1 //===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
8 // A single header library providing an utility class to break up an array of
9 // bytes. Whenever run on the same input, provides the same output, as long as
10 // its methods are called in the same order, with the same arguments.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
14 #define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
22 #include <initializer_list>
25 #include <type_traits>
29 // In addition to the comments below, the API is also briefly documented at
30 // https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#fuzzed-data-provider
31 class FuzzedDataProvider
{
33 // |data| is an array of length |size| that the FuzzedDataProvider wraps to
34 // provide more granular access. |data| must outlive the FuzzedDataProvider.
35 FuzzedDataProvider(const uint8_t *data
, size_t size
)
36 : data_ptr_(data
), remaining_bytes_(size
) {}
37 ~FuzzedDataProvider() = default;
39 // See the implementation below (after the class definition) for more verbose
40 // comments for each of the methods.
42 // Methods returning std::vector of bytes. These are the most popular choice
43 // when splitting fuzzing input into pieces, as every piece is put into a
44 // separate buffer (i.e. ASan would catch any under-/overflow) and the memory
45 // will be released automatically.
46 template <typename T
> std::vector
<T
> ConsumeBytes(size_t num_bytes
);
48 std::vector
<T
> ConsumeBytesWithTerminator(size_t num_bytes
, T terminator
= 0);
49 template <typename T
> std::vector
<T
> ConsumeRemainingBytes();
51 // Methods returning strings. Use only when you need a std::string or a null
52 // terminated C-string. Otherwise, prefer the methods returning std::vector.
53 std::string
ConsumeBytesAsString(size_t num_bytes
);
54 std::string
ConsumeRandomLengthString(size_t max_length
);
55 std::string
ConsumeRandomLengthString();
56 std::string
ConsumeRemainingBytesAsString();
58 // Methods returning integer values.
59 template <typename T
> T
ConsumeIntegral();
60 template <typename T
> T
ConsumeIntegralInRange(T min
, T max
);
62 // Methods returning floating point values.
63 template <typename T
> T
ConsumeFloatingPoint();
64 template <typename T
> T
ConsumeFloatingPointInRange(T min
, T max
);
66 // 0 <= return value <= 1.
67 template <typename T
> T
ConsumeProbability();
71 // Returns a value chosen from the given enum.
72 template <typename T
> T
ConsumeEnum();
74 // Returns a value from the given array.
75 template <typename T
, size_t size
> T
PickValueInArray(const T (&array
)[size
]);
76 template <typename T
, size_t size
>
77 T
PickValueInArray(const std::array
<T
, size
> &array
);
78 template <typename T
> T
PickValueInArray(std::initializer_list
<const T
> list
);
80 // Writes data to the given destination and returns number of bytes written.
81 size_t ConsumeData(void *destination
, size_t num_bytes
);
83 // Reports the remaining bytes available for fuzzed input.
84 size_t remaining_bytes() { return remaining_bytes_
; }
87 FuzzedDataProvider(const FuzzedDataProvider
&) = delete;
88 FuzzedDataProvider
&operator=(const FuzzedDataProvider
&) = delete;
90 void CopyAndAdvance(void *destination
, size_t num_bytes
);
92 void Advance(size_t num_bytes
);
95 std::vector
<T
> ConsumeBytes(size_t size
, size_t num_bytes
);
97 template <typename TS
, typename TU
> TS
ConvertUnsignedToSigned(TU value
);
99 const uint8_t *data_ptr_
;
100 size_t remaining_bytes_
;
103 // Returns a std::vector containing |num_bytes| of input data. If fewer than
104 // |num_bytes| of data remain, returns a shorter std::vector containing all
105 // of the data that's left. Can be used with any byte sized type, such as
106 // char, unsigned char, uint8_t, etc.
107 template <typename T
>
108 std::vector
<T
> FuzzedDataProvider::ConsumeBytes(size_t num_bytes
) {
109 num_bytes
= std::min(num_bytes
, remaining_bytes_
);
110 return ConsumeBytes
<T
>(num_bytes
, num_bytes
);
113 // Similar to |ConsumeBytes|, but also appends the terminator value at the end
114 // of the resulting vector. Useful, when a mutable null-terminated C-string is
115 // needed, for example. But that is a rare case. Better avoid it, if possible,
116 // and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods.
117 template <typename T
>
118 std::vector
<T
> FuzzedDataProvider::ConsumeBytesWithTerminator(size_t num_bytes
,
120 num_bytes
= std::min(num_bytes
, remaining_bytes_
);
121 std::vector
<T
> result
= ConsumeBytes
<T
>(num_bytes
+ 1, num_bytes
);
122 result
.back() = terminator
;
126 // Returns a std::vector containing all remaining bytes of the input data.
127 template <typename T
>
128 std::vector
<T
> FuzzedDataProvider::ConsumeRemainingBytes() {
129 return ConsumeBytes
<T
>(remaining_bytes_
);
132 // Returns a std::string containing |num_bytes| of input data. Using this and
133 // |.c_str()| on the resulting string is the best way to get an immutable
134 // null-terminated C string. If fewer than |num_bytes| of data remain, returns
135 // a shorter std::string containing all of the data that's left.
136 inline std::string
FuzzedDataProvider::ConsumeBytesAsString(size_t num_bytes
) {
137 static_assert(sizeof(std::string::value_type
) == sizeof(uint8_t),
138 "ConsumeBytesAsString cannot convert the data to a string.");
140 num_bytes
= std::min(num_bytes
, remaining_bytes_
);
142 reinterpret_cast<const std::string::value_type
*>(data_ptr_
), num_bytes
);
147 // Returns a std::string of length from 0 to |max_length|. When it runs out of
148 // input data, returns what remains of the input. Designed to be more stable
149 // with respect to a fuzzer inserting characters than just picking a random
150 // length and then consuming that many bytes with |ConsumeBytes|.
152 FuzzedDataProvider::ConsumeRandomLengthString(size_t max_length
) {
153 // Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\"
154 // followed by anything else to the end of the string. As a result of this
155 // logic, a fuzzer can insert characters into the string, and the string
156 // will be lengthened to include those new characters, resulting in a more
157 // stable fuzzer than picking the length of a string independently from
158 // picking its contents.
161 // Reserve the anticipated capacity to prevent several reallocations.
162 result
.reserve(std::min(max_length
, remaining_bytes_
));
163 for (size_t i
= 0; i
< max_length
&& remaining_bytes_
!= 0; ++i
) {
164 char next
= ConvertUnsignedToSigned
<char>(data_ptr_
[0]);
166 if (next
== '\\' && remaining_bytes_
!= 0) {
167 next
= ConvertUnsignedToSigned
<char>(data_ptr_
[0]);
175 result
.shrink_to_fit();
179 // Returns a std::string of length from 0 to |remaining_bytes_|.
180 inline std::string
FuzzedDataProvider::ConsumeRandomLengthString() {
181 return ConsumeRandomLengthString(remaining_bytes_
);
184 // Returns a std::string containing all remaining bytes of the input data.
185 // Prefer using |ConsumeRemainingBytes| unless you actually need a std::string
187 inline std::string
FuzzedDataProvider::ConsumeRemainingBytesAsString() {
188 return ConsumeBytesAsString(remaining_bytes_
);
191 // Returns a number in the range [Type's min, Type's max]. The value might
192 // not be uniformly distributed in the given range. If there's no input data
193 // left, always returns |min|.
194 template <typename T
> T
FuzzedDataProvider::ConsumeIntegral() {
195 return ConsumeIntegralInRange(std::numeric_limits
<T
>::min(),
196 std::numeric_limits
<T
>::max());
199 // Returns a number in the range [min, max] by consuming bytes from the
200 // input data. The value might not be uniformly distributed in the given
201 // range. If there's no input data left, always returns |min|. |min| must
202 // be less than or equal to |max|.
203 template <typename T
>
204 T
FuzzedDataProvider::ConsumeIntegralInRange(T min
, T max
) {
205 static_assert(std::is_integral
<T
>::value
, "An integral type is required.");
206 static_assert(sizeof(T
) <= sizeof(uint64_t), "Unsupported integral type.");
211 // Use the biggest type possible to hold the range and the result.
212 uint64_t range
= static_cast<uint64_t>(max
) - static_cast<uint64_t>(min
);
216 while (offset
< sizeof(T
) * CHAR_BIT
&& (range
>> offset
) > 0 &&
217 remaining_bytes_
!= 0) {
218 // Pull bytes off the end of the seed data. Experimentally, this seems to
219 // allow the fuzzer to more easily explore the input space. This makes
220 // sense, since it works by modifying inputs that caused new code to run,
221 // and this data is often used to encode length of data read by
222 // |ConsumeBytes|. Separating out read lengths makes it easier modify the
223 // contents of the data that is actually read.
225 result
= (result
<< CHAR_BIT
) | data_ptr_
[remaining_bytes_
];
229 // Avoid division by 0, in case |range + 1| results in overflow.
230 if (range
!= std::numeric_limits
<decltype(range
)>::max())
231 result
= result
% (range
+ 1);
233 return static_cast<T
>(static_cast<uint64_t>(min
) + result
);
236 // Returns a floating point value in the range [Type's lowest, Type's max] by
237 // consuming bytes from the input data. If there's no input data left, always
238 // returns approximately 0.
239 template <typename T
> T
FuzzedDataProvider::ConsumeFloatingPoint() {
240 return ConsumeFloatingPointInRange
<T
>(std::numeric_limits
<T
>::lowest(),
241 std::numeric_limits
<T
>::max());
244 // Returns a floating point value in the given range by consuming bytes from
245 // the input data. If there's no input data left, returns |min|. Note that
246 // |min| must be less than or equal to |max|.
247 template <typename T
>
248 T
FuzzedDataProvider::ConsumeFloatingPointInRange(T min
, T max
) {
254 constexpr T
zero(.0);
255 if (max
> zero
&& min
< zero
&& max
> min
+ std::numeric_limits
<T
>::max()) {
256 // The diff |max - min| would overflow the given floating point type. Use
257 // the half of the diff as the range and consume a bool to decide whether
258 // the result is in the first of the second part of the diff.
259 range
= (max
/ 2.0) - (min
/ 2.0);
267 return result
+ range
* ConsumeProbability
<T
>();
270 // Returns a floating point number in the range [0.0, 1.0]. If there's no
271 // input data left, always returns 0.
272 template <typename T
> T
FuzzedDataProvider::ConsumeProbability() {
273 static_assert(std::is_floating_point
<T
>::value
,
274 "A floating point type is required.");
276 // Use different integral types for different floating point types in order
277 // to provide better density of the resulting values.
279 typename
std::conditional
<(sizeof(T
) <= sizeof(uint32_t)), uint32_t,
282 T result
= static_cast<T
>(ConsumeIntegral
<IntegralType
>());
283 result
/= static_cast<T
>(std::numeric_limits
<IntegralType
>::max());
287 // Reads one byte and returns a bool, or false when no data remains.
288 inline bool FuzzedDataProvider::ConsumeBool() {
289 return 1 & ConsumeIntegral
<uint8_t>();
292 // Returns an enum value. The enum must start at 0 and be contiguous. It must
293 // also contain |kMaxValue| aliased to its largest (inclusive) value. Such as:
294 // enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue };
295 template <typename T
> T
FuzzedDataProvider::ConsumeEnum() {
296 static_assert(std::is_enum
<T
>::value
, "|T| must be an enum type.");
297 return static_cast<T
>(
298 ConsumeIntegralInRange
<uint32_t>(0, static_cast<uint32_t>(T::kMaxValue
)));
301 // Returns a copy of the value selected from the given fixed-size |array|.
302 template <typename T
, size_t size
>
303 T
FuzzedDataProvider::PickValueInArray(const T (&array
)[size
]) {
304 static_assert(size
> 0, "The array must be non empty.");
305 return array
[ConsumeIntegralInRange
<size_t>(0, size
- 1)];
308 template <typename T
, size_t size
>
309 T
FuzzedDataProvider::PickValueInArray(const std::array
<T
, size
> &array
) {
310 static_assert(size
> 0, "The array must be non empty.");
311 return array
[ConsumeIntegralInRange
<size_t>(0, size
- 1)];
314 template <typename T
>
315 T
FuzzedDataProvider::PickValueInArray(std::initializer_list
<const T
> list
) {
316 // TODO(Dor1s): switch to static_assert once C++14 is allowed.
320 return *(list
.begin() + ConsumeIntegralInRange
<size_t>(0, list
.size() - 1));
323 // Writes |num_bytes| of input data to the given destination pointer. If there
324 // is not enough data left, writes all remaining bytes. Return value is the
325 // number of bytes written.
326 // In general, it's better to avoid using this function, but it may be useful
327 // in cases when it's necessary to fill a certain buffer or object with
329 inline size_t FuzzedDataProvider::ConsumeData(void *destination
,
331 num_bytes
= std::min(num_bytes
, remaining_bytes_
);
332 CopyAndAdvance(destination
, num_bytes
);
337 inline void FuzzedDataProvider::CopyAndAdvance(void *destination
,
339 std::memcpy(destination
, data_ptr_
, num_bytes
);
343 inline void FuzzedDataProvider::Advance(size_t num_bytes
) {
344 if (num_bytes
> remaining_bytes_
)
347 data_ptr_
+= num_bytes
;
348 remaining_bytes_
-= num_bytes
;
351 template <typename T
>
352 std::vector
<T
> FuzzedDataProvider::ConsumeBytes(size_t size
, size_t num_bytes
) {
353 static_assert(sizeof(T
) == sizeof(uint8_t), "Incompatible data type.");
355 // The point of using the size-based constructor below is to increase the
356 // odds of having a vector object with capacity being equal to the length.
357 // That part is always implementation specific, but at least both libc++ and
358 // libstdc++ allocate the requested number of bytes in that constructor,
359 // which seems to be a natural choice for other implementations as well.
360 // To increase the odds even more, we also call |shrink_to_fit| below.
361 std::vector
<T
> result(size
);
368 CopyAndAdvance(result
.data(), num_bytes
);
370 // Even though |shrink_to_fit| is also implementation specific, we expect it
371 // to provide an additional assurance in case vector's constructor allocated
372 // a buffer which is larger than the actual amount of data we put inside it.
373 result
.shrink_to_fit();
377 template <typename TS
, typename TU
>
378 TS
FuzzedDataProvider::ConvertUnsignedToSigned(TU value
) {
379 static_assert(sizeof(TS
) == sizeof(TU
), "Incompatible data types.");
380 static_assert(!std::numeric_limits
<TU
>::is_signed
,
381 "Source type must be unsigned.");
383 // TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream.
384 if (std::numeric_limits
<TS
>::is_modulo
)
385 return static_cast<TS
>(value
);
387 // Avoid using implementation-defined unsigned to signed conversions.
388 // To learn more, see https://stackoverflow.com/questions/13150449.
389 if (value
<= std::numeric_limits
<TS
>::max()) {
390 return static_cast<TS
>(value
);
392 constexpr auto TS_min
= std::numeric_limits
<TS
>::min();
393 return TS_min
+ static_cast<TS
>(value
- TS_min
);
397 #endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_