Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / compiler-rt / lib / memprof / memprof_allocator.cpp
blobefdfa5ad04a69175216227164e4ca77e990d854e
1 //===-- memprof_allocator.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemProfiler, a memory profiler.
11 // Implementation of MemProf's memory allocator, which uses the allocator
12 // from sanitizer_common.
14 //===----------------------------------------------------------------------===//
16 #include "memprof_allocator.h"
17 #include "memprof_mapping.h"
18 #include "memprof_mibmap.h"
19 #include "memprof_rawprofile.h"
20 #include "memprof_stack.h"
21 #include "memprof_thread.h"
22 #include "profile/MemProfData.inc"
23 #include "sanitizer_common/sanitizer_allocator_checks.h"
24 #include "sanitizer_common/sanitizer_allocator_interface.h"
25 #include "sanitizer_common/sanitizer_allocator_report.h"
26 #include "sanitizer_common/sanitizer_array_ref.h"
27 #include "sanitizer_common/sanitizer_common.h"
28 #include "sanitizer_common/sanitizer_errno.h"
29 #include "sanitizer_common/sanitizer_file.h"
30 #include "sanitizer_common/sanitizer_flags.h"
31 #include "sanitizer_common/sanitizer_internal_defs.h"
32 #include "sanitizer_common/sanitizer_stackdepot.h"
34 #include <sched.h>
35 #include <time.h>
37 namespace __memprof {
38 namespace {
39 using ::llvm::memprof::MemInfoBlock;
41 void Print(const MemInfoBlock &M, const u64 id, bool print_terse) {
42 u64 p;
44 if (print_terse) {
45 p = M.TotalSize * 100 / M.AllocCount;
46 Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100,
47 M.MinSize, M.MaxSize);
48 p = M.TotalAccessCount * 100 / M.AllocCount;
49 Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount,
50 M.MaxAccessCount);
51 p = M.TotalLifetime * 100 / M.AllocCount;
52 Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime,
53 M.MaxLifetime);
54 Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps,
55 M.NumSameAllocCpu, M.NumSameDeallocCpu);
56 } else {
57 p = M.TotalSize * 100 / M.AllocCount;
58 Printf("Memory allocation stack id = %llu\n", id);
59 Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n",
60 M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize);
61 p = M.TotalAccessCount * 100 / M.AllocCount;
62 Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100,
63 p % 100, M.MinAccessCount, M.MaxAccessCount);
64 p = M.TotalLifetime * 100 / M.AllocCount;
65 Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100,
66 p % 100, M.MinLifetime, M.MaxLifetime);
67 Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc "
68 "cpu: %u, num same dealloc_cpu: %u\n",
69 M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu,
70 M.NumSameDeallocCpu);
73 } // namespace
75 static int GetCpuId(void) {
76 // _memprof_preinit is called via the preinit_array, which subsequently calls
77 // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu
78 // will seg fault as the address of __vdso_getcpu will be null.
79 if (!memprof_inited)
80 return -1;
81 return sched_getcpu();
84 // Compute the timestamp in ms.
85 static int GetTimestamp(void) {
86 // timespec_get will segfault if called from dl_init
87 if (!memprof_timestamp_inited) {
88 // By returning 0, this will be effectively treated as being
89 // timestamped at memprof init time (when memprof_init_timestamp_s
90 // is initialized).
91 return 0;
93 timespec ts;
94 clock_gettime(CLOCK_REALTIME, &ts);
95 return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000;
98 static MemprofAllocator &get_allocator();
100 // The memory chunk allocated from the underlying allocator looks like this:
101 // H H U U U U U U
102 // H -- ChunkHeader (32 bytes)
103 // U -- user memory.
105 // If there is left padding before the ChunkHeader (due to use of memalign),
106 // we store a magic value in the first uptr word of the memory block and
107 // store the address of ChunkHeader in the next uptr.
108 // M B L L L L L L L L L H H U U U U U U
109 // | ^
110 // ---------------------|
111 // M -- magic value kAllocBegMagic
112 // B -- address of ChunkHeader pointing to the first 'H'
114 constexpr uptr kMaxAllowedMallocBits = 40;
116 // Should be no more than 32-bytes
117 struct ChunkHeader {
118 // 1-st 4 bytes.
119 u32 alloc_context_id;
120 // 2-nd 4 bytes
121 u32 cpu_id;
122 // 3-rd 4 bytes
123 u32 timestamp_ms;
124 // 4-th 4 bytes
125 // Note only 1 bit is needed for this flag if we need space in the future for
126 // more fields.
127 u32 from_memalign;
128 // 5-th and 6-th 4 bytes
129 // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this
130 // could be shrunk to kMaxAllowedMallocBits if we need space in the future for
131 // more fields.
132 atomic_uint64_t user_requested_size;
133 // 23 bits available
134 // 7-th and 8-th 4 bytes
135 u64 data_type_id; // TODO: hash of type name
138 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
139 COMPILER_CHECK(kChunkHeaderSize == 32);
141 struct MemprofChunk : ChunkHeader {
142 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
143 uptr UsedSize() {
144 return atomic_load(&user_requested_size, memory_order_relaxed);
146 void *AllocBeg() {
147 if (from_memalign)
148 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
149 return reinterpret_cast<void *>(this);
153 class LargeChunkHeader {
154 static constexpr uptr kAllocBegMagic =
155 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
156 atomic_uintptr_t magic;
157 MemprofChunk *chunk_header;
159 public:
160 MemprofChunk *Get() const {
161 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
162 ? chunk_header
163 : nullptr;
166 void Set(MemprofChunk *p) {
167 if (p) {
168 chunk_header = p;
169 atomic_store(&magic, kAllocBegMagic, memory_order_release);
170 return;
173 uptr old = kAllocBegMagic;
174 if (!atomic_compare_exchange_strong(&magic, &old, 0,
175 memory_order_release)) {
176 CHECK_EQ(old, kAllocBegMagic);
181 void FlushUnneededMemProfShadowMemory(uptr p, uptr size) {
182 // Since memprof's mapping is compacting, the shadow chunk may be
183 // not page-aligned, so we only flush the page-aligned portion.
184 ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size));
187 void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const {
188 // Statistics.
189 MemprofStats &thread_stats = GetCurrentThreadStats();
190 thread_stats.mmaps++;
191 thread_stats.mmaped += size;
194 void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
195 // We are about to unmap a chunk of user memory.
196 // Mark the corresponding shadow memory as not needed.
197 FlushUnneededMemProfShadowMemory(p, size);
198 // Statistics.
199 MemprofStats &thread_stats = GetCurrentThreadStats();
200 thread_stats.munmaps++;
201 thread_stats.munmaped += size;
204 AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) {
205 CHECK(ms);
206 return &ms->allocator_cache;
209 // Accumulates the access count from the shadow for the given pointer and size.
210 u64 GetShadowCount(uptr p, u32 size) {
211 u64 *shadow = (u64 *)MEM_TO_SHADOW(p);
212 u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size);
213 u64 count = 0;
214 for (; shadow <= shadow_end; shadow++)
215 count += *shadow;
216 return count;
219 // Clears the shadow counters (when memory is allocated).
220 void ClearShadow(uptr addr, uptr size) {
221 CHECK(AddrIsAlignedByGranularity(addr));
222 CHECK(AddrIsInMem(addr));
223 CHECK(AddrIsAlignedByGranularity(addr + size));
224 CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY));
225 CHECK(REAL(memset));
226 uptr shadow_beg = MEM_TO_SHADOW(addr);
227 uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1;
228 if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) {
229 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
230 } else {
231 uptr page_size = GetPageSizeCached();
232 uptr page_beg = RoundUpTo(shadow_beg, page_size);
233 uptr page_end = RoundDownTo(shadow_end, page_size);
235 if (page_beg >= page_end) {
236 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
237 } else {
238 if (page_beg != shadow_beg) {
239 REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg);
241 if (page_end != shadow_end) {
242 REAL(memset)((void *)page_end, 0, shadow_end - page_end);
244 ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr);
249 struct Allocator {
250 static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits;
252 MemprofAllocator allocator;
253 StaticSpinMutex fallback_mutex;
254 AllocatorCache fallback_allocator_cache;
256 uptr max_user_defined_malloc_size;
258 // Holds the mapping of stack ids to MemInfoBlocks.
259 MIBMapTy MIBMap;
261 atomic_uint8_t destructing;
262 atomic_uint8_t constructed;
263 bool print_text;
265 // ------------------- Initialization ------------------------
266 explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) {
267 atomic_store_relaxed(&destructing, 0);
268 atomic_store_relaxed(&constructed, 1);
271 ~Allocator() {
272 atomic_store_relaxed(&destructing, 1);
273 FinishAndWrite();
276 static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value,
277 void *Arg) {
278 SpinMutexLock l(&Value->mutex);
279 Print(Value->mib, Key, bool(Arg));
282 void FinishAndWrite() {
283 if (print_text && common_flags()->print_module_map)
284 DumpProcessMap();
286 allocator.ForceLock();
288 InsertLiveBlocks();
289 if (print_text) {
290 if (!flags()->print_terse)
291 Printf("Recorded MIBs (incl. live on exit):\n");
292 MIBMap.ForEach(PrintCallback,
293 reinterpret_cast<void *>(flags()->print_terse));
294 StackDepotPrintAll();
295 } else {
296 // Serialize the contents to a raw profile. Format documented in
297 // memprof_rawprofile.h.
298 char *Buffer = nullptr;
300 __sanitizer::ListOfModules List;
301 List.init();
302 ArrayRef<LoadedModule> Modules(List.begin(), List.end());
303 u64 BytesSerialized = SerializeToRawProfile(MIBMap, Modules, Buffer);
304 CHECK(Buffer && BytesSerialized && "could not serialize to buffer");
305 report_file.Write(Buffer, BytesSerialized);
308 allocator.ForceUnlock();
311 // Inserts any blocks which have been allocated but not yet deallocated.
312 void InsertLiveBlocks() {
313 allocator.ForEachChunk(
314 [](uptr chunk, void *alloc) {
315 u64 user_requested_size;
316 Allocator *A = (Allocator *)alloc;
317 MemprofChunk *m =
318 A->GetMemprofChunk((void *)chunk, user_requested_size);
319 if (!m)
320 return;
321 uptr user_beg = ((uptr)m) + kChunkHeaderSize;
322 u64 c = GetShadowCount(user_beg, user_requested_size);
323 long curtime = GetTimestamp();
324 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
325 m->cpu_id, GetCpuId());
326 InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap);
328 this);
331 void InitLinkerInitialized() {
332 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
333 allocator.InitLinkerInitialized(
334 common_flags()->allocator_release_to_os_interval_ms);
335 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
336 ? common_flags()->max_allocation_size_mb
337 << 20
338 : kMaxAllowedMallocSize;
341 // -------------------- Allocation/Deallocation routines ---------------
342 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
343 AllocType alloc_type) {
344 if (UNLIKELY(!memprof_inited))
345 MemprofInitFromRtl();
346 if (UNLIKELY(IsRssLimitExceeded())) {
347 if (AllocatorMayReturnNull())
348 return nullptr;
349 ReportRssLimitExceeded(stack);
351 CHECK(stack);
352 const uptr min_alignment = MEMPROF_ALIGNMENT;
353 if (alignment < min_alignment)
354 alignment = min_alignment;
355 if (size == 0) {
356 // We'd be happy to avoid allocating memory for zero-size requests, but
357 // some programs/tests depend on this behavior and assume that malloc
358 // would not return NULL even for zero-size allocations. Moreover, it
359 // looks like operator new should never return NULL, and results of
360 // consecutive "new" calls must be different even if the allocated size
361 // is zero.
362 size = 1;
364 CHECK(IsPowerOfTwo(alignment));
365 uptr rounded_size = RoundUpTo(size, alignment);
366 uptr needed_size = rounded_size + kChunkHeaderSize;
367 if (alignment > min_alignment)
368 needed_size += alignment;
369 CHECK(IsAligned(needed_size, min_alignment));
370 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
371 size > max_user_defined_malloc_size) {
372 if (AllocatorMayReturnNull()) {
373 Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size);
374 return nullptr;
376 uptr malloc_limit =
377 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
378 ReportAllocationSizeTooBig(size, malloc_limit, stack);
381 MemprofThread *t = GetCurrentThread();
382 void *allocated;
383 if (t) {
384 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
385 allocated = allocator.Allocate(cache, needed_size, 8);
386 } else {
387 SpinMutexLock l(&fallback_mutex);
388 AllocatorCache *cache = &fallback_allocator_cache;
389 allocated = allocator.Allocate(cache, needed_size, 8);
391 if (UNLIKELY(!allocated)) {
392 SetAllocatorOutOfMemory();
393 if (AllocatorMayReturnNull())
394 return nullptr;
395 ReportOutOfMemory(size, stack);
398 uptr alloc_beg = reinterpret_cast<uptr>(allocated);
399 uptr alloc_end = alloc_beg + needed_size;
400 uptr beg_plus_header = alloc_beg + kChunkHeaderSize;
401 uptr user_beg = beg_plus_header;
402 if (!IsAligned(user_beg, alignment))
403 user_beg = RoundUpTo(user_beg, alignment);
404 uptr user_end = user_beg + size;
405 CHECK_LE(user_end, alloc_end);
406 uptr chunk_beg = user_beg - kChunkHeaderSize;
407 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
408 m->from_memalign = alloc_beg != chunk_beg;
409 CHECK(size);
411 m->cpu_id = GetCpuId();
412 m->timestamp_ms = GetTimestamp();
413 m->alloc_context_id = StackDepotPut(*stack);
415 uptr size_rounded_down_to_granularity =
416 RoundDownTo(size, SHADOW_GRANULARITY);
417 if (size_rounded_down_to_granularity)
418 ClearShadow(user_beg, size_rounded_down_to_granularity);
420 MemprofStats &thread_stats = GetCurrentThreadStats();
421 thread_stats.mallocs++;
422 thread_stats.malloced += size;
423 thread_stats.malloced_overhead += needed_size - size;
424 if (needed_size > SizeClassMap::kMaxSize)
425 thread_stats.malloc_large++;
426 else
427 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
429 void *res = reinterpret_cast<void *>(user_beg);
430 atomic_store(&m->user_requested_size, size, memory_order_release);
431 if (alloc_beg != chunk_beg) {
432 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
433 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
435 RunMallocHooks(res, size);
436 return res;
439 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
440 BufferedStackTrace *stack, AllocType alloc_type) {
441 uptr p = reinterpret_cast<uptr>(ptr);
442 if (p == 0)
443 return;
445 RunFreeHooks(ptr);
447 uptr chunk_beg = p - kChunkHeaderSize;
448 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
450 u64 user_requested_size =
451 atomic_exchange(&m->user_requested_size, 0, memory_order_acquire);
452 if (memprof_inited && atomic_load_relaxed(&constructed) &&
453 !atomic_load_relaxed(&destructing)) {
454 u64 c = GetShadowCount(p, user_requested_size);
455 long curtime = GetTimestamp();
457 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
458 m->cpu_id, GetCpuId());
459 InsertOrMerge(m->alloc_context_id, newMIB, MIBMap);
462 MemprofStats &thread_stats = GetCurrentThreadStats();
463 thread_stats.frees++;
464 thread_stats.freed += user_requested_size;
466 void *alloc_beg = m->AllocBeg();
467 if (alloc_beg != m) {
468 // Clear the magic value, as allocator internals may overwrite the
469 // contents of deallocated chunk, confusing GetMemprofChunk lookup.
470 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr);
473 MemprofThread *t = GetCurrentThread();
474 if (t) {
475 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
476 allocator.Deallocate(cache, alloc_beg);
477 } else {
478 SpinMutexLock l(&fallback_mutex);
479 AllocatorCache *cache = &fallback_allocator_cache;
480 allocator.Deallocate(cache, alloc_beg);
484 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
485 CHECK(old_ptr && new_size);
486 uptr p = reinterpret_cast<uptr>(old_ptr);
487 uptr chunk_beg = p - kChunkHeaderSize;
488 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
490 MemprofStats &thread_stats = GetCurrentThreadStats();
491 thread_stats.reallocs++;
492 thread_stats.realloced += new_size;
494 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
495 if (new_ptr) {
496 CHECK_NE(REAL(memcpy), nullptr);
497 uptr memcpy_size = Min(new_size, m->UsedSize());
498 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
499 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
501 return new_ptr;
504 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
505 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
506 if (AllocatorMayReturnNull())
507 return nullptr;
508 ReportCallocOverflow(nmemb, size, stack);
510 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
511 // If the memory comes from the secondary allocator no need to clear it
512 // as it comes directly from mmap.
513 if (ptr && allocator.FromPrimary(ptr))
514 REAL(memset)(ptr, 0, nmemb * size);
515 return ptr;
518 void CommitBack(MemprofThreadLocalMallocStorage *ms,
519 BufferedStackTrace *stack) {
520 AllocatorCache *ac = GetAllocatorCache(ms);
521 allocator.SwallowCache(ac);
524 // -------------------------- Chunk lookup ----------------------
526 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
527 MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) {
528 if (!alloc_beg)
529 return nullptr;
530 MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
531 if (!p) {
532 if (!allocator.FromPrimary(alloc_beg))
533 return nullptr;
534 p = reinterpret_cast<MemprofChunk *>(alloc_beg);
536 // The size is reset to 0 on deallocation (and a min of 1 on
537 // allocation).
538 user_requested_size =
539 atomic_load(&p->user_requested_size, memory_order_acquire);
540 if (user_requested_size)
541 return p;
542 return nullptr;
545 MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) {
546 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
547 return GetMemprofChunk(alloc_beg, user_requested_size);
550 uptr AllocationSize(uptr p) {
551 u64 user_requested_size;
552 MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size);
553 if (!m)
554 return 0;
555 if (m->Beg() != p)
556 return 0;
557 return user_requested_size;
560 uptr AllocationSizeFast(uptr p) {
561 return reinterpret_cast<MemprofChunk *>(p - kChunkHeaderSize)->UsedSize();
564 void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); }
566 void PrintStats() { allocator.PrintStats(); }
568 void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
569 allocator.ForceLock();
570 fallback_mutex.Lock();
573 void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
574 fallback_mutex.Unlock();
575 allocator.ForceUnlock();
579 static Allocator instance(LINKER_INITIALIZED);
581 static MemprofAllocator &get_allocator() { return instance.allocator; }
583 void InitializeAllocator() { instance.InitLinkerInitialized(); }
585 void MemprofThreadLocalMallocStorage::CommitBack() {
586 GET_STACK_TRACE_MALLOC;
587 instance.CommitBack(this, &stack);
590 void PrintInternalAllocatorStats() { instance.PrintStats(); }
592 void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
593 instance.Deallocate(ptr, 0, 0, stack, alloc_type);
596 void memprof_delete(void *ptr, uptr size, uptr alignment,
597 BufferedStackTrace *stack, AllocType alloc_type) {
598 instance.Deallocate(ptr, size, alignment, stack, alloc_type);
601 void *memprof_malloc(uptr size, BufferedStackTrace *stack) {
602 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
605 void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
606 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
609 void *memprof_reallocarray(void *p, uptr nmemb, uptr size,
610 BufferedStackTrace *stack) {
611 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
612 errno = errno_ENOMEM;
613 if (AllocatorMayReturnNull())
614 return nullptr;
615 ReportReallocArrayOverflow(nmemb, size, stack);
617 return memprof_realloc(p, nmemb * size, stack);
620 void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) {
621 if (!p)
622 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
623 if (size == 0) {
624 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
625 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
626 return nullptr;
628 // Allocate a size of 1 if we shouldn't free() on Realloc to 0
629 size = 1;
631 return SetErrnoOnNull(instance.Reallocate(p, size, stack));
634 void *memprof_valloc(uptr size, BufferedStackTrace *stack) {
635 return SetErrnoOnNull(
636 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC));
639 void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) {
640 uptr PageSize = GetPageSizeCached();
641 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
642 errno = errno_ENOMEM;
643 if (AllocatorMayReturnNull())
644 return nullptr;
645 ReportPvallocOverflow(size, stack);
647 // pvalloc(0) should allocate one page.
648 size = size ? RoundUpTo(size, PageSize) : PageSize;
649 return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC));
652 void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
653 AllocType alloc_type) {
654 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
655 errno = errno_EINVAL;
656 if (AllocatorMayReturnNull())
657 return nullptr;
658 ReportInvalidAllocationAlignment(alignment, stack);
660 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type));
663 void *memprof_aligned_alloc(uptr alignment, uptr size,
664 BufferedStackTrace *stack) {
665 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
666 errno = errno_EINVAL;
667 if (AllocatorMayReturnNull())
668 return nullptr;
669 ReportInvalidAlignedAllocAlignment(size, alignment, stack);
671 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC));
674 int memprof_posix_memalign(void **memptr, uptr alignment, uptr size,
675 BufferedStackTrace *stack) {
676 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
677 if (AllocatorMayReturnNull())
678 return errno_EINVAL;
679 ReportInvalidPosixMemalignAlignment(alignment, stack);
681 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC);
682 if (UNLIKELY(!ptr))
683 // OOM error is already taken care of by Allocate.
684 return errno_ENOMEM;
685 CHECK(IsAligned((uptr)ptr, alignment));
686 *memptr = ptr;
687 return 0;
690 static const void *memprof_malloc_begin(const void *p) {
691 u64 user_requested_size;
692 MemprofChunk *m =
693 instance.GetMemprofChunkByAddr((uptr)p, user_requested_size);
694 if (!m)
695 return nullptr;
696 if (user_requested_size == 0)
697 return nullptr;
699 return (const void *)m->Beg();
702 uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
703 if (!ptr)
704 return 0;
705 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
706 return usable_size;
709 } // namespace __memprof
711 // ---------------------- Interface ---------------- {{{1
712 using namespace __memprof;
714 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
716 int __sanitizer_get_ownership(const void *p) {
717 return memprof_malloc_usable_size(p, 0, 0) != 0;
720 const void *__sanitizer_get_allocated_begin(const void *p) {
721 return memprof_malloc_begin(p);
724 uptr __sanitizer_get_allocated_size(const void *p) {
725 return memprof_malloc_usable_size(p, 0, 0);
728 uptr __sanitizer_get_allocated_size_fast(const void *p) {
729 DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
730 uptr ret = instance.AllocationSizeFast(reinterpret_cast<uptr>(p));
731 DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
732 return ret;
735 int __memprof_profile_dump() {
736 instance.FinishAndWrite();
737 // In the future we may want to return non-zero if there are any errors
738 // detected during the dumping process.
739 return 0;