Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / clang / utils / analyzer / SATestBenchmark.py
blobf4936c0eafb125f397eeb6797a94a82fb8460c0a
1 """
2 Static Analyzer qualification infrastructure.
4 This source file contains all the functionality related to benchmarking
5 the analyzer on a set projects. Right now, this includes measuring
6 execution time and peak memory usage. Benchmark runs analysis on every
7 project multiple times to get a better picture about the distribution
8 of measured values.
10 Additionally, this file includes a comparison routine for two benchmarking
11 results that plots the result together on one chart.
12 """
14 import SATestUtils as utils
15 from SATestBuild import ProjectTester, stdout, TestInfo
16 from ProjectMap import ProjectInfo
18 import pandas as pd
19 from typing import List, Tuple
22 INDEX_COLUMN = "index"
25 def _save(data: pd.DataFrame, file_path: str):
26 data.to_csv(file_path, index_label=INDEX_COLUMN)
29 def _load(file_path: str) -> pd.DataFrame:
30 return pd.read_csv(file_path, index_col=INDEX_COLUMN)
33 class Benchmark:
34 """
35 Becnhmark class encapsulates one functionality: it runs the analysis
36 multiple times for the given set of projects and stores results in the
37 specified file.
38 """
40 def __init__(self, projects: List[ProjectInfo], iterations: int, output_path: str):
41 self.projects = projects
42 self.iterations = iterations
43 self.out = output_path
45 def run(self):
46 results = [self._benchmark_project(project) for project in self.projects]
48 data = pd.concat(results, ignore_index=True)
49 _save(data, self.out)
51 def _benchmark_project(self, project: ProjectInfo) -> pd.DataFrame:
52 if not project.enabled:
53 stdout(f" \n\n--- Skipping disabled project {project.name}\n")
54 return
56 stdout(f" \n\n--- Benchmarking project {project.name}\n")
58 test_info = TestInfo(project)
59 tester = ProjectTester(test_info, silent=True)
60 project_dir = tester.get_project_dir()
61 output_dir = tester.get_output_dir()
63 raw_data = []
65 for i in range(self.iterations):
66 stdout(f"Iteration #{i + 1}")
67 time, mem = tester.build(project_dir, output_dir)
68 raw_data.append(
69 {"time": time, "memory": mem, "iteration": i, "project": project.name}
71 stdout(
72 f"time: {utils.time_to_str(time)}, "
73 f"peak memory: {utils.memory_to_str(mem)}"
76 return pd.DataFrame(raw_data)
79 def compare(old_path: str, new_path: str, plot_file: str):
80 """
81 Compare two benchmarking results stored as .csv files
82 and produce a plot in the specified file.
83 """
84 old = _load(old_path)
85 new = _load(new_path)
87 old_projects = set(old["project"])
88 new_projects = set(new["project"])
89 common_projects = old_projects & new_projects
91 # Leave only rows for projects common to both dataframes.
92 old = old[old["project"].isin(common_projects)]
93 new = new[new["project"].isin(common_projects)]
95 old, new = _normalize(old, new)
97 # Seaborn prefers all the data to be in one dataframe.
98 old["kind"] = "old"
99 new["kind"] = "new"
100 data = pd.concat([old, new], ignore_index=True)
102 # TODO: compare data in old and new dataframes using statistical tests
103 # to check if they belong to the same distribution
104 _plot(data, plot_file)
107 def _normalize(
108 old: pd.DataFrame, new: pd.DataFrame
109 ) -> Tuple[pd.DataFrame, pd.DataFrame]:
110 # This creates a dataframe with all numerical data averaged.
111 means = old.groupby("project").mean()
112 return _normalize_impl(old, means), _normalize_impl(new, means)
115 def _normalize_impl(data: pd.DataFrame, means: pd.DataFrame):
116 # Right now 'means' has one row corresponding to one project,
117 # while 'data' has N rows for each project (one for each iteration).
119 # In order for us to work easier with this data, we duplicate
120 # 'means' data to match the size of the 'data' dataframe.
122 # All the columns from 'data' will maintain their names, while
123 # new columns coming from 'means' will have "_mean" suffix.
124 joined_data = data.merge(means, on="project", suffixes=("", "_mean"))
125 _normalize_key(joined_data, "time")
126 _normalize_key(joined_data, "memory")
127 return joined_data
130 def _normalize_key(data: pd.DataFrame, key: str):
131 norm_key = _normalized_name(key)
132 mean_key = f"{key}_mean"
133 data[norm_key] = data[key] / data[mean_key]
136 def _normalized_name(name: str) -> str:
137 return f"normalized {name}"
140 def _plot(data: pd.DataFrame, plot_file: str):
141 import matplotlib
142 import seaborn as sns
143 from matplotlib import pyplot as plt
145 sns.set_style("whitegrid")
146 # We want to have time and memory charts one above the other.
147 figure, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 6))
149 def _subplot(key: str, ax: matplotlib.axes.Axes):
150 sns.boxplot(
151 x="project",
152 y=_normalized_name(key),
153 hue="kind",
154 data=data,
155 palette=sns.color_palette("BrBG", 2),
156 ax=ax,
159 _subplot("time", ax1)
160 # No need to have xlabels on both top and bottom charts.
161 ax1.set_xlabel("")
163 _subplot("memory", ax2)
164 # The legend on the top chart is enough.
165 ax2.get_legend().remove()
167 figure.savefig(plot_file)