1 This directory contains three utilities for fuzzing Clang: clang-fuzzer,
2 clang-objc-fuzzer, and clang-proto-fuzzer. All use libFuzzer to generate inputs
3 to clang via coverage-guided mutation.
5 The three utilities differ, however, in how they structure inputs to Clang.
6 clang-fuzzer makes no attempt to generate valid C++ programs and is therefore
7 primarily useful for stressing the surface layers of Clang (i.e. lexer, parser).
9 clang-objc-fuzzer is similar but for Objective-C: it makes no attempt to
10 generate a valid Objective-C program.
12 clang-proto-fuzzer uses a protobuf class to describe a subset of the C++
13 language and then uses libprotobuf-mutator to mutate instantiations of that
14 class, producing valid C++ programs in the process. As a result,
15 clang-proto-fuzzer is better at stressing deeper layers of Clang and LLVM.
17 Some of the fuzzers have example corpuses inside the corpus_examples directory.
19 ===================================
21 ===================================
22 Within your LLVM build directory, run CMake with the following variable
24 - CMAKE_C_COMPILER=clang
25 - CMAKE_CXX_COMPILER=clang++
26 - LLVM_USE_SANITIZE_COVERAGE=YES
27 - LLVM_USE_SANITIZER=Address
29 Then build the clang-fuzzer target.
33 mkdir build && cd build
34 cmake .. -GNinja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
35 -DLLVM_USE_SANITIZE_COVERAGE=YES -DLLVM_USE_SANITIZER=Address
38 ======================
40 ======================
41 bin/clang-fuzzer CORPUS_DIR
44 ===================================
45 Building clang-objc-fuzzer
46 ===================================
47 Within your LLVM build directory, run CMake with the following variable
49 - CMAKE_C_COMPILER=clang
50 - CMAKE_CXX_COMPILER=clang++
51 - LLVM_USE_SANITIZE_COVERAGE=YES
52 - LLVM_USE_SANITIZER=Address
54 Then build the clang-objc-fuzzer target.
58 mkdir build && cd build
59 cmake .. -GNinja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
60 -DLLVM_USE_SANITIZE_COVERAGE=YES -DLLVM_USE_SANITIZER=Address
61 ninja clang-objc-fuzzer
63 ======================
64 Running clang-objc-fuzzer
65 ======================
66 bin/clang-objc-fuzzer CORPUS_DIR
68 e.g. using the example objc corpus,
70 bin/clang-objc-fuzzer <path to corpus_examples/objc> <path to new directory to store corpus findings>
73 =======================================================
74 Building clang-proto-fuzzer (Linux-only instructions)
75 =======================================================
76 Install the necessary dependencies:
77 - binutils // needed for libprotobuf-mutator
78 - liblzma-dev // needed for libprotobuf-mutator
79 - libz-dev // needed for libprotobuf-mutator
80 - docbook2x // needed for libprotobuf-mutator
81 - Recent version of protobuf [3.3.0 is known to work]
83 Within your LLVM build directory, run CMake with the following variable
85 - CMAKE_C_COMPILER=clang
86 - CMAKE_CXX_COMPILER=clang++
87 - LLVM_USE_SANITIZE_COVERAGE=YES
88 - LLVM_USE_SANITIZER=Address
89 - CLANG_ENABLE_PROTO_FUZZER=ON
91 Then build the clang-proto-fuzzer and clang-proto-to-cxx targets. Optionally,
92 you may also build clang-fuzzer with this setup.
96 mkdir build && cd build
97 cmake .. -GNinja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
98 -DLLVM_USE_SANITIZE_COVERAGE=YES -DLLVM_USE_SANITIZER=Address \
99 -DCLANG_ENABLE_PROTO_FUZZER=ON
100 ninja clang-proto-fuzzer clang-proto-to-cxx
102 This directory also contains a Dockerfile which sets up all required
103 dependencies and builds the fuzzers.
105 ============================
106 Running clang-proto-fuzzer
107 ============================
108 bin/clang-proto-fuzzer CORPUS_DIR
110 Arguments can be specified after -ignore_remaining_args=1 to modify the compiler
111 invocation. For example, the following command line will fuzz LLVM with a
112 custom optimization level and target triple:
113 bin/clang-proto-fuzzer CORPUS_DIR -ignore_remaining_args=1 -O3 -triple \
116 To translate a clang-proto-fuzzer corpus output to C++:
117 bin/clang-proto-to-cxx CORPUS_OUTPUT_FILE
122 Like, clang-proto-fuzzer, llvm-proto-fuzzer is also a protobuf-mutator based
123 fuzzer. It receives as input a cxx_loop_proto which it then converts into a
124 string of valid LLVM IR: a function with either a single loop or two nested
125 loops. It then creates a new string of IR by running optimization passes over
126 the original IR. Currently, it only runs a loop-vectorize pass but more passes
127 can easily be added to the fuzzer. Once there are two versions of the input
128 function (optimized and not), llvm-proto-fuzzer uses LLVM's JIT Engine to
129 compile both functions. Lastly, it runs both functions on a suite of inputs and
130 checks that both functions behave the same on all inputs. In this way,
131 llvm-proto-fuzzer can find not only compiler crashes, but also miscompiles
132 originating from LLVM's optimization passes.
134 llvm-proto-fuzzer is built very similarly to clang-proto-fuzzer. You can run the
135 fuzzer with the following command:
136 bin/clang-llvm-proto-fuzzer CORPUS_DIR
138 To translate a cxx_loop_proto file into LLVM IR do:
139 bin/clang-loop-proto-to-llvm CORPUS_OUTPUT_FILE
140 To translate a cxx_loop_proto file into C++ do:
141 bin/clang-loop-proto-to-cxx CORPUS_OUTPUT_FILE
143 Note: To get a higher number of executions per second with llvm-proto-fuzzer it
144 helps to build it without ASan instrumentation and with the -O2 flag. Because
145 the fuzzer is not only compiling code, but also running it, as the inputs get
146 large, the time necessary to fuzz one input can get very high.
148 cmake .. -GNinja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
149 -DCLANG_ENABLE_PROTO_FUZZER=ON -DLLVM_USE_SANITIZE_COVERAGE=YES \
150 -DCMAKE_CXX_FLAGS="-O2"
151 ninja clang-llvm-proto-fuzzer clang-loop-proto-to-llvm