Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / clang / tools / clang-linker-wrapper / OffloadWrapper.cpp
blobe562c20432e37c69e9af800596d1d17ea6ab8b76
1 //===- OffloadWrapper.cpp ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "OffloadWrapper.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/IR/Constants.h"
12 #include "llvm/IR/GlobalVariable.h"
13 #include "llvm/IR/IRBuilder.h"
14 #include "llvm/IR/LLVMContext.h"
15 #include "llvm/IR/Module.h"
16 #include "llvm/Object/OffloadBinary.h"
17 #include "llvm/Support/Error.h"
18 #include "llvm/TargetParser/Triple.h"
19 #include "llvm/Transforms/Utils/ModuleUtils.h"
21 using namespace llvm;
23 namespace {
24 /// Magic number that begins the section containing the CUDA fatbinary.
25 constexpr unsigned CudaFatMagic = 0x466243b1;
26 constexpr unsigned HIPFatMagic = 0x48495046;
28 /// Copied from clang/CGCudaRuntime.h.
29 enum OffloadEntryKindFlag : uint32_t {
30 /// Mark the entry as a global entry. This indicates the presense of a
31 /// kernel if the size size field is zero and a variable otherwise.
32 OffloadGlobalEntry = 0x0,
33 /// Mark the entry as a managed global variable.
34 OffloadGlobalManagedEntry = 0x1,
35 /// Mark the entry as a surface variable.
36 OffloadGlobalSurfaceEntry = 0x2,
37 /// Mark the entry as a texture variable.
38 OffloadGlobalTextureEntry = 0x3,
41 IntegerType *getSizeTTy(Module &M) {
42 LLVMContext &C = M.getContext();
43 switch (M.getDataLayout().getPointerTypeSize(Type::getInt8PtrTy(C))) {
44 case 4u:
45 return Type::getInt32Ty(C);
46 case 8u:
47 return Type::getInt64Ty(C);
49 llvm_unreachable("unsupported pointer type size");
52 // struct __tgt_offload_entry {
53 // void *addr;
54 // char *name;
55 // size_t size;
56 // int32_t flags;
57 // int32_t reserved;
58 // };
59 StructType *getEntryTy(Module &M) {
60 LLVMContext &C = M.getContext();
61 StructType *EntryTy = StructType::getTypeByName(C, "__tgt_offload_entry");
62 if (!EntryTy)
63 EntryTy = StructType::create("__tgt_offload_entry", Type::getInt8PtrTy(C),
64 Type::getInt8PtrTy(C), getSizeTTy(M),
65 Type::getInt32Ty(C), Type::getInt32Ty(C));
66 return EntryTy;
69 PointerType *getEntryPtrTy(Module &M) {
70 return PointerType::getUnqual(getEntryTy(M));
73 // struct __tgt_device_image {
74 // void *ImageStart;
75 // void *ImageEnd;
76 // __tgt_offload_entry *EntriesBegin;
77 // __tgt_offload_entry *EntriesEnd;
78 // };
79 StructType *getDeviceImageTy(Module &M) {
80 LLVMContext &C = M.getContext();
81 StructType *ImageTy = StructType::getTypeByName(C, "__tgt_device_image");
82 if (!ImageTy)
83 ImageTy = StructType::create("__tgt_device_image", Type::getInt8PtrTy(C),
84 Type::getInt8PtrTy(C), getEntryPtrTy(M),
85 getEntryPtrTy(M));
86 return ImageTy;
89 PointerType *getDeviceImagePtrTy(Module &M) {
90 return PointerType::getUnqual(getDeviceImageTy(M));
93 // struct __tgt_bin_desc {
94 // int32_t NumDeviceImages;
95 // __tgt_device_image *DeviceImages;
96 // __tgt_offload_entry *HostEntriesBegin;
97 // __tgt_offload_entry *HostEntriesEnd;
98 // };
99 StructType *getBinDescTy(Module &M) {
100 LLVMContext &C = M.getContext();
101 StructType *DescTy = StructType::getTypeByName(C, "__tgt_bin_desc");
102 if (!DescTy)
103 DescTy = StructType::create("__tgt_bin_desc", Type::getInt32Ty(C),
104 getDeviceImagePtrTy(M), getEntryPtrTy(M),
105 getEntryPtrTy(M));
106 return DescTy;
109 PointerType *getBinDescPtrTy(Module &M) {
110 return PointerType::getUnqual(getBinDescTy(M));
113 /// Creates binary descriptor for the given device images. Binary descriptor
114 /// is an object that is passed to the offloading runtime at program startup
115 /// and it describes all device images available in the executable or shared
116 /// library. It is defined as follows
118 /// __attribute__((visibility("hidden")))
119 /// extern __tgt_offload_entry *__start_omp_offloading_entries;
120 /// __attribute__((visibility("hidden")))
121 /// extern __tgt_offload_entry *__stop_omp_offloading_entries;
123 /// static const char Image0[] = { <Bufs.front() contents> };
124 /// ...
125 /// static const char ImageN[] = { <Bufs.back() contents> };
127 /// static const __tgt_device_image Images[] = {
128 /// {
129 /// Image0, /*ImageStart*/
130 /// Image0 + sizeof(Image0), /*ImageEnd*/
131 /// __start_omp_offloading_entries, /*EntriesBegin*/
132 /// __stop_omp_offloading_entries /*EntriesEnd*/
133 /// },
134 /// ...
135 /// {
136 /// ImageN, /*ImageStart*/
137 /// ImageN + sizeof(ImageN), /*ImageEnd*/
138 /// __start_omp_offloading_entries, /*EntriesBegin*/
139 /// __stop_omp_offloading_entries /*EntriesEnd*/
140 /// }
141 /// };
143 /// static const __tgt_bin_desc BinDesc = {
144 /// sizeof(Images) / sizeof(Images[0]), /*NumDeviceImages*/
145 /// Images, /*DeviceImages*/
146 /// __start_omp_offloading_entries, /*HostEntriesBegin*/
147 /// __stop_omp_offloading_entries /*HostEntriesEnd*/
148 /// };
150 /// Global variable that represents BinDesc is returned.
151 GlobalVariable *createBinDesc(Module &M, ArrayRef<ArrayRef<char>> Bufs) {
152 LLVMContext &C = M.getContext();
153 // Create external begin/end symbols for the offload entries table.
154 auto *EntriesB = new GlobalVariable(
155 M, getEntryTy(M), /*isConstant*/ true, GlobalValue::ExternalLinkage,
156 /*Initializer*/ nullptr, "__start_omp_offloading_entries");
157 EntriesB->setVisibility(GlobalValue::HiddenVisibility);
158 auto *EntriesE = new GlobalVariable(
159 M, getEntryTy(M), /*isConstant*/ true, GlobalValue::ExternalLinkage,
160 /*Initializer*/ nullptr, "__stop_omp_offloading_entries");
161 EntriesE->setVisibility(GlobalValue::HiddenVisibility);
163 // We assume that external begin/end symbols that we have created above will
164 // be defined by the linker. But linker will do that only if linker inputs
165 // have section with "omp_offloading_entries" name which is not guaranteed.
166 // So, we just create dummy zero sized object in the offload entries section
167 // to force linker to define those symbols.
168 auto *DummyInit =
169 ConstantAggregateZero::get(ArrayType::get(getEntryTy(M), 0u));
170 auto *DummyEntry = new GlobalVariable(
171 M, DummyInit->getType(), true, GlobalVariable::ExternalLinkage, DummyInit,
172 "__dummy.omp_offloading.entry");
173 DummyEntry->setSection("omp_offloading_entries");
174 DummyEntry->setVisibility(GlobalValue::HiddenVisibility);
176 auto *Zero = ConstantInt::get(getSizeTTy(M), 0u);
177 Constant *ZeroZero[] = {Zero, Zero};
179 // Create initializer for the images array.
180 SmallVector<Constant *, 4u> ImagesInits;
181 ImagesInits.reserve(Bufs.size());
182 for (ArrayRef<char> Buf : Bufs) {
183 auto *Data = ConstantDataArray::get(C, Buf);
184 auto *Image = new GlobalVariable(M, Data->getType(), /*isConstant*/ true,
185 GlobalVariable::InternalLinkage, Data,
186 ".omp_offloading.device_image");
187 Image->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
188 Image->setSection(".llvm.offloading");
189 Image->setAlignment(Align(object::OffloadBinary::getAlignment()));
191 auto *Size = ConstantInt::get(getSizeTTy(M), Buf.size());
192 Constant *ZeroSize[] = {Zero, Size};
194 auto *ImageB =
195 ConstantExpr::getGetElementPtr(Image->getValueType(), Image, ZeroZero);
196 auto *ImageE =
197 ConstantExpr::getGetElementPtr(Image->getValueType(), Image, ZeroSize);
199 ImagesInits.push_back(ConstantStruct::get(getDeviceImageTy(M), ImageB,
200 ImageE, EntriesB, EntriesE));
203 // Then create images array.
204 auto *ImagesData = ConstantArray::get(
205 ArrayType::get(getDeviceImageTy(M), ImagesInits.size()), ImagesInits);
207 auto *Images =
208 new GlobalVariable(M, ImagesData->getType(), /*isConstant*/ true,
209 GlobalValue::InternalLinkage, ImagesData,
210 ".omp_offloading.device_images");
211 Images->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
213 auto *ImagesB =
214 ConstantExpr::getGetElementPtr(Images->getValueType(), Images, ZeroZero);
216 // And finally create the binary descriptor object.
217 auto *DescInit = ConstantStruct::get(
218 getBinDescTy(M),
219 ConstantInt::get(Type::getInt32Ty(C), ImagesInits.size()), ImagesB,
220 EntriesB, EntriesE);
222 return new GlobalVariable(M, DescInit->getType(), /*isConstant*/ true,
223 GlobalValue::InternalLinkage, DescInit,
224 ".omp_offloading.descriptor");
227 void createRegisterFunction(Module &M, GlobalVariable *BinDesc) {
228 LLVMContext &C = M.getContext();
229 auto *FuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false);
230 auto *Func = Function::Create(FuncTy, GlobalValue::InternalLinkage,
231 ".omp_offloading.descriptor_reg", &M);
232 Func->setSection(".text.startup");
234 // Get __tgt_register_lib function declaration.
235 auto *RegFuncTy = FunctionType::get(Type::getVoidTy(C), getBinDescPtrTy(M),
236 /*isVarArg*/ false);
237 FunctionCallee RegFuncC =
238 M.getOrInsertFunction("__tgt_register_lib", RegFuncTy);
240 // Construct function body
241 IRBuilder<> Builder(BasicBlock::Create(C, "entry", Func));
242 Builder.CreateCall(RegFuncC, BinDesc);
243 Builder.CreateRetVoid();
245 // Add this function to constructors.
246 // Set priority to 1 so that __tgt_register_lib is executed AFTER
247 // __tgt_register_requires (we want to know what requirements have been
248 // asked for before we load a libomptarget plugin so that by the time the
249 // plugin is loaded it can report how many devices there are which can
250 // satisfy these requirements).
251 appendToGlobalCtors(M, Func, /*Priority*/ 1);
254 void createUnregisterFunction(Module &M, GlobalVariable *BinDesc) {
255 LLVMContext &C = M.getContext();
256 auto *FuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false);
257 auto *Func = Function::Create(FuncTy, GlobalValue::InternalLinkage,
258 ".omp_offloading.descriptor_unreg", &M);
259 Func->setSection(".text.startup");
261 // Get __tgt_unregister_lib function declaration.
262 auto *UnRegFuncTy = FunctionType::get(Type::getVoidTy(C), getBinDescPtrTy(M),
263 /*isVarArg*/ false);
264 FunctionCallee UnRegFuncC =
265 M.getOrInsertFunction("__tgt_unregister_lib", UnRegFuncTy);
267 // Construct function body
268 IRBuilder<> Builder(BasicBlock::Create(C, "entry", Func));
269 Builder.CreateCall(UnRegFuncC, BinDesc);
270 Builder.CreateRetVoid();
272 // Add this function to global destructors.
273 // Match priority of __tgt_register_lib
274 appendToGlobalDtors(M, Func, /*Priority*/ 1);
277 // struct fatbin_wrapper {
278 // int32_t magic;
279 // int32_t version;
280 // void *image;
281 // void *reserved;
282 //};
283 StructType *getFatbinWrapperTy(Module &M) {
284 LLVMContext &C = M.getContext();
285 StructType *FatbinTy = StructType::getTypeByName(C, "fatbin_wrapper");
286 if (!FatbinTy)
287 FatbinTy = StructType::create("fatbin_wrapper", Type::getInt32Ty(C),
288 Type::getInt32Ty(C), Type::getInt8PtrTy(C),
289 Type::getInt8PtrTy(C));
290 return FatbinTy;
293 /// Embed the image \p Image into the module \p M so it can be found by the
294 /// runtime.
295 GlobalVariable *createFatbinDesc(Module &M, ArrayRef<char> Image, bool IsHIP) {
296 LLVMContext &C = M.getContext();
297 llvm::Type *Int8PtrTy = Type::getInt8PtrTy(C);
298 llvm::Triple Triple = llvm::Triple(M.getTargetTriple());
300 // Create the global string containing the fatbinary.
301 StringRef FatbinConstantSection =
302 IsHIP ? ".hip_fatbin"
303 : (Triple.isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin");
304 auto *Data = ConstantDataArray::get(C, Image);
305 auto *Fatbin = new GlobalVariable(M, Data->getType(), /*isConstant*/ true,
306 GlobalVariable::InternalLinkage, Data,
307 ".fatbin_image");
308 Fatbin->setSection(FatbinConstantSection);
310 // Create the fatbinary wrapper
311 StringRef FatbinWrapperSection = IsHIP ? ".hipFatBinSegment"
312 : Triple.isMacOSX() ? "__NV_CUDA,__fatbin"
313 : ".nvFatBinSegment";
314 Constant *FatbinWrapper[] = {
315 ConstantInt::get(Type::getInt32Ty(C), IsHIP ? HIPFatMagic : CudaFatMagic),
316 ConstantInt::get(Type::getInt32Ty(C), 1),
317 ConstantExpr::getPointerBitCastOrAddrSpaceCast(Fatbin, Int8PtrTy),
318 ConstantPointerNull::get(Type::getInt8PtrTy(C))};
320 Constant *FatbinInitializer =
321 ConstantStruct::get(getFatbinWrapperTy(M), FatbinWrapper);
323 auto *FatbinDesc =
324 new GlobalVariable(M, getFatbinWrapperTy(M),
325 /*isConstant*/ true, GlobalValue::InternalLinkage,
326 FatbinInitializer, ".fatbin_wrapper");
327 FatbinDesc->setSection(FatbinWrapperSection);
328 FatbinDesc->setAlignment(Align(8));
330 // We create a dummy entry to ensure the linker will define the begin / end
331 // symbols. The CUDA runtime should ignore the null address if we attempt to
332 // register it.
333 auto *DummyInit =
334 ConstantAggregateZero::get(ArrayType::get(getEntryTy(M), 0u));
335 auto *DummyEntry = new GlobalVariable(
336 M, DummyInit->getType(), true, GlobalVariable::ExternalLinkage, DummyInit,
337 IsHIP ? "__dummy.hip_offloading.entry" : "__dummy.cuda_offloading.entry");
338 DummyEntry->setVisibility(GlobalValue::HiddenVisibility);
339 DummyEntry->setSection(IsHIP ? "hip_offloading_entries"
340 : "cuda_offloading_entries");
342 return FatbinDesc;
345 /// Create the register globals function. We will iterate all of the offloading
346 /// entries stored at the begin / end symbols and register them according to
347 /// their type. This creates the following function in IR:
349 /// extern struct __tgt_offload_entry __start_cuda_offloading_entries;
350 /// extern struct __tgt_offload_entry __stop_cuda_offloading_entries;
352 /// extern void __cudaRegisterFunction(void **, void *, void *, void *, int,
353 /// void *, void *, void *, void *, int *);
354 /// extern void __cudaRegisterVar(void **, void *, void *, void *, int32_t,
355 /// int64_t, int32_t, int32_t);
357 /// void __cudaRegisterTest(void **fatbinHandle) {
358 /// for (struct __tgt_offload_entry *entry = &__start_cuda_offloading_entries;
359 /// entry != &__stop_cuda_offloading_entries; ++entry) {
360 /// if (!entry->size)
361 /// __cudaRegisterFunction(fatbinHandle, entry->addr, entry->name,
362 /// entry->name, -1, 0, 0, 0, 0, 0);
363 /// else
364 /// __cudaRegisterVar(fatbinHandle, entry->addr, entry->name, entry->name,
365 /// 0, entry->size, 0, 0);
366 /// }
367 /// }
368 Function *createRegisterGlobalsFunction(Module &M, bool IsHIP) {
369 LLVMContext &C = M.getContext();
370 // Get the __cudaRegisterFunction function declaration.
371 PointerType *Int8PtrTy = PointerType::get(C, 0);
372 PointerType *Int8PtrPtrTy = PointerType::get(C, 0);
373 PointerType *Int32PtrTy = PointerType::get(C, 0);
374 auto *RegFuncTy = FunctionType::get(
375 Type::getInt32Ty(C),
376 {Int8PtrPtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Type::getInt32Ty(C),
377 Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Int32PtrTy},
378 /*isVarArg*/ false);
379 FunctionCallee RegFunc = M.getOrInsertFunction(
380 IsHIP ? "__hipRegisterFunction" : "__cudaRegisterFunction", RegFuncTy);
382 // Get the __cudaRegisterVar function declaration.
383 auto *RegVarTy = FunctionType::get(
384 Type::getVoidTy(C),
385 {Int8PtrPtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Type::getInt32Ty(C),
386 getSizeTTy(M), Type::getInt32Ty(C), Type::getInt32Ty(C)},
387 /*isVarArg*/ false);
388 FunctionCallee RegVar = M.getOrInsertFunction(
389 IsHIP ? "__hipRegisterVar" : "__cudaRegisterVar", RegVarTy);
391 // Create the references to the start / stop symbols defined by the linker.
392 auto *EntriesB =
393 new GlobalVariable(M, ArrayType::get(getEntryTy(M), 0),
394 /*isConstant*/ true, GlobalValue::ExternalLinkage,
395 /*Initializer*/ nullptr,
396 IsHIP ? "__start_hip_offloading_entries"
397 : "__start_cuda_offloading_entries");
398 EntriesB->setVisibility(GlobalValue::HiddenVisibility);
399 auto *EntriesE =
400 new GlobalVariable(M, ArrayType::get(getEntryTy(M), 0),
401 /*isConstant*/ true, GlobalValue::ExternalLinkage,
402 /*Initializer*/ nullptr,
403 IsHIP ? "__stop_hip_offloading_entries"
404 : "__stop_cuda_offloading_entries");
405 EntriesE->setVisibility(GlobalValue::HiddenVisibility);
407 auto *RegGlobalsTy = FunctionType::get(Type::getVoidTy(C), Int8PtrPtrTy,
408 /*isVarArg*/ false);
409 auto *RegGlobalsFn =
410 Function::Create(RegGlobalsTy, GlobalValue::InternalLinkage,
411 IsHIP ? ".hip.globals_reg" : ".cuda.globals_reg", &M);
412 RegGlobalsFn->setSection(".text.startup");
414 // Create the loop to register all the entries.
415 IRBuilder<> Builder(BasicBlock::Create(C, "entry", RegGlobalsFn));
416 auto *EntryBB = BasicBlock::Create(C, "while.entry", RegGlobalsFn);
417 auto *IfThenBB = BasicBlock::Create(C, "if.then", RegGlobalsFn);
418 auto *IfElseBB = BasicBlock::Create(C, "if.else", RegGlobalsFn);
419 auto *SwGlobalBB = BasicBlock::Create(C, "sw.global", RegGlobalsFn);
420 auto *SwManagedBB = BasicBlock::Create(C, "sw.managed", RegGlobalsFn);
421 auto *SwSurfaceBB = BasicBlock::Create(C, "sw.surface", RegGlobalsFn);
422 auto *SwTextureBB = BasicBlock::Create(C, "sw.texture", RegGlobalsFn);
423 auto *IfEndBB = BasicBlock::Create(C, "if.end", RegGlobalsFn);
424 auto *ExitBB = BasicBlock::Create(C, "while.end", RegGlobalsFn);
426 auto *EntryCmp = Builder.CreateICmpNE(EntriesB, EntriesE);
427 Builder.CreateCondBr(EntryCmp, EntryBB, ExitBB);
428 Builder.SetInsertPoint(EntryBB);
429 auto *Entry = Builder.CreatePHI(getEntryPtrTy(M), 2, "entry");
430 auto *AddrPtr =
431 Builder.CreateInBoundsGEP(getEntryTy(M), Entry,
432 {ConstantInt::get(getSizeTTy(M), 0),
433 ConstantInt::get(Type::getInt32Ty(C), 0)});
434 auto *Addr = Builder.CreateLoad(Int8PtrTy, AddrPtr, "addr");
435 auto *NamePtr =
436 Builder.CreateInBoundsGEP(getEntryTy(M), Entry,
437 {ConstantInt::get(getSizeTTy(M), 0),
438 ConstantInt::get(Type::getInt32Ty(C), 1)});
439 auto *Name = Builder.CreateLoad(Int8PtrTy, NamePtr, "name");
440 auto *SizePtr =
441 Builder.CreateInBoundsGEP(getEntryTy(M), Entry,
442 {ConstantInt::get(getSizeTTy(M), 0),
443 ConstantInt::get(Type::getInt32Ty(C), 2)});
444 auto *Size = Builder.CreateLoad(getSizeTTy(M), SizePtr, "size");
445 auto *FlagsPtr =
446 Builder.CreateInBoundsGEP(getEntryTy(M), Entry,
447 {ConstantInt::get(getSizeTTy(M), 0),
448 ConstantInt::get(Type::getInt32Ty(C), 3)});
449 auto *Flags = Builder.CreateLoad(Type::getInt32Ty(C), FlagsPtr, "flag");
450 auto *FnCond =
451 Builder.CreateICmpEQ(Size, ConstantInt::getNullValue(getSizeTTy(M)));
452 Builder.CreateCondBr(FnCond, IfThenBB, IfElseBB);
454 // Create kernel registration code.
455 Builder.SetInsertPoint(IfThenBB);
456 Builder.CreateCall(RegFunc, {RegGlobalsFn->arg_begin(), Addr, Name, Name,
457 ConstantInt::get(Type::getInt32Ty(C), -1),
458 ConstantPointerNull::get(Int8PtrTy),
459 ConstantPointerNull::get(Int8PtrTy),
460 ConstantPointerNull::get(Int8PtrTy),
461 ConstantPointerNull::get(Int8PtrTy),
462 ConstantPointerNull::get(Int32PtrTy)});
463 Builder.CreateBr(IfEndBB);
464 Builder.SetInsertPoint(IfElseBB);
466 auto *Switch = Builder.CreateSwitch(Flags, IfEndBB);
467 // Create global variable registration code.
468 Builder.SetInsertPoint(SwGlobalBB);
469 Builder.CreateCall(RegVar, {RegGlobalsFn->arg_begin(), Addr, Name, Name,
470 ConstantInt::get(Type::getInt32Ty(C), 0), Size,
471 ConstantInt::get(Type::getInt32Ty(C), 0),
472 ConstantInt::get(Type::getInt32Ty(C), 0)});
473 Builder.CreateBr(IfEndBB);
474 Switch->addCase(Builder.getInt32(OffloadGlobalEntry), SwGlobalBB);
476 // Create managed variable registration code.
477 Builder.SetInsertPoint(SwManagedBB);
478 Builder.CreateBr(IfEndBB);
479 Switch->addCase(Builder.getInt32(OffloadGlobalManagedEntry), SwManagedBB);
481 // Create surface variable registration code.
482 Builder.SetInsertPoint(SwSurfaceBB);
483 Builder.CreateBr(IfEndBB);
484 Switch->addCase(Builder.getInt32(OffloadGlobalSurfaceEntry), SwSurfaceBB);
486 // Create texture variable registration code.
487 Builder.SetInsertPoint(SwTextureBB);
488 Builder.CreateBr(IfEndBB);
489 Switch->addCase(Builder.getInt32(OffloadGlobalTextureEntry), SwTextureBB);
491 Builder.SetInsertPoint(IfEndBB);
492 auto *NewEntry = Builder.CreateInBoundsGEP(
493 getEntryTy(M), Entry, ConstantInt::get(getSizeTTy(M), 1));
494 auto *Cmp = Builder.CreateICmpEQ(
495 NewEntry,
496 ConstantExpr::getInBoundsGetElementPtr(
497 ArrayType::get(getEntryTy(M), 0), EntriesE,
498 ArrayRef<Constant *>({ConstantInt::get(getSizeTTy(M), 0),
499 ConstantInt::get(getSizeTTy(M), 0)})));
500 Entry->addIncoming(
501 ConstantExpr::getInBoundsGetElementPtr(
502 ArrayType::get(getEntryTy(M), 0), EntriesB,
503 ArrayRef<Constant *>({ConstantInt::get(getSizeTTy(M), 0),
504 ConstantInt::get(getSizeTTy(M), 0)})),
505 &RegGlobalsFn->getEntryBlock());
506 Entry->addIncoming(NewEntry, IfEndBB);
507 Builder.CreateCondBr(Cmp, ExitBB, EntryBB);
508 Builder.SetInsertPoint(ExitBB);
509 Builder.CreateRetVoid();
511 return RegGlobalsFn;
514 // Create the constructor and destructor to register the fatbinary with the CUDA
515 // runtime.
516 void createRegisterFatbinFunction(Module &M, GlobalVariable *FatbinDesc,
517 bool IsHIP) {
518 LLVMContext &C = M.getContext();
519 auto *CtorFuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false);
520 auto *CtorFunc =
521 Function::Create(CtorFuncTy, GlobalValue::InternalLinkage,
522 IsHIP ? ".hip.fatbin_reg" : ".cuda.fatbin_reg", &M);
523 CtorFunc->setSection(".text.startup");
525 auto *DtorFuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false);
526 auto *DtorFunc =
527 Function::Create(DtorFuncTy, GlobalValue::InternalLinkage,
528 IsHIP ? ".hip.fatbin_unreg" : ".cuda.fatbin_unreg", &M);
529 DtorFunc->setSection(".text.startup");
531 // Get the __cudaRegisterFatBinary function declaration.
532 auto *RegFatTy = FunctionType::get(Type::getInt8PtrTy(C)->getPointerTo(),
533 Type::getInt8PtrTy(C),
534 /*isVarArg*/ false);
535 FunctionCallee RegFatbin = M.getOrInsertFunction(
536 IsHIP ? "__hipRegisterFatBinary" : "__cudaRegisterFatBinary", RegFatTy);
537 // Get the __cudaRegisterFatBinaryEnd function declaration.
538 auto *RegFatEndTy = FunctionType::get(Type::getVoidTy(C),
539 Type::getInt8PtrTy(C)->getPointerTo(),
540 /*isVarArg*/ false);
541 FunctionCallee RegFatbinEnd =
542 M.getOrInsertFunction("__cudaRegisterFatBinaryEnd", RegFatEndTy);
543 // Get the __cudaUnregisterFatBinary function declaration.
544 auto *UnregFatTy = FunctionType::get(Type::getVoidTy(C),
545 Type::getInt8PtrTy(C)->getPointerTo(),
546 /*isVarArg*/ false);
547 FunctionCallee UnregFatbin = M.getOrInsertFunction(
548 IsHIP ? "__hipUnregisterFatBinary" : "__cudaUnregisterFatBinary",
549 UnregFatTy);
551 auto *AtExitTy =
552 FunctionType::get(Type::getInt32Ty(C), DtorFuncTy->getPointerTo(),
553 /*isVarArg*/ false);
554 FunctionCallee AtExit = M.getOrInsertFunction("atexit", AtExitTy);
556 auto *BinaryHandleGlobal = new llvm::GlobalVariable(
557 M, Type::getInt8PtrTy(C)->getPointerTo(), false,
558 llvm::GlobalValue::InternalLinkage,
559 llvm::ConstantPointerNull::get(Type::getInt8PtrTy(C)->getPointerTo()),
560 IsHIP ? ".hip.binary_handle" : ".cuda.binary_handle");
562 // Create the constructor to register this image with the runtime.
563 IRBuilder<> CtorBuilder(BasicBlock::Create(C, "entry", CtorFunc));
564 CallInst *Handle = CtorBuilder.CreateCall(
565 RegFatbin, ConstantExpr::getPointerBitCastOrAddrSpaceCast(
566 FatbinDesc, Type::getInt8PtrTy(C)));
567 CtorBuilder.CreateAlignedStore(
568 Handle, BinaryHandleGlobal,
569 Align(M.getDataLayout().getPointerTypeSize(Type::getInt8PtrTy(C))));
570 CtorBuilder.CreateCall(createRegisterGlobalsFunction(M, IsHIP), Handle);
571 if (!IsHIP)
572 CtorBuilder.CreateCall(RegFatbinEnd, Handle);
573 CtorBuilder.CreateCall(AtExit, DtorFunc);
574 CtorBuilder.CreateRetVoid();
576 // Create the destructor to unregister the image with the runtime. We cannot
577 // use a standard global destructor after CUDA 9.2 so this must be called by
578 // `atexit()` intead.
579 IRBuilder<> DtorBuilder(BasicBlock::Create(C, "entry", DtorFunc));
580 LoadInst *BinaryHandle = DtorBuilder.CreateAlignedLoad(
581 Type::getInt8PtrTy(C)->getPointerTo(), BinaryHandleGlobal,
582 Align(M.getDataLayout().getPointerTypeSize(Type::getInt8PtrTy(C))));
583 DtorBuilder.CreateCall(UnregFatbin, BinaryHandle);
584 DtorBuilder.CreateRetVoid();
586 // Add this function to constructors.
587 appendToGlobalCtors(M, CtorFunc, /*Priority*/ 1);
590 } // namespace
592 Error wrapOpenMPBinaries(Module &M, ArrayRef<ArrayRef<char>> Images) {
593 GlobalVariable *Desc = createBinDesc(M, Images);
594 if (!Desc)
595 return createStringError(inconvertibleErrorCode(),
596 "No binary descriptors created.");
597 createRegisterFunction(M, Desc);
598 createUnregisterFunction(M, Desc);
599 return Error::success();
602 Error wrapCudaBinary(Module &M, ArrayRef<char> Image) {
603 GlobalVariable *Desc = createFatbinDesc(M, Image, /* IsHIP */ false);
604 if (!Desc)
605 return createStringError(inconvertibleErrorCode(),
606 "No fatinbary section created.");
608 createRegisterFatbinFunction(M, Desc, /* IsHIP */ false);
609 return Error::success();
612 Error wrapHIPBinary(Module &M, ArrayRef<char> Image) {
613 GlobalVariable *Desc = createFatbinDesc(M, Image, /* IsHIP */ true);
614 if (!Desc)
615 return createStringError(inconvertibleErrorCode(),
616 "No fatinbary section created.");
618 createRegisterFatbinFunction(M, Desc, /* IsHIP */ true);
619 return Error::success();