Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / compiler-rt / lib / builtins / ppc / fixtfdi.c
bloba97aaf095846452097d88999b477a3034ad92528
1 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
2 // See https://llvm.org/LICENSE.txt for license information.
3 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
5 // int64_t __fixunstfdi(long double x);
6 // This file implements the PowerPC 128-bit double-double -> int64_t conversion
8 #include "../int_math.h"
9 #include "DD.h"
11 uint64_t __fixtfdi(long double input) {
12 const DD x = {.ld = input};
13 const doublebits hibits = {.d = x.s.hi};
15 const uint32_t absHighWord =
16 (uint32_t)(hibits.x >> 32) & UINT32_C(0x7fffffff);
17 const uint32_t absHighWordMinusOne = absHighWord - UINT32_C(0x3ff00000);
19 // If (1.0 - tiny) <= input < 0x1.0p63:
20 if (UINT32_C(0x03f00000) > absHighWordMinusOne) {
21 // Do an unsigned conversion of the absolute value, then restore the sign.
22 const int unbiasedHeadExponent = absHighWordMinusOne >> 20;
24 int64_t result = hibits.x & INT64_C(0x000fffffffffffff); // mantissa(hi)
25 result |= INT64_C(0x0010000000000000); // matissa(hi) with implicit bit
26 result <<= 10; // mantissa(hi) with one zero preceding bit.
28 const int64_t hiNegationMask = ((int64_t)(hibits.x)) >> 63;
30 // If the tail is non-zero, we need to patch in the tail bits.
31 if (0.0 != x.s.lo) {
32 const doublebits lobits = {.d = x.s.lo};
33 int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
34 tailMantissa |= INT64_C(0x0010000000000000);
36 // At this point we have the mantissa of |tail|
37 // We need to negate it if head and tail have different signs.
38 const int64_t loNegationMask = ((int64_t)(lobits.x)) >> 63;
39 const int64_t negationMask = loNegationMask ^ hiNegationMask;
40 tailMantissa = (tailMantissa ^ negationMask) - negationMask;
42 // Now we have the mantissa of tail as a signed 2s-complement integer
44 const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
46 // Shift the tail mantissa into the right position, accounting for the
47 // bias of 10 that we shifted the head mantissa by.
48 tailMantissa >>=
49 (unbiasedHeadExponent - (biasedTailExponent - (1023 - 10)));
51 result += tailMantissa;
54 result >>= (62 - unbiasedHeadExponent);
56 // Restore the sign of the result and return
57 result = (result ^ hiNegationMask) - hiNegationMask;
58 return result;
61 // Edge cases handled here:
63 // |x| < 1, result is zero.
64 if (1.0 > crt_fabs(x.s.hi))
65 return INT64_C(0);
67 // x very close to INT64_MIN, care must be taken to see which side we are on.
68 if (x.s.hi == -0x1.0p63) {
70 int64_t result = INT64_MIN;
72 if (0.0 < x.s.lo) {
73 // If the tail is positive, the correct result is something other than
74 // INT64_MIN. we'll need to figure out what it is.
76 const doublebits lobits = {.d = x.s.lo};
77 int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
78 tailMantissa |= INT64_C(0x0010000000000000);
80 // Now we negate the tailMantissa
81 tailMantissa = (tailMantissa ^ INT64_C(-1)) + INT64_C(1);
83 // And shift it by the appropriate amount
84 const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
85 tailMantissa >>= 1075 - biasedTailExponent;
87 result -= tailMantissa;
90 return result;
93 // Signed overflows, infinities, and NaNs
94 if (x.s.hi > 0.0)
95 return INT64_MAX;
96 else
97 return INT64_MIN;