Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / clang / test / SemaTemplate / constexpr-instantiate.cpp
blob0a34f63553aae745326e00ec2ae517508b15cad9
1 // RUN: %clang_cc1 -std=c++11 -verify %s
3 namespace UseBeforeDefinition {
4 struct A {
5 template<typename T> static constexpr T get() { return T(); }
6 // ok, not a constant expression.
7 int n = get<int>();
8 };
10 // ok, constant expression.
11 constexpr int j = A::get<int>();
13 template<typename T> constexpr int consume(T);
14 // ok, not a constant expression.
15 const int k = consume(0); // expected-note {{here}}
17 template<typename T> constexpr int consume(T) { return 0; }
18 // ok, constant expression.
19 constexpr int l = consume(0);
21 constexpr int m = k; // expected-error {{constant expression}} expected-note {{initializer of 'k'}}
24 namespace IntegralConst {
25 template<typename T> constexpr T f(T n) { return n; }
26 enum E {
27 v = f(0), w = f(1) // ok
29 static_assert(w == 1, "");
31 char arr[f('x')]; // ok
32 static_assert(sizeof(arr) == 'x', "");
35 namespace ConvertedConst {
36 template<typename T> constexpr T f(T n) { return n; }
37 int f() {
38 switch (f()) {
39 case f(4): return 0;
41 return 1;
45 namespace OverloadResolution {
46 template<typename T> constexpr T f(T t) { return t; }
48 template<int n> struct S { };
50 template<typename T> auto g(T t) -> S<f(sizeof(T))> &;
51 char &f(...);
53 template<typename T> auto h(T t[f(sizeof(T))]) -> decltype(&*t) {
54 return t;
57 S<4> &k = g(0);
58 int *p, *q = h(p);
61 namespace DataMember {
62 template<typename T> struct S { static const int k; };
63 const int n = S<int>::k; // expected-note {{here}}
64 template<typename T> const int S<T>::k = 0;
65 constexpr int m = S<int>::k; // ok
66 constexpr int o = n; // expected-error {{constant expression}} expected-note {{initializer of 'n'}}
69 namespace Reference {
70 const int k = 5;
71 template<typename T> struct S {
72 static volatile int &r;
74 template<typename T> volatile int &S<T>::r = const_cast<volatile int&>(k);
75 constexpr int n = const_cast<int&>(S<int>::r);
76 static_assert(n == 5, "");
79 namespace Unevaluated {
80 // We follow the current proposed resolution of core issue 1581: a constexpr
81 // function template specialization requires a definition if:
82 // * it is odr-used, or would be odr-used except that it appears within the
83 // definition of a template, or
84 // * it is used within a braced-init-list, where it may be necessary for
85 // detecting narrowing conversions.
87 // We apply this both for instantiating constexpr function template
88 // specializations and for implicitly defining defaulted constexpr special
89 // member functions.
91 // FIXME: None of this is required by the C++ standard yet. The rules in this
92 // area are subject to change.
93 namespace NotConstexpr {
94 template<typename T> struct S {
95 S() : n(0) {}
96 S(const S&) : n(T::error) {}
97 int n;
99 struct U : S<int> {};
100 decltype(U(U())) u;
102 namespace Constexpr {
103 template<typename T> struct S {
104 constexpr S() : n(0) {}
105 constexpr S(const S&) : n(T::error) {}
106 int n;
108 struct U : S<int> {};
109 decltype(U(U())) u;
111 namespace ConstexprList {
112 template<int N> struct S {
113 constexpr S() : n(0) {
114 static_assert(N >= 0, "");
116 constexpr operator int() const { return 0; }
117 int n;
119 struct U : S<0> {};
120 // ok, trigger instantiation within a list
121 decltype(char{U()}) t0;
122 decltype(new char{S<1>()}) t1; // expected-warning {{side effects}}
123 decltype((char){S<2>()}) t2;
124 decltype(+(char[1]){{S<3>()}}) t3;
125 // do not trigger instantiation outside a list
126 decltype(char(S<-1>())) u1;
127 decltype(new char(S<-2>())) u2; // expected-warning {{side effects}}
128 decltype((char)(S<-3>())) u3;
131 namespace PR11851_Comment0 {
132 template<int x> constexpr int f() { return x; }
133 template<int i> void ovf(int (&x)[f<i>()]);
134 void f() { int x[10]; ovf<10>(x); }
137 namespace PR11851_Comment1 {
138 template<typename T>
139 constexpr bool Integral() {
140 return true;
142 template<typename T, bool Int = Integral<T>()>
143 struct safe_make_unsigned {
144 typedef T type;
146 template<typename T>
147 using Make_unsigned = typename safe_make_unsigned<T>::type;
148 template <typename T>
149 struct get_distance_type {
150 using type = int;
152 template<typename R>
153 auto size(R) -> Make_unsigned<typename get_distance_type<R>::type>;
154 auto check() -> decltype(size(0));
157 namespace PR11851_Comment6 {
158 template<int> struct foo {};
159 template<class> constexpr int bar() { return 0; }
160 template<class T> foo<bar<T>()> foobar();
161 auto foobar_ = foobar<int>();
164 namespace PR11851_Comment9 {
165 struct S1 {
166 constexpr S1() {}
167 constexpr operator int() const { return 0; }
169 int k1 = sizeof(short{S1(S1())});
171 struct S2 {
172 constexpr S2() {}
173 constexpr operator int() const { return 123456; }
175 int k2 = sizeof(short{S2(S2())}); // expected-error {{cannot be narrowed}} expected-note {{insert an explicit cast to silence this issue}}
178 namespace PR12288 {
179 template <typename> constexpr bool foo() { return true; }
180 template <bool> struct bar {};
181 template <typename T> bar<foo<T>()> baz() { return bar<foo<T>()>(); }
182 int main() { baz<int>(); }
185 namespace PR13423 {
186 template<bool, typename> struct enable_if {};
187 template<typename T> struct enable_if<true, T> { using type = T; };
189 template<typename T> struct F {
190 template<typename U>
191 static constexpr bool f() { return sizeof(T) < U::size; }
193 template<typename U>
194 static typename enable_if<f<U>(), void>::type g() {} // expected-note {{requirement 'f<Unevaluated::PR13423::U>()' was not satisfied}}
197 struct U { static constexpr int size = 2; };
199 void h() { F<char>::g<U>(); }
200 void i() { F<int>::g<U>(); } // expected-error {{no matching function}}
203 namespace PR14203 {
204 struct duration { constexpr duration() {} };
206 template <typename>
207 void sleep_for() {
208 constexpr duration max = duration();
212 // For variables, we instantiate when they are used in a context in which
213 // evaluation could be required (odr-used, used in a template whose
214 // instantiations would odr-use, or used in list initialization), if they
215 // can be used as a constant (const integral or constexpr).
216 namespace Variables {
217 template<int N> struct A {
218 static const int k;
219 static int n;
221 template<const int *N> struct B {};
222 template <int N> constexpr int A<N>::k = *(int[N]){N}; // expected-error 1+{{negative}} expected-note 1+{{not valid in a constant expression}} expected-note 1+{{declared here}}
223 // expected-error@-1 1+{{must be initialized by a constant expression}}
225 template<int N> int A<N>::n = *(int[N]){0};
227 template <typename> void f() {
228 (void)A<-1>::n; // ok
229 (void)A<-1>::k; // expected-note {{instantiation of }}
230 B<&A<-2>::n> b1; // ok
231 B<&A<-2>::k> b2; // expected-note {{instantiation of }}
234 decltype(A<-3>::k) d1 = 0; // ok
235 decltype(char{A<-4>::k}) d2 = 0; // expected-note 1+{{instantiation of }} expected-error {{narrow}} expected-note {{cast}}
236 decltype(char{A<1>::k}) d3 = 0; // expected-note 1+{{instantiation of }} expected-error {{narrow}} expected-note {{cast}}
237 decltype(char{A<1 + (unsigned char)-1>::k}) d4 = 0; // expected-error {{narrow}} expected-note {{cast}} expected-note {{instantiation of}}
241 namespace NoInstantiationWhenSelectingOverload {
242 // Check that we don't instantiate conversion functions when we're checking
243 // for the existence of an implicit conversion sequence, only when a function
244 // is actually chosen by overload resolution.
245 struct S {
246 template<typename T> constexpr S(T) : n(T::error) {} // expected-error {{no members}}
247 int n;
250 constexpr int f(S) { return 0; }
251 constexpr int f(int) { return 0; }
253 void g() { f(0); }
254 void h() { (void)sizeof(char{f(0)}); }
255 void i() { (void)sizeof(char{f("oops")}); } // expected-note {{instantiation of}}
258 namespace PR20090 {
259 template <typename T> constexpr T fact(T n) {
260 return n == 0 ? 1 : [=] { return n * fact(n - 1); }();
262 static_assert(fact(0) == 1, "");