up to 32 bits
17 // CHECK-LABEL: define{{.*}} zeroext i1 @f_scalar_0(i1 noundef zeroext %x)
18 _Bool f_scalar_0(_Bool x) { return x; }
20 // CHECK-LABEL: define{{.*}} signext i8 @f_scalar_1(i8 noundef signext %x)
21 int8_t f_scalar_1(int8_t x) { return x; }
23 // CHECK-LABEL: define{{.*}} zeroext i8 @f_scalar_2(i8 noundef zeroext %x)
24 uint8_t f_scalar_2(uint8_t x) { return x; }
26 // CHECK-LABEL: define{{.*}} i32 @f_scalar_3(i32 noundef %x)
27 int32_t f_scalar_3(int32_t x) { return x; }
29 // CHECK-LABEL: define{{.*}} i64 @f_scalar_4(i64 noundef %x)
30 int64_t f_scalar_4(int64_t x) { return x; }
32 // CHECK-LABEL: define{{.*}} float @f_fp_scalar_1(float noundef %x)
33 float f_fp_scalar_1(float x) { return x; }
35 // CHECK-LABEL: define{{.*}} double @f_fp_scalar_2(double noundef %x)
36 double f_fp_scalar_2(double x) { return x; }
38 // CHECK-LABEL: define{{.*}} double @f_fp_scalar_3(double noundef %x)
39 long double f_fp_scalar_3(long double x) { return x; }
41 // Empty structs or unions are ignored.
43 struct empty_s {};
45 // CHECK-LABEL: define{{.*}} void @f_agg_empty_struct()
46 struct empty_s f_agg_empty_struct(struct empty_s x) {
47 return x;
50 union empty_u {};
52 // CHECK-LABEL: define{{.*}} void @f_agg_empty_union()
53 union empty_u f_agg_empty_union(union empty_u x) {
54 return x;
57 // Aggregates <= 4*xlen may be passed in registers, so will be coerced to
58 // integer arguments. The rules for return are <= 2*xlen.
60 struct tiny {
61 uint8_t a, b, c, d;
64 // CHECK-LABEL: define{{.*}} void @f_agg_tiny(i32 %x.coerce)
65 void f_agg_tiny(struct tiny x) {
66 x.a += x.b;
67 x.c += x.d;
70 // CHECK-LABEL: define{{.*}} i32 @f_agg_tiny_ret()
71 struct tiny f_agg_tiny_ret(void) {
72 return (struct tiny){1, 2, 3, 4};
75 struct small {
76 int32_t a, *b;
79 // CHECK-LABEL: define{{.*}} void @f_agg_small([2 x i32] %x.coerce)
80 void f_agg_small(struct small x) {
81 x.a += *x.b;
82 x.b = &x.a;
85 // CHECK-LABEL: define{{.*}} [2 x i32] @f_agg_small_ret()
86 struct small f_agg_small_ret(void) {
87 return (struct small){1, 0};
90 struct small_aligned {
91 int64_t a;
94 // CHECK-LABEL: define{{.*}} void @f_agg_small_aligned(i64 %x.coerce)
95 void f_agg_small_aligned(struct small_aligned x) {
96 x.a += x.a;
99 // CHECK-LABEL: define{{.*}} i64 @f_agg_small_aligned_ret(i64 %x.coerce)
100 struct small_aligned f_agg_small_aligned_ret(struct small_aligned x) {
101 return (struct small_aligned){10};
104 // For argument type, the first 4*XLen parts of aggregate will be passed
105 // in registers, and the rest will be passed in stack.
106 // So we can coerce to integers directly and let backend handle it correctly.
107 // For return type, aggregate which <= 2*XLen will be returned in registers.
108 // Otherwise, aggregate will be returned indirectly.
109 struct large {
110 int32_t a, b, c, d;
113 // CHECK-LABEL: define{{.*}} void @f_agg_large([4 x i32] %x.coerce)
114 void f_agg_large(struct large x) {
115 x.a = x.b + x.c + x.d;
118 // The address where the struct should be written to will be the first
119 // argument
120 // CHECK-LABEL: define{{.*}} void @f_agg_large_ret(ptr noalias sret(%struct.large) align 4 %agg.result, i32 noundef %i, i8 noundef signext %j)
121 struct large f_agg_large_ret(int32_t i, int8_t j) {
122 return (struct large){1, 2, 3, 4};
125 typedef unsigned char v16i8 __attribute__((vector_size(16)));
127 // CHECK-LABEL: define{{.*}} void @f_vec_large_v16i8(<16 x i8> noundef %x)
128 void f_vec_large_v16i8(v16i8 x) {
129 x[0] = x[7];
132 // CHECK-LABEL: define{{.*}} <16 x i8> @f_vec_large_v16i8_ret()
133 v16i8 f_vec_large_v16i8_ret(void) {
134 return (v16i8){1, 2, 3, 4, 5, 6, 7, 8};
137 // CHECK-LABEL: define{{.*}} i32 @f_scalar_stack_1(i32 %a.coerce, [2 x i32] %b.coerce, i64 %c.coerce, [4 x i32] %d.coerce, i8 noundef zeroext %e, i8 noundef signext %f, i8 noundef zeroext %g, i8 noundef signext %h)
138 int f_scalar_stack_1(struct tiny a, struct small b, struct small_aligned c,
139 struct large d, uint8_t e, int8_t f, uint8_t g, int8_t h) {
140 return g + h;
143 // Ensure that scalars passed on the stack are still determined correctly in
144 // the presence of large return values that consume a register due to the need
145 // to pass a pointer.
147 // CHECK-LABEL: define{{.*}} void @f_scalar_stack_2(ptr noalias sret(%struct.large) align 4 %agg.result, i32 noundef %a, i64 noundef %b, i64 noundef %c, double noundef %d, i8 noundef zeroext %e, i8 noundef signext %f, i8 noundef zeroext %g)
148 struct large f_scalar_stack_2(int32_t a, int64_t b, int64_t c, long double d,
149 uint8_t e, int8_t f, uint8_t g) {
150 return (struct large){a, e, f, g};
153 // CHECK-LABEL: define{{.*}} double @f_scalar_stack_4(i32 noundef %a, i64 noundef %b, i64 noundef %c, double noundef %d, i8 noundef zeroext %e, i8 noundef signext %f, i8 noundef zeroext %g)
154 long double f_scalar_stack_4(int32_t a, int64_t b, int64_t c, long double d,
155 uint8_t e, int8_t f, uint8_t g) {
156 return d;
159 // Aggregates should be coerced integer arrary.
161 // CHECK-LABEL: define{{.*}} void @f_scalar_stack_5(double noundef %a, i64 noundef %b, double noundef %c, i64 noundef %d, i32 noundef %e, i64 noundef %f, float noundef %g, double noundef %h, double noundef %i)
162 void f_scalar_stack_5(double a, int64_t b, double c, int64_t d, int e,
163 int64_t f, float g, double h, long double i) {}
165 // CHECK-LABEL: define{{.*}} void @f_agg_stack(double noundef %a, i64 noundef %b, double noundef %c, i64 noundef %d, i32 %e.coerce, [2 x i32] %f.coerce, i64 %g.coerce, [4 x i32] %h.coerce)
166 void f_agg_stack(double a, int64_t b, double c, int64_t d, struct tiny e,
167 struct small f, struct small_aligned g, struct large h) {}
169 // Ensure that ABI lowering happens as expected for vararg calls. For CSKY
170 // with the base integer calling convention there will be no observable
171 // differences in the lowered IR for a call with varargs vs without.
173 int f_va_callee(int, ...);
175 // CHECK-LABEL: define{{.*}} void @f_va_caller()
176 // CHECK: call i32 (i32, ...) @f_va_callee(i32 noundef 1, i32 noundef 2, i64 noundef 3, double noundef 4.000000e+00, double noundef 5.000000e+00, i32 {{%.*}}, [2 x i32] {{%.*}}, i64 {{%.*}}, [4 x i32] {{%.*}})
177 void f_va_caller(void) {
178 f_va_callee(1, 2, 3LL, 4.0f, 5.0, (struct tiny){6, 7, 8, 9},
179 (struct small){10, NULL}, (struct small_aligned){11},
180 (struct large){12, 13, 14, 15});
183 // CHECK-LABEL: define{{.*}} i32 @f_va_1(ptr noundef %fmt, ...) {{.*}} {
184 // CHECK: [[FMT_ADDR:%.*]] = alloca ptr, align 4
185 // CHECK: [[VA:%.*]] = alloca ptr, align 4
186 // CHECK: [[V:%.*]] = alloca i32, align 4
187 // CHECK: store ptr %fmt, ptr [[FMT_ADDR]], align 4
188 // CHECK: call void @llvm.va_start(ptr [[VA]])
189 // CHECK: [[ARGP_CUR:%.*]] = load ptr, ptr [[VA]], align 4
190 // CHECK: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
191 // CHECK: store ptr [[ARGP_NEXT]], ptr [[VA]], align 4
192 // CHECK: [[TMP1:%.*]] = load i32, ptr [[ARGP_CUR]], align 4
193 // CHECK: store i32 [[TMP1]], ptr [[V]], align 4
194 // CHECK: call void @llvm.va_end(ptr [[VA]])
195 // CHECK: [[TMP2:%.*]] = load i32, ptr [[V]], align 4
196 // CHECK: ret i32 [[TMP2]]
197 // CHECK: }
198 int f_va_1(char *fmt, ...) {
199 __builtin_va_list va;
201 __builtin_va_start(va, fmt);
202 int v = __builtin_va_arg(va, int);
203 __builtin_va_end(va);
205 return v;
208 // CHECK-LABEL: @f_va_2(
209 // CHECK: [[FMT_ADDR:%.*]] = alloca ptr, align 4
210 // CHECK-NEXT: [[VA:%.*]] = alloca ptr, align 4
211 // CHECK-NEXT: [[V:%.*]] = alloca double, align 4
212 // CHECK-NEXT: store ptr [[FMT:%.*]], ptr [[FMT_ADDR]], align 4
213 // CHECK-NEXT: call void @llvm.va_start(ptr [[VA]])
214 // CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[VA]], align 4
215 // CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 8
216 // CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[VA]], align 4
217 // CHECK-NEXT: [[TMP4:%.*]] = load double, ptr [[ARGP_CUR]], align 4
218 // CHECK-NEXT: store double [[TMP4]], ptr [[V]], align 4
219 // CHECK-NEXT: call void @llvm.va_end(ptr [[VA]])
220 // CHECK-NEXT: [[TMP5:%.*]] = load double, ptr [[V]], align 4
221 // CHECK-NEXT: ret double [[TMP5]]
222 double f_va_2(char *fmt, ...) {
223 __builtin_va_list va;
225 __builtin_va_start(va, fmt);
226 double v = __builtin_va_arg(va, double);
227 __builtin_va_end(va);
229 return v;
232 // CHECK-LABEL: @f_va_3(
233 // CHECK: [[FMT_ADDR:%.*]] = alloca ptr, align 4
234 // CHECK-NEXT: [[VA:%.*]] = alloca ptr, align 4
235 // CHECK-NEXT: [[V:%.*]] = alloca double, align 4
236 // CHECK-NEXT: [[W:%.*]] = alloca i32, align 4
237 // CHECK-NEXT: [[X:%.*]] = alloca double, align 4
238 // CHECK-NEXT: store ptr [[FMT:%.*]], ptr [[FMT_ADDR]], align 4
239 // CHECK-NEXT: call void @llvm.va_start(ptr [[VA]])
240 // CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[VA]], align 4
241 // CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 8
242 // CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[VA]], align 4
243 // CHECK-NEXT: [[TMP4:%.*]] = load double, ptr [[ARGP_CUR]], align 4
244 // CHECK-NEXT: store double [[TMP4]], ptr [[V]], align 4
245 // CHECK-NEXT: [[ARGP_CUR2:%.*]] = load ptr, ptr [[VA]], align 4
246 // CHECK-NEXT: [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR2]], i32 4
247 // CHECK-NEXT: store ptr [[ARGP_NEXT3]], ptr [[VA]], align 4
248 // CHECK-NEXT: [[TMP6:%.*]] = load i32, ptr [[ARGP_CUR2]], align 4
249 // CHECK-NEXT: store i32 [[TMP6]], ptr [[W]], align 4
250 // CHECK-NEXT: [[ARGP_CUR4:%.*]] = load ptr, ptr [[VA]], align 4
251 // CHECK-NEXT: [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR4]], i32 8
252 // CHECK-NEXT: store ptr [[ARGP_NEXT5]], ptr [[VA]], align 4
253 // CHECK-NEXT: [[TMP11:%.*]] = load double, ptr [[ARGP_CUR4]], align 4
254 // CHECK-NEXT: store double [[TMP11]], ptr [[X]], align 4
255 // CHECK-NEXT: call void @llvm.va_end(ptr [[VA]])
256 // CHECK-NEXT: [[TMP12:%.*]] = load double, ptr [[V]], align 4
257 // CHECK-NEXT: [[TMP13:%.*]] = load double, ptr [[X]], align 4
258 // CHECK-NEXT: [[ADD:%.*]] = fadd double [[TMP12]], [[TMP13]]
259 // CHECK-NEXT: ret double [[ADD]]
260 double f_va_3(char *fmt, ...) {
261 __builtin_va_list va;
263 __builtin_va_start(va, fmt);
264 double v = __builtin_va_arg(va, double);
265 int w = __builtin_va_arg(va, int);
266 double x = __builtin_va_arg(va, double);
267 __builtin_va_end(va);
269 return v + x;
272 // CHECK-LABEL: define{{.*}} i32 @f_va_4(ptr noundef %fmt, ...) {{.*}} {
273 // CHECK: [[FMT_ADDR:%.*]] = alloca ptr, align 4
274 // CHECK-NEXT: [[VA:%.*]] = alloca ptr, align 4
275 // CHECK-NEXT: [[V:%.*]] = alloca i32, align 4
276 // CHECK-NEXT: [[LD:%.*]] = alloca double, align 4
277 // CHECK-NEXT: [[TS:%.*]] = alloca [[STRUCT_TINY:%.*]], align 1
278 // CHECK-NEXT: [[SS:%.*]] = alloca [[STRUCT_SMALL:%.*]], align 4
279 // CHECK-NEXT: [[LS:%.*]] = alloca [[STRUCT_LARGE:%.*]], align 4
280 // CHECK-NEXT: [[RET:%.*]] = alloca i32, align 4
281 // CHECK-NEXT: store ptr [[FMT:%.*]], ptr [[FMT_ADDR]], align 4
282 // CHECK-NEXT: call void @llvm.va_start(ptr [[VA]])
283 // CHECK-NEXT: [[ARGP_CUR:%.*]] = load ptr, ptr [[VA]], align 4
284 // CHECK-NEXT: [[ARGP_NEXT:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR]], i32 4
285 // CHECK-NEXT: store ptr [[ARGP_NEXT]], ptr [[VA]], align 4
286 // CHECK-NEXT: [[TMP1:%.*]] = load i32, ptr [[ARGP_CUR]], align 4
287 // CHECK-NEXT: store i32 [[TMP1]], ptr [[V]], align 4
288 // CHECK-NEXT: [[ARGP_CUR2:%.*]] = load ptr, ptr [[VA]], align 4
289 // CHECK-NEXT: [[ARGP_NEXT3:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR2]], i32 8
290 // CHECK-NEXT: store ptr [[ARGP_NEXT3]], ptr [[VA]], align 4
291 // CHECK-NEXT: [[TMP4:%.*]] = load double, ptr [[ARGP_CUR2]], align 4
292 // CHECK-NEXT: store double [[TMP4]], ptr [[LD]], align 4
293 // CHECK-NEXT: [[ARGP_CUR4:%.*]] = load ptr, ptr [[VA]], align 4
294 // CHECK-NEXT: [[ARGP_NEXT5:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR4]], i32 4
295 // CHECK-NEXT: store ptr [[ARGP_NEXT5]], ptr [[VA]], align 4
296 // CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[TS]], ptr align 4 [[ARGP_CUR4]], i32 4, i1 false)
297 // CHECK-NEXT: [[ARGP_CUR6:%.*]] = load ptr, ptr [[VA]], align 4
298 // CHECK-NEXT: [[ARGP_NEXT7:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR6]], i32 8
299 // CHECK-NEXT: store ptr [[ARGP_NEXT7]], ptr [[VA]], align 4
300 // CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 4 [[SS]], ptr align 4 [[ARGP_CUR6]], i32 8, i1 false)
301 // CHECK-NEXT: [[ARGP_CUR8:%.*]] = load ptr, ptr [[VA]], align 4
302 // CHECK-NEXT: [[ARGP_NEXT9:%.*]] = getelementptr inbounds i8, ptr [[ARGP_CUR8]], i32 16
303 // CHECK-NEXT: store ptr [[ARGP_NEXT9]], ptr [[VA]], align 4
304 // CHECK-NEXT: call void @llvm.memcpy.p0.p0.i32(ptr align 4 [[LS]], ptr align 4 [[ARGP_CUR8]], i32 16, i1 false)
305 // CHECK-NEXT: call void @llvm.va_end(ptr [[VA]])
306 int f_va_4(char *fmt, ...) {
307 __builtin_va_list va;
309 __builtin_va_start(va, fmt);
310 int v = __builtin_va_arg(va, int);
311 long double ld = __builtin_va_arg(va, long double);
312 struct tiny ts = __builtin_va_arg(va, struct tiny);
313 struct small ss = __builtin_va_arg(va, struct small);
314 struct large ls = __builtin_va_arg(va, struct large);
315 __builtin_va_end(va);
317 int ret = (int)((long double)v + ld);
318 ret = ret + ts.a + ts.b + ts.c + ts.d;
319 ret = ret + ss.a + (int)ss.b;
320 ret = ret + ls.a + ls.b + ls.c + ls.d;
322 return ret;