Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / clang / test / SemaCXX / alignof.cpp
blob2658d2a62228443506433bdcc43007cf4fa7ab0d
1 // RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
3 struct S0 {
4 int x;
5 static const int test0 = __alignof__(x); // expected-error {{invalid application of 'alignof' to a field of a class still being defined}}
6 static const int test1 = __alignof__(S0::x); // expected-error {{invalid application of 'alignof' to a field of a class still being defined}}
7 auto test2() -> char(&)[__alignof__(x)]; // expected-error {{invalid application of 'alignof' to a field of a class still being defined}}
8 };
10 struct S1; // expected-note 6 {{forward declaration}}
11 extern S1 s1;
12 const int test3 = __alignof__(s1); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
14 struct S2 {
15 S2();
16 S1 &s;
17 int x;
19 int test4 = __alignof__(x); // ok
20 int test5 = __alignof__(s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
23 const int test6 = __alignof__(S2::x);
24 const int test7 = __alignof__(S2::s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
26 // Arguably, these should fail like the S1 cases do: the alignment of
27 // 's2.x' should depend on the alignment of both x-within-S2 and
28 // s2-within-S3 and thus require 'S3' to be complete. If we start
29 // doing the appropriate recursive walk to do that, we should make
30 // sure that these cases don't explode.
31 struct S3 {
32 S2 s2;
34 static const int test8 = __alignof__(s2.x);
35 static const int test9 = __alignof__(s2.s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
36 auto test10() -> char(&)[__alignof__(s2.x)];
37 static const int test11 = __alignof__(S3::s2.x);
38 static const int test12 = __alignof__(S3::s2.s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
39 auto test13() -> char(&)[__alignof__(s2.x)];
42 // Same reasoning as S3.
43 struct S4 {
44 union {
45 int x;
47 static const int test0 = __alignof__(x);
48 static const int test1 = __alignof__(S0::x);
49 auto test2() -> char(&)[__alignof__(x)];
52 // Regression test for asking for the alignment of a field within an invalid
53 // record.
54 struct S5 {
55 S1 s; // expected-error {{incomplete type}}
56 int x;
58 const int test8 = __alignof__(S5::x);
60 int test14[2];
62 static_assert(alignof(test14) == 4, "foo"); // expected-warning {{'alignof' applied to an expression is a GNU extension}}
64 // PR19992
65 static_assert(alignof(int[]) == alignof(int), ""); // ok
67 namespace alignof_array_expr {
68 alignas(32) extern int n[];
69 static_assert(alignof(n) == 32, ""); // expected-warning {{GNU extension}}
71 template<int> struct S {
72 static int a[];
74 template<int N> int S<N>::a[N];
75 // ok, does not complete type of S<-1>::a
76 static_assert(alignof(S<-1>::a) == alignof(int), ""); // expected-warning {{GNU extension}}
79 template <typename T> void n(T) {
80 alignas(T) int T1;
81 char k[__alignof__(T1)];
82 static_assert(sizeof(k) == alignof(long long), "");
84 template void n(long long);
86 namespace PR22042 {
87 template <typename T>
88 void Fun(T A) {
89 typedef int __attribute__((__aligned__(A))) T1; // expected-error {{requested alignment is dependent but declaration is not dependent}}
90 int k1[__alignof__(T1)];
93 template <int N>
94 struct S {
95 typedef __attribute__((aligned(N))) int Field[sizeof(N)]; // expected-error {{requested alignment is dependent but declaration is not dependent}}
99 typedef int __attribute__((aligned(16))) aligned_int;
100 template <typename>
101 using template_alias = aligned_int;
102 static_assert(alignof(template_alias<void>) == 16, "Expected alignment of 16" );
104 struct PR47138 {
105 invalid_type a; // expected-error {{unknown type}}
107 static_assert(__alignof__(PR47138) == 1, ""); // Don't crash.