Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / clang / www / diagnostics.html
blobdff2da02100078387813dcc5ea1f9a13b3b1126e
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
6 <title>Clang - Expressive Diagnostics</title>
7 <link type="text/css" rel="stylesheet" href="menu.css">
8 <link type="text/css" rel="stylesheet" href="content.css">
9 <style type="text/css">
10 .loc { font-weight: bold; }
11 .err { color:red; font-weight: bold; }
12 .warn { color:magenta; font-weight: bold; }
13 .note { color:gray; font-weight: bold; }
14 .msg { font-weight: bold; }
15 .cmd { font-style: italic; }
16 .snip { }
17 .point { color:green; font-weight: bold; }
18 </style>
19 </head>
20 <body>
22 <!--#include virtual="menu.html.incl"-->
24 <div id="content">
27 <!--=======================================================================-->
28 <h1>Expressive Diagnostics</h1>
29 <!--=======================================================================-->
31 <p>In addition to being fast and functional, we aim to make Clang extremely user
32 friendly. As far as a command-line compiler goes, this basically boils down to
33 making the diagnostics (error and warning messages) generated by the compiler
34 be as useful as possible. There are several ways that we do this. This section
35 talks about the experience provided by the command line compiler, contrasting
36 Clang output to GCC 4.9's output in some cases.
37 </p>
39 <h2>Column Numbers and Caret Diagnostics</h2>
41 <p>First, all diagnostics produced by clang include full column number
42 information. The clang command-line compiler driver uses this information
43 to print "point diagnostics".
44 (IDEs can use the information to display in-line error markup.)
45 This is nice because it makes it very easy to understand exactly
46 what is wrong in a particular piece of code.</p>
48 <p>The point (the green "^" character) exactly shows where the problem is, even
49 inside of a string. This makes it really easy to jump to the problem and
50 helps when multiple instances of the same character occur on a line. (We'll
51 revisit this more in following examples.)</p>
53 <pre>
54 $ <span class="cmd">clang -fsyntax-only format-strings.c</span>
55 <span class="loc">format-strings.c:91:13:</span> <span class="warn">warning:</span> <span class="msg">'.*' specified field precision is missing a matching 'int' argument</span>
56 <span class="snip" > printf("%.*d");</span>
57 <span class="point"> ^</span>
58 </pre>
60 <p>Note that modern versions of GCC have followed Clang's lead, and are
61 now able to give a column for a diagnostic, and include a snippet of source
62 text in the result. However, Clang's column number is much more accurate,
63 pointing at the problematic format specifier, rather than the <tt>)</tt>
64 character the parser had reached when the problem was detected.
65 Also, Clang's diagnostic is colored by default, making it easier to
66 distinguish from nearby text.</p>
68 <h2>Range Highlighting for Related Text</h2>
70 <p>Clang captures and accurately tracks range information for expressions,
71 statements, and other constructs in your program and uses this to make
72 diagnostics highlight related information. In the following somewhat
73 nonsensical example you can see that you don't even need to see the original source code to
74 understand what is wrong based on the Clang error. Because clang prints a
75 point, you know exactly <em>which</em> plus it is complaining about. The range
76 information highlights the left and right side of the plus which makes it
77 immediately obvious what the compiler is talking about.
78 Range information is very useful for
79 cases involving precedence issues and many other cases.</p>
81 <pre>
82 $ <span class="cmd">gcc-4.9 -fsyntax-only t.c</span>
83 t.c: In function 'int f(int, int)':
84 t.c:7:39: error: invalid operands to binary + (have 'int' and 'struct A')
85 return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);
87 $ <span class="cmd">clang -fsyntax-only t.c</span>
88 <span class="loc">t.c:7:39:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('int' and 'struct A')</span>
89 <span class="snip" > return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);</span>
90 <span class="point"> ~~~~~~~~~~~~~~ ^ ~~~~~</span>
91 </pre>
93 <h2>Precision in Wording</h2>
95 <p>A detail is that we have tried really hard to make the diagnostics that come
96 out of clang contain exactly the pertinent information about what is wrong and
97 why. In the example above, we tell you what the inferred types are for
98 the left and right hand sides, and we don't repeat what is obvious from the
99 point (e.g., that this is a "binary +").</p>
101 <p>Many other examples abound. In the following example, not only do we tell you
102 that there is a problem with the <tt>*</tt>
103 and point to it, we say exactly why and tell you what the type is (in case it is
104 a complicated subexpression, such as a call to an overloaded function). This
105 sort of attention to detail makes it much easier to understand and fix problems
106 quickly.</p>
108 <pre>
109 $ <span class="cmd">gcc-4.9 -fsyntax-only t.c</span>
110 t.c:5:11: error: invalid type argument of unary '*' (have 'int')
111 return *SomeA.X;
113 $ <span class="cmd">clang -fsyntax-only t.c</span>
114 <span class="loc">t.c:5:11:</span> <span class="err">error:</span> <span class="msg">indirection requires pointer operand ('int' invalid)</span>
115 <span class="snip" > int y = *SomeA.X;</span>
116 <span class="point"> ^~~~~~~~</span>
117 </pre>
119 <h2>Typedef Preservation and Selective Unwrapping</h2>
121 <p>Many programmers use high-level user defined types, typedefs, and other
122 syntactic sugar to refer to types in their program. This is useful because they
123 can abbreviate otherwise very long types and it is useful to preserve the
124 typename in diagnostics. However, sometimes very simple typedefs can wrap
125 trivial types and it is important to strip off the typedef to understand what
126 is going on. Clang aims to handle both cases well.<p>
128 <p>The following example shows where it is important to preserve
129 a typedef in C.</p>
131 <pre>
132 $ <span class="cmd">clang -fsyntax-only t.c</span>
133 <span class="loc">t.c:15:11:</span> <span class="err">error:</span> <span class="msg">can't convert between vector values of different size ('__m128' and 'int const *')</span>
134 <span class="snip"> myvec[1]/P;</span>
135 <span class="point"> ~~~~~~~~^~</span>
136 </pre>
138 <p>The following example shows where it is useful for the compiler to expose
139 underlying details of a typedef. If the user was somehow confused about how the
140 system "pid_t" typedef is defined, Clang helpfully displays it with "aka".</p>
142 <pre>
143 $ <span class="cmd">clang -fsyntax-only t.c</span>
144 <span class="loc">t.c:13:9:</span> <span class="err">error:</span> <span class="msg">member reference base type 'pid_t' (aka 'int') is not a structure or union</span>
145 <span class="snip"> myvar = myvar.x;</span>
146 <span class="point"> ~~~~~ ^</span>
147 </pre>
149 <p>In C++, type preservation includes retaining any qualification written into type names. For example, if we take a small snippet of code such as:
151 <blockquote>
152 <pre>
153 namespace services {
154 struct WebService { };
156 namespace myapp {
157 namespace servers {
158 struct Server { };
162 using namespace myapp;
163 void addHTTPService(servers::Server const &amp;server, ::services::WebService const *http) {
164 server += http;
166 </pre>
167 </blockquote>
169 <p>and then compile it, we see that Clang is both providing accurate information and is retaining the types as written by the user (e.g., "servers::Server", "::services::WebService"):
171 <pre>
172 $ <span class="cmd">clang -fsyntax-only t.cpp</span>
173 <span class="loc">t.cpp:9:10:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('servers::Server const' and '::services::WebService const *')</span>
174 <span class="snip">server += http;</span>
175 <span class="point">~~~~~~ ^ ~~~~</span>
176 </pre>
178 <p>Naturally, type preservation extends to uses of templates, and Clang retains information about how a particular template specialization (like <code>std::vector&lt;Real&gt;</code>) was spelled within the source code. For example:</p>
180 <pre>
181 $ <span class="cmd">clang -fsyntax-only t.cpp</span>
182 <span class="loc">t.cpp:12:7:</span> <span class="err">error:</span> <span class="msg">incompatible type assigning 'vector&lt;Real&gt;', expected 'std::string' (aka 'class std::basic_string&lt;char&gt;')</span>
183 <span class="snip">str = vec</span>;
184 <span class="point">^ ~~~</span>
185 </pre>
187 <h2>Fix-it Hints</h2>
189 <p>"Fix-it" hints provide advice for fixing small, localized problems
190 in source code. When Clang produces a diagnostic about a particular
191 problem that it can work around (e.g., non-standard or redundant
192 syntax, missing keywords, common mistakes, etc.), it may also provide
193 specific guidance in the form of a code transformation to correct the
194 problem. In the following example, Clang warns about the use of a GCC
195 extension that has been considered obsolete since 1993. The underlined
196 code should be removed, then replaced with the code below the
197 point line (".x =" or ".y =", respectively).</p>
199 <pre>
200 $ <span class="cmd">clang t.c</span>
201 <span class="loc">t.c:5:28:</span> <span class="warn">warning:</span> <span class="msg">use of GNU old-style field designator extension</span>
202 <span class="snip">struct point origin = { x: 0.0, y: 0.0 };</span>
203 <span class="err">~~</span> <span class="msg"><span class="point">^</span></span>
204 <span class="snip">.x = </span>
205 <span class="loc">t.c:5:36:</span> <span class="warn">warning:</span> <span class="msg">use of GNU old-style field designator extension</span>
206 <span class="snip">struct point origin = { x: 0.0, y: 0.0 };</span>
207 <span class="err">~~</span> <span class="msg"><span class="point">^</span></span>
208 <span class="snip">.y = </span>
209 </pre>
211 <p>"Fix-it" hints are most useful for
212 working around common user errors and misconceptions. For example, C++ users
213 commonly forget the syntax for explicit specialization of class templates,
214 as in the error in the following example. Again, after describing the problem,
215 Clang provides the fix--add <code>template&lt;&gt;</code>--as part of the
216 diagnostic.<p>
218 <pre>
219 $ <span class="cmd">clang t.cpp</span>
220 <span class="loc">t.cpp:9:3:</span> <span class="err">error:</span> <span class="msg">template specialization requires 'template&lt;&gt;'</span>
221 struct iterator_traits&lt;file_iterator&gt; {
222 <span class="point">^</span>
223 <span class="snip">template&lt;&gt; </span>
224 </pre>
226 <h2>Template Type Diffing</h2>
228 <p>Templates types can be long and difficult to read. More so when part of an
229 error message. Instead of just printing out the type name, Clang has enough
230 information to remove the common elements and highlight the differences. To
231 show the template structure more clearly, the templated type can also be
232 printed as an indented text tree.</p>
234 Default: template diff with type elision
235 <pre>
236 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion from 'vector&lt;map&lt;[...], <span class="template-highlight">float</span>&gt;&gt;' to 'vector&lt;map&lt;[...], <span class="template-highlight">double</span>&gt;&gt;' for 1st argument;
237 </pre>
238 -fno-elide-type: template diff without elision
239 <pre>
240 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion from 'vector&lt;map&lt;int, <span class="template-highlight">float</span>&gt;&gt;' to 'vector&lt;map&lt;int, <span class="template-highlight">double</span>&gt;&gt;' for 1st argument;
241 </pre>
242 -fdiagnostics-show-template-tree: template tree printing with elision
243 <pre>
244 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion for 1st argument;
245 vector&lt;
246 map&lt;
247 [...],
248 [<span class="template-highlight">float</span> != <span class="template-highlight">double</span>]&gt;&gt;
249 </pre>
250 -fdiagnostics-show-template-tree -fno-elide-type: template tree printing with no elision
251 <pre>
252 <span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion for 1st argument;
253 vector&lt;
254 map&lt;
255 int,
256 [<span class="template-highlight">float</span> != <span class="template-highlight">double</span>]&gt;&gt;
257 </pre>
259 <h2>Automatic Macro Expansion</h2>
261 <p>Many errors happen in macros that are sometimes deeply nested. With
262 traditional compilers, you need to dig deep into the definition of the macro to
263 understand how you got into trouble. The following simple example shows how
264 Clang helps you out by automatically printing instantiation information and
265 nested range information for diagnostics as they are instantiated through macros
266 and also shows how some of the other pieces work in a bigger example.</p>
268 <pre>
269 $ <span class="cmd">clang -fsyntax-only t.c</span>
270 <span class="loc">t.c:80:3:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('typeof(P)' (aka 'struct mystruct') and 'typeof(F)' (aka 'float'))</span>
271 <span class="snip"> X = MYMAX(P, F);</span>
272 <span class="point"> ^~~~~~~~~~~</span>
273 <span class="loc">t.c:76:94:</span> <span class="note">note:</span> expanded from:
274 <span class="snip">#define MYMAX(A,B) __extension__ ({ __typeof__(A) __a = (A); __typeof__(B) __b = (B); __a &lt; __b ? __b : __a; })</span>
275 <span class="point"> ~~~ ^ ~~~</span>
276 </pre>
278 <p>Here's another real world warning that occurs in the "window" Unix package (which
279 implements the "wwopen" class of APIs):</p>
281 <pre>
282 $ <span class="cmd">clang -fsyntax-only t.c</span>
283 <span class="loc">t.c:22:2:</span> <span class="warn">warning:</span> <span class="msg">type specifier missing, defaults to 'int'</span>
284 <span class="snip"> ILPAD();</span>
285 <span class="point"> ^</span>
286 <span class="loc">t.c:17:17:</span> <span class="note">note:</span> expanded from:
287 <span class="snip">#define ILPAD() PAD((NROW - tt.tt_row) * 10) /* 1 ms per char */</span>
288 <span class="point"> ^</span>
289 <span class="loc">t.c:14:2:</span> <span class="note">note:</span> expanded from:
290 <span class="snip"> register i; \</span>
291 <span class="point"> ^</span>
292 </pre>
294 <p>In practice, we've found that Clang's treatment of macros is actually more useful in multiply nested
295 macros than in simple ones.</p>
297 <h2>Quality of Implementation and Attention to Detail</h2>
299 <p>Finally, we have put a lot of work polishing the little things, because
300 little things add up over time and contribute to a great user experience.</p>
302 <p>The following example shows that we recover from the simple case of
303 forgetting a ; after a struct definition much better than GCC.</p>
305 <pre>
306 $ <span class="cmd">cat t.cc</span>
307 template&lt;class T&gt;
308 class a {};
309 struct b {}
310 a&lt;int&gt; c;
311 $ <span class="cmd">gcc-4.9 t.cc</span>
312 t.cc:4:8: error: invalid declarator before 'c'
313 a&lt;int&gt; c;
315 $ <span class="cmd">clang t.cc</span>
316 <span class="loc">t.cc:3:12:</span> <span class="err">error:</span> <span class="msg">expected ';' after struct</span>
317 <span class="snip" >struct b {}</span>
318 <span class="point"> ^</span>
319 <span class="point"> ;</span>
320 </pre>
322 <p>The following example shows that we diagnose and recover from a missing
323 <tt>typename</tt> keyword well, even in complex circumstances where GCC
324 cannot cope.</p>
326 <pre>
327 $ <span class="cmd">cat t.cc</span>
328 template&lt;class T&gt; void f(T::type) { }
329 struct A { };
330 void g()
332 A a;
333 f&lt;A&gt;(a);
335 $ <span class="cmd">gcc-4.9 t.cc</span>
336 t.cc:1:33: error: variable or field 'f' declared void
337 template&lt;class T&gt; void f(T::type) { }
339 t.cc: In function 'void g()':
340 t.cc:6:5: error: 'f' was not declared in this scope
341 f&lt;A&gt;(a);
343 t.cc:6:8: error: expected primary-expression before '>' token
344 f&lt;A&gt;(a);
346 $ <span class="cmd">clang t.cc</span>
347 <span class="loc">t.cc:1:26:</span> <span class="err">error:</span> <span class="msg">missing 'typename' prior to dependent type name 'T::type'</span>
348 <span class="snip" >template&lt;class T&gt; void f(T::type) { }</span>
349 <span class="point"> ^~~~~~~</span>
350 <span class="point"> typename </span>
351 <span class="loc">t.cc:6:5:</span> <span class="err">error:</span> <span class="msg">no matching function for call to 'f'</span>
352 <span class="snip" > f&lt;A&gt;(a);</span>
353 <span class="point"> ^~~~</span>
354 <span class="loc">t.cc:1:24:</span> <span class="note">note:</span> <span class="msg">candidate template ignored: substitution failure [with T = A]: no type named 'type' in 'A'</span>
355 <span class="snip" >template&lt;class T&gt; void f(T::type) { }</span>
356 <span class="point"> ^ ~~~~</span>
357 </pre>
361 <p>While each of these details is minor, we feel that they all add up to provide
362 a much more polished experience.</p>
364 </div>
365 </body>
366 </html>