Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / compiler-rt / lib / sanitizer_common / sanitizer_common.h
blob6b327a4aa16f0b73ecfb58c4d31d4c492ac040eb
1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between run-time libraries of sanitizers.
11 // It declares common functions and classes that are used in both runtimes.
12 // Implementation of some functions are provided in sanitizer_common, while
13 // others must be defined by run-time library itself.
14 //===----------------------------------------------------------------------===//
15 #ifndef SANITIZER_COMMON_H
16 #define SANITIZER_COMMON_H
18 #include "sanitizer_flags.h"
19 #include "sanitizer_internal_defs.h"
20 #include "sanitizer_libc.h"
21 #include "sanitizer_list.h"
22 #include "sanitizer_mutex.h"
24 #if defined(_MSC_VER) && !defined(__clang__)
25 extern "C" void _ReadWriteBarrier();
26 #pragma intrinsic(_ReadWriteBarrier)
27 #endif
29 namespace __sanitizer {
31 struct AddressInfo;
32 struct BufferedStackTrace;
33 struct SignalContext;
34 struct StackTrace;
36 // Constants.
37 const uptr kWordSize = SANITIZER_WORDSIZE / 8;
38 const uptr kWordSizeInBits = 8 * kWordSize;
40 const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE;
42 const uptr kMaxPathLength = 4096;
44 const uptr kMaxThreadStackSize = 1 << 30; // 1Gb
46 const uptr kErrorMessageBufferSize = 1 << 16;
48 // Denotes fake PC values that come from JIT/JAVA/etc.
49 // For such PC values __tsan_symbolize_external_ex() will be called.
50 const u64 kExternalPCBit = 1ULL << 60;
52 extern const char *SanitizerToolName; // Can be changed by the tool.
54 extern atomic_uint32_t current_verbosity;
55 inline void SetVerbosity(int verbosity) {
56 atomic_store(&current_verbosity, verbosity, memory_order_relaxed);
58 inline int Verbosity() {
59 return atomic_load(&current_verbosity, memory_order_relaxed);
62 #if SANITIZER_ANDROID
63 inline uptr GetPageSize() {
64 // Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array.
65 return 4096;
67 inline uptr GetPageSizeCached() {
68 return 4096;
70 #else
71 uptr GetPageSize();
72 extern uptr PageSizeCached;
73 inline uptr GetPageSizeCached() {
74 if (!PageSizeCached)
75 PageSizeCached = GetPageSize();
76 return PageSizeCached;
78 #endif
79 uptr GetMmapGranularity();
80 uptr GetMaxVirtualAddress();
81 uptr GetMaxUserVirtualAddress();
82 // Threads
83 tid_t GetTid();
84 int TgKill(pid_t pid, tid_t tid, int sig);
85 uptr GetThreadSelf();
86 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
87 uptr *stack_bottom);
88 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
89 uptr *tls_addr, uptr *tls_size);
91 // Memory management
92 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
93 inline void *MmapOrDieQuietly(uptr size, const char *mem_type) {
94 return MmapOrDie(size, mem_type, /*raw_report*/ true);
96 void UnmapOrDie(void *addr, uptr size);
97 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that
98 // case returns nullptr.
99 void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
100 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr)
101 WARN_UNUSED_RESULT;
102 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size,
103 const char *name = nullptr) WARN_UNUSED_RESULT;
104 void *MmapNoReserveOrDie(uptr size, const char *mem_type);
105 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
106 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
107 // that case returns nullptr.
108 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size,
109 const char *name = nullptr);
110 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
111 void *MmapNoAccess(uptr size);
112 // Map aligned chunk of address space; size and alignment are powers of two.
113 // Dies on all but out of memory errors, in the latter case returns nullptr.
114 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
115 const char *mem_type);
116 // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an
117 // unaccessible memory.
118 bool MprotectNoAccess(uptr addr, uptr size);
119 bool MprotectReadOnly(uptr addr, uptr size);
120 bool MprotectReadWrite(uptr addr, uptr size);
122 void MprotectMallocZones(void *addr, int prot);
124 #if SANITIZER_WINDOWS
125 // Zero previously mmap'd memory. Currently used only on Windows.
126 bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) WARN_UNUSED_RESULT;
127 #endif
129 #if SANITIZER_LINUX
130 // Unmap memory. Currently only used on Linux.
131 void UnmapFromTo(uptr from, uptr to);
132 #endif
134 // Maps shadow_size_bytes of shadow memory and returns shadow address. It will
135 // be aligned to the mmap granularity * 2^shadow_scale, or to
136 // 2^min_shadow_base_alignment if that is larger. The returned address will
137 // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and
138 // shadow_size_bytes bytes on the right, which on linux is mapped no access.
139 // The high_mem_end may be updated if the original shadow size doesn't fit.
140 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
141 uptr min_shadow_base_alignment, uptr &high_mem_end);
143 // Let S = max(shadow_size, num_aliases * alias_size, ring_buffer_size).
144 // Reserves 2*S bytes of address space to the right of the returned address and
145 // ring_buffer_size bytes to the left. The returned address is aligned to 2*S.
146 // Also creates num_aliases regions of accessible memory starting at offset S
147 // from the returned address. Each region has size alias_size and is backed by
148 // the same physical memory.
149 uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
150 uptr num_aliases, uptr ring_buffer_size);
152 // Reserve memory range [beg, end]. If madvise_shadow is true then apply
153 // madvise (e.g. hugepages, core dumping) requested by options.
154 void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name,
155 bool madvise_shadow = true);
157 // Protect size bytes of memory starting at addr. Also try to protect
158 // several pages at the start of the address space as specified by
159 // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start.
160 void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start,
161 uptr zero_base_max_shadow_start);
163 // Find an available address space.
164 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
165 uptr *largest_gap_found, uptr *max_occupied_addr);
167 // Used to check if we can map shadow memory to a fixed location.
168 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
169 // Releases memory pages entirely within the [beg, end] address range. Noop if
170 // the provided range does not contain at least one entire page.
171 void ReleaseMemoryPagesToOS(uptr beg, uptr end);
172 void IncreaseTotalMmap(uptr size);
173 void DecreaseTotalMmap(uptr size);
174 uptr GetRSS();
175 void SetShadowRegionHugePageMode(uptr addr, uptr length);
176 bool DontDumpShadowMemory(uptr addr, uptr length);
177 // Check if the built VMA size matches the runtime one.
178 void CheckVMASize();
179 void RunMallocHooks(void *ptr, uptr size);
180 void RunFreeHooks(void *ptr);
182 class ReservedAddressRange {
183 public:
184 uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0);
185 uptr InitAligned(uptr size, uptr align, const char *name = nullptr);
186 uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr);
187 uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
188 void Unmap(uptr addr, uptr size);
189 void *base() const { return base_; }
190 uptr size() const { return size_; }
192 private:
193 void* base_;
194 uptr size_;
195 const char* name_;
196 uptr os_handle_;
199 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
200 /*out*/ uptr *stats);
202 // Parse the contents of /proc/self/smaps and generate a memory profile.
203 // |cb| is a tool-specific callback that fills the |stats| array.
204 void GetMemoryProfile(fill_profile_f cb, uptr *stats);
205 void ParseUnixMemoryProfile(fill_profile_f cb, uptr *stats, char *smaps,
206 uptr smaps_len);
208 // Simple low-level (mmap-based) allocator for internal use. Doesn't have
209 // constructor, so all instances of LowLevelAllocator should be
210 // linker initialized.
212 // NOTE: Users should instead use the singleton provided via
213 // `GetGlobalLowLevelAllocator()` rather than create a new one. This way, the
214 // number of mmap fragments can be reduced and use the same contiguous mmap
215 // provided by this singleton.
216 class LowLevelAllocator {
217 public:
218 // Requires an external lock.
219 void *Allocate(uptr size);
221 private:
222 char *allocated_end_;
223 char *allocated_current_;
225 // Set the min alignment of LowLevelAllocator to at least alignment.
226 void SetLowLevelAllocateMinAlignment(uptr alignment);
227 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
228 // Allows to register tool-specific callbacks for LowLevelAllocator.
229 // Passing NULL removes the callback.
230 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
232 LowLevelAllocator &GetGlobalLowLevelAllocator();
234 // IO
235 void CatastrophicErrorWrite(const char *buffer, uptr length);
236 void RawWrite(const char *buffer);
237 bool ColorizeReports();
238 void RemoveANSIEscapeSequencesFromString(char *buffer);
239 void Printf(const char *format, ...) FORMAT(1, 2);
240 void Report(const char *format, ...) FORMAT(1, 2);
241 void SetPrintfAndReportCallback(void (*callback)(const char *));
242 #define VReport(level, ...) \
243 do { \
244 if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
245 } while (0)
246 #define VPrintf(level, ...) \
247 do { \
248 if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
249 } while (0)
251 // Lock sanitizer error reporting and protects against nested errors.
252 class ScopedErrorReportLock {
253 public:
254 ScopedErrorReportLock() SANITIZER_ACQUIRE(mutex_) { Lock(); }
255 ~ScopedErrorReportLock() SANITIZER_RELEASE(mutex_) { Unlock(); }
257 static void Lock() SANITIZER_ACQUIRE(mutex_);
258 static void Unlock() SANITIZER_RELEASE(mutex_);
259 static void CheckLocked() SANITIZER_CHECK_LOCKED(mutex_);
261 private:
262 static atomic_uintptr_t reporting_thread_;
263 static StaticSpinMutex mutex_;
266 extern uptr stoptheworld_tracer_pid;
267 extern uptr stoptheworld_tracer_ppid;
269 bool IsAccessibleMemoryRange(uptr beg, uptr size);
271 // Error report formatting.
272 const char *StripPathPrefix(const char *filepath,
273 const char *strip_file_prefix);
274 // Strip the directories from the module name.
275 const char *StripModuleName(const char *module);
277 // OS
278 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
279 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
280 uptr ReadBinaryDir(/*out*/ char *buf, uptr buf_len);
281 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
282 const char *GetProcessName();
283 void UpdateProcessName();
284 void CacheBinaryName();
285 void DisableCoreDumperIfNecessary();
286 void DumpProcessMap();
287 const char *GetEnv(const char *name);
288 bool SetEnv(const char *name, const char *value);
290 u32 GetUid();
291 void ReExec();
292 void CheckASLR();
293 void CheckMPROTECT();
294 char **GetArgv();
295 char **GetEnviron();
296 void PrintCmdline();
297 bool StackSizeIsUnlimited();
298 void SetStackSizeLimitInBytes(uptr limit);
299 bool AddressSpaceIsUnlimited();
300 void SetAddressSpaceUnlimited();
301 void AdjustStackSize(void *attr);
302 void PlatformPrepareForSandboxing(void *args);
303 void SetSandboxingCallback(void (*f)());
305 void InitializeCoverage(bool enabled, const char *coverage_dir);
307 void InitTlsSize();
308 uptr GetTlsSize();
310 // Other
311 void WaitForDebugger(unsigned seconds, const char *label);
312 void SleepForSeconds(unsigned seconds);
313 void SleepForMillis(unsigned millis);
314 u64 NanoTime();
315 u64 MonotonicNanoTime();
316 int Atexit(void (*function)(void));
317 bool TemplateMatch(const char *templ, const char *str);
319 // Exit
320 void NORETURN Abort();
321 void NORETURN Die();
322 void NORETURN
323 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
324 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
325 const char *mmap_type, error_t err,
326 bool raw_report = false);
327 void NORETURN ReportMunmapFailureAndDie(void *ptr, uptr size, error_t err,
328 bool raw_report = false);
330 // Returns true if the platform-specific error reported is an OOM error.
331 bool ErrorIsOOM(error_t err);
333 // This reports an error in the form:
335 // `ERROR: {{SanitizerToolName}}: out of memory: {{err_msg}}`
337 // Downstream tools that read sanitizer output will know that errors starting
338 // in this format are specifically OOM errors.
339 #define ERROR_OOM(err_msg, ...) \
340 Report("ERROR: %s: out of memory: " err_msg, SanitizerToolName, __VA_ARGS__)
342 // Specific tools may override behavior of "Die" function to do tool-specific
343 // job.
344 typedef void (*DieCallbackType)(void);
346 // It's possible to add several callbacks that would be run when "Die" is
347 // called. The callbacks will be run in the opposite order. The tools are
348 // strongly recommended to setup all callbacks during initialization, when there
349 // is only a single thread.
350 bool AddDieCallback(DieCallbackType callback);
351 bool RemoveDieCallback(DieCallbackType callback);
353 void SetUserDieCallback(DieCallbackType callback);
355 void SetCheckUnwindCallback(void (*callback)());
357 // Functions related to signal handling.
358 typedef void (*SignalHandlerType)(int, void *, void *);
359 HandleSignalMode GetHandleSignalMode(int signum);
360 void InstallDeadlySignalHandlers(SignalHandlerType handler);
362 // Signal reporting.
363 // Each sanitizer uses slightly different implementation of stack unwinding.
364 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
365 const void *callback_context,
366 BufferedStackTrace *stack);
367 // Print deadly signal report and die.
368 void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
369 UnwindSignalStackCallbackType unwind,
370 const void *unwind_context);
372 // Part of HandleDeadlySignal, exposed for asan.
373 void StartReportDeadlySignal();
374 // Part of HandleDeadlySignal, exposed for asan.
375 void ReportDeadlySignal(const SignalContext &sig, u32 tid,
376 UnwindSignalStackCallbackType unwind,
377 const void *unwind_context);
379 // Alternative signal stack (POSIX-only).
380 void SetAlternateSignalStack();
381 void UnsetAlternateSignalStack();
383 // Construct a one-line string:
384 // SUMMARY: SanitizerToolName: error_message
385 // and pass it to __sanitizer_report_error_summary.
386 // If alt_tool_name is provided, it's used in place of SanitizerToolName.
387 void ReportErrorSummary(const char *error_message,
388 const char *alt_tool_name = nullptr);
389 // Same as above, but construct error_message as:
390 // error_type file:line[:column][ function]
391 void ReportErrorSummary(const char *error_type, const AddressInfo &info,
392 const char *alt_tool_name = nullptr);
393 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
394 void ReportErrorSummary(const char *error_type, const StackTrace *trace,
395 const char *alt_tool_name = nullptr);
397 void ReportMmapWriteExec(int prot, int mflags);
399 // Math
400 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
401 extern "C" {
402 unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
403 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
404 #if defined(_WIN64)
405 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);
406 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
407 #endif
409 #endif
411 inline uptr MostSignificantSetBitIndex(uptr x) {
412 CHECK_NE(x, 0U);
413 unsigned long up;
414 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
415 # ifdef _WIN64
416 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
417 # else
418 up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
419 # endif
420 #elif defined(_WIN64)
421 _BitScanReverse64(&up, x);
422 #else
423 _BitScanReverse(&up, x);
424 #endif
425 return up;
428 inline uptr LeastSignificantSetBitIndex(uptr x) {
429 CHECK_NE(x, 0U);
430 unsigned long up;
431 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
432 # ifdef _WIN64
433 up = __builtin_ctzll(x);
434 # else
435 up = __builtin_ctzl(x);
436 # endif
437 #elif defined(_WIN64)
438 _BitScanForward64(&up, x);
439 #else
440 _BitScanForward(&up, x);
441 #endif
442 return up;
445 inline constexpr bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; }
447 inline uptr RoundUpToPowerOfTwo(uptr size) {
448 CHECK(size);
449 if (IsPowerOfTwo(size)) return size;
451 uptr up = MostSignificantSetBitIndex(size);
452 CHECK_LT(size, (1ULL << (up + 1)));
453 CHECK_GT(size, (1ULL << up));
454 return 1ULL << (up + 1);
457 inline constexpr uptr RoundUpTo(uptr size, uptr boundary) {
458 RAW_CHECK(IsPowerOfTwo(boundary));
459 return (size + boundary - 1) & ~(boundary - 1);
462 inline constexpr uptr RoundDownTo(uptr x, uptr boundary) {
463 return x & ~(boundary - 1);
466 inline constexpr bool IsAligned(uptr a, uptr alignment) {
467 return (a & (alignment - 1)) == 0;
470 inline uptr Log2(uptr x) {
471 CHECK(IsPowerOfTwo(x));
472 return LeastSignificantSetBitIndex(x);
475 // Don't use std::min, std::max or std::swap, to minimize dependency
476 // on libstdc++.
477 template <class T>
478 constexpr T Min(T a, T b) {
479 return a < b ? a : b;
481 template <class T>
482 constexpr T Max(T a, T b) {
483 return a > b ? a : b;
485 template <class T>
486 constexpr T Abs(T a) {
487 return a < 0 ? -a : a;
489 template<class T> void Swap(T& a, T& b) {
490 T tmp = a;
491 a = b;
492 b = tmp;
495 // Char handling
496 inline bool IsSpace(int c) {
497 return (c == ' ') || (c == '\n') || (c == '\t') ||
498 (c == '\f') || (c == '\r') || (c == '\v');
500 inline bool IsDigit(int c) {
501 return (c >= '0') && (c <= '9');
503 inline int ToLower(int c) {
504 return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
507 // A low-level vector based on mmap. May incur a significant memory overhead for
508 // small vectors.
509 // WARNING: The current implementation supports only POD types.
510 template<typename T>
511 class InternalMmapVectorNoCtor {
512 public:
513 using value_type = T;
514 void Initialize(uptr initial_capacity) {
515 capacity_bytes_ = 0;
516 size_ = 0;
517 data_ = 0;
518 reserve(initial_capacity);
520 void Destroy() { UnmapOrDie(data_, capacity_bytes_); }
521 T &operator[](uptr i) {
522 CHECK_LT(i, size_);
523 return data_[i];
525 const T &operator[](uptr i) const {
526 CHECK_LT(i, size_);
527 return data_[i];
529 void push_back(const T &element) {
530 if (UNLIKELY(size_ >= capacity())) {
531 CHECK_EQ(size_, capacity());
532 uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
533 Realloc(new_capacity);
535 internal_memcpy(&data_[size_++], &element, sizeof(T));
537 T &back() {
538 CHECK_GT(size_, 0);
539 return data_[size_ - 1];
541 void pop_back() {
542 CHECK_GT(size_, 0);
543 size_--;
545 uptr size() const {
546 return size_;
548 const T *data() const {
549 return data_;
551 T *data() {
552 return data_;
554 uptr capacity() const { return capacity_bytes_ / sizeof(T); }
555 void reserve(uptr new_size) {
556 // Never downsize internal buffer.
557 if (new_size > capacity())
558 Realloc(new_size);
560 void resize(uptr new_size) {
561 if (new_size > size_) {
562 reserve(new_size);
563 internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
565 size_ = new_size;
568 void clear() { size_ = 0; }
569 bool empty() const { return size() == 0; }
571 const T *begin() const {
572 return data();
574 T *begin() {
575 return data();
577 const T *end() const {
578 return data() + size();
580 T *end() {
581 return data() + size();
584 void swap(InternalMmapVectorNoCtor &other) {
585 Swap(data_, other.data_);
586 Swap(capacity_bytes_, other.capacity_bytes_);
587 Swap(size_, other.size_);
590 private:
591 NOINLINE void Realloc(uptr new_capacity) {
592 CHECK_GT(new_capacity, 0);
593 CHECK_LE(size_, new_capacity);
594 uptr new_capacity_bytes =
595 RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached());
596 T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector");
597 internal_memcpy(new_data, data_, size_ * sizeof(T));
598 UnmapOrDie(data_, capacity_bytes_);
599 data_ = new_data;
600 capacity_bytes_ = new_capacity_bytes;
603 T *data_;
604 uptr capacity_bytes_;
605 uptr size_;
608 template <typename T>
609 bool operator==(const InternalMmapVectorNoCtor<T> &lhs,
610 const InternalMmapVectorNoCtor<T> &rhs) {
611 if (lhs.size() != rhs.size()) return false;
612 return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0;
615 template <typename T>
616 bool operator!=(const InternalMmapVectorNoCtor<T> &lhs,
617 const InternalMmapVectorNoCtor<T> &rhs) {
618 return !(lhs == rhs);
621 template<typename T>
622 class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
623 public:
624 InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); }
625 explicit InternalMmapVector(uptr cnt) {
626 InternalMmapVectorNoCtor<T>::Initialize(cnt);
627 this->resize(cnt);
629 ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
630 // Disallow copies and moves.
631 InternalMmapVector(const InternalMmapVector &) = delete;
632 InternalMmapVector &operator=(const InternalMmapVector &) = delete;
633 InternalMmapVector(InternalMmapVector &&) = delete;
634 InternalMmapVector &operator=(InternalMmapVector &&) = delete;
637 class InternalScopedString {
638 public:
639 InternalScopedString() : buffer_(1) { buffer_[0] = '\0'; }
641 uptr length() const { return buffer_.size() - 1; }
642 void clear() {
643 buffer_.resize(1);
644 buffer_[0] = '\0';
646 void Append(const char *str);
647 void AppendF(const char *format, ...) FORMAT(2, 3);
648 const char *data() const { return buffer_.data(); }
649 char *data() { return buffer_.data(); }
651 private:
652 InternalMmapVector<char> buffer_;
655 template <class T>
656 struct CompareLess {
657 bool operator()(const T &a, const T &b) const { return a < b; }
660 // HeapSort for arrays and InternalMmapVector.
661 template <class T, class Compare = CompareLess<T>>
662 void Sort(T *v, uptr size, Compare comp = {}) {
663 if (size < 2)
664 return;
665 // Stage 1: insert elements to the heap.
666 for (uptr i = 1; i < size; i++) {
667 uptr j, p;
668 for (j = i; j > 0; j = p) {
669 p = (j - 1) / 2;
670 if (comp(v[p], v[j]))
671 Swap(v[j], v[p]);
672 else
673 break;
676 // Stage 2: swap largest element with the last one,
677 // and sink the new top.
678 for (uptr i = size - 1; i > 0; i--) {
679 Swap(v[0], v[i]);
680 uptr j, max_ind;
681 for (j = 0; j < i; j = max_ind) {
682 uptr left = 2 * j + 1;
683 uptr right = 2 * j + 2;
684 max_ind = j;
685 if (left < i && comp(v[max_ind], v[left]))
686 max_ind = left;
687 if (right < i && comp(v[max_ind], v[right]))
688 max_ind = right;
689 if (max_ind != j)
690 Swap(v[j], v[max_ind]);
691 else
692 break;
697 // Works like std::lower_bound: finds the first element that is not less
698 // than the val.
699 template <class Container, class T,
700 class Compare = CompareLess<typename Container::value_type>>
701 uptr InternalLowerBound(const Container &v, const T &val, Compare comp = {}) {
702 uptr first = 0;
703 uptr last = v.size();
704 while (last > first) {
705 uptr mid = (first + last) / 2;
706 if (comp(v[mid], val))
707 first = mid + 1;
708 else
709 last = mid;
711 return first;
714 enum ModuleArch {
715 kModuleArchUnknown,
716 kModuleArchI386,
717 kModuleArchX86_64,
718 kModuleArchX86_64H,
719 kModuleArchARMV6,
720 kModuleArchARMV7,
721 kModuleArchARMV7S,
722 kModuleArchARMV7K,
723 kModuleArchARM64,
724 kModuleArchLoongArch64,
725 kModuleArchRISCV64,
726 kModuleArchHexagon
729 // Sorts and removes duplicates from the container.
730 template <class Container,
731 class Compare = CompareLess<typename Container::value_type>>
732 void SortAndDedup(Container &v, Compare comp = {}) {
733 Sort(v.data(), v.size(), comp);
734 uptr size = v.size();
735 if (size < 2)
736 return;
737 uptr last = 0;
738 for (uptr i = 1; i < size; ++i) {
739 if (comp(v[last], v[i])) {
740 ++last;
741 if (last != i)
742 v[last] = v[i];
743 } else {
744 CHECK(!comp(v[i], v[last]));
747 v.resize(last + 1);
750 constexpr uptr kDefaultFileMaxSize = FIRST_32_SECOND_64(1 << 26, 1 << 28);
752 // Opens the file 'file_name" and reads up to 'max_len' bytes.
753 // The resulting buffer is mmaped and stored in '*buff'.
754 // Returns true if file was successfully opened and read.
755 bool ReadFileToVector(const char *file_name,
756 InternalMmapVectorNoCtor<char> *buff,
757 uptr max_len = kDefaultFileMaxSize,
758 error_t *errno_p = nullptr);
760 // Opens the file 'file_name" and reads up to 'max_len' bytes.
761 // This function is less I/O efficient than ReadFileToVector as it may reread
762 // file multiple times to avoid mmap during read attempts. It's used to read
763 // procmap, so short reads with mmap in between can produce inconsistent result.
764 // The resulting buffer is mmaped and stored in '*buff'.
765 // The size of the mmaped region is stored in '*buff_size'.
766 // The total number of read bytes is stored in '*read_len'.
767 // Returns true if file was successfully opened and read.
768 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
769 uptr *read_len, uptr max_len = kDefaultFileMaxSize,
770 error_t *errno_p = nullptr);
772 int GetModuleAndOffsetForPc(uptr pc, char *module_name, uptr module_name_len,
773 uptr *pc_offset);
775 // When adding a new architecture, don't forget to also update
776 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp.
777 inline const char *ModuleArchToString(ModuleArch arch) {
778 switch (arch) {
779 case kModuleArchUnknown:
780 return "";
781 case kModuleArchI386:
782 return "i386";
783 case kModuleArchX86_64:
784 return "x86_64";
785 case kModuleArchX86_64H:
786 return "x86_64h";
787 case kModuleArchARMV6:
788 return "armv6";
789 case kModuleArchARMV7:
790 return "armv7";
791 case kModuleArchARMV7S:
792 return "armv7s";
793 case kModuleArchARMV7K:
794 return "armv7k";
795 case kModuleArchARM64:
796 return "arm64";
797 case kModuleArchLoongArch64:
798 return "loongarch64";
799 case kModuleArchRISCV64:
800 return "riscv64";
801 case kModuleArchHexagon:
802 return "hexagon";
804 CHECK(0 && "Invalid module arch");
805 return "";
808 #if SANITIZER_APPLE
809 const uptr kModuleUUIDSize = 16;
810 #else
811 const uptr kModuleUUIDSize = 32;
812 #endif
813 const uptr kMaxSegName = 16;
815 // Represents a binary loaded into virtual memory (e.g. this can be an
816 // executable or a shared object).
817 class LoadedModule {
818 public:
819 LoadedModule()
820 : full_name_(nullptr),
821 base_address_(0),
822 max_address_(0),
823 arch_(kModuleArchUnknown),
824 uuid_size_(0),
825 instrumented_(false) {
826 internal_memset(uuid_, 0, kModuleUUIDSize);
827 ranges_.clear();
829 void set(const char *module_name, uptr base_address);
830 void set(const char *module_name, uptr base_address, ModuleArch arch,
831 u8 uuid[kModuleUUIDSize], bool instrumented);
832 void setUuid(const char *uuid, uptr size);
833 void clear();
834 void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
835 const char *name = nullptr);
836 bool containsAddress(uptr address) const;
838 const char *full_name() const { return full_name_; }
839 uptr base_address() const { return base_address_; }
840 uptr max_address() const { return max_address_; }
841 ModuleArch arch() const { return arch_; }
842 const u8 *uuid() const { return uuid_; }
843 uptr uuid_size() const { return uuid_size_; }
844 bool instrumented() const { return instrumented_; }
846 struct AddressRange {
847 AddressRange *next;
848 uptr beg;
849 uptr end;
850 bool executable;
851 bool writable;
852 char name[kMaxSegName];
854 AddressRange(uptr beg, uptr end, bool executable, bool writable,
855 const char *name)
856 : next(nullptr),
857 beg(beg),
858 end(end),
859 executable(executable),
860 writable(writable) {
861 internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
865 const IntrusiveList<AddressRange> &ranges() const { return ranges_; }
867 private:
868 char *full_name_; // Owned.
869 uptr base_address_;
870 uptr max_address_;
871 ModuleArch arch_;
872 uptr uuid_size_;
873 u8 uuid_[kModuleUUIDSize];
874 bool instrumented_;
875 IntrusiveList<AddressRange> ranges_;
878 // List of LoadedModules. OS-dependent implementation is responsible for
879 // filling this information.
880 class ListOfModules {
881 public:
882 ListOfModules() : initialized(false) {}
883 ~ListOfModules() { clear(); }
884 void init();
885 void fallbackInit(); // Uses fallback init if available, otherwise clears
886 const LoadedModule *begin() const { return modules_.begin(); }
887 LoadedModule *begin() { return modules_.begin(); }
888 const LoadedModule *end() const { return modules_.end(); }
889 LoadedModule *end() { return modules_.end(); }
890 uptr size() const { return modules_.size(); }
891 const LoadedModule &operator[](uptr i) const {
892 CHECK_LT(i, modules_.size());
893 return modules_[i];
896 private:
897 void clear() {
898 for (auto &module : modules_) module.clear();
899 modules_.clear();
901 void clearOrInit() {
902 initialized ? clear() : modules_.Initialize(kInitialCapacity);
903 initialized = true;
906 InternalMmapVectorNoCtor<LoadedModule> modules_;
907 // We rarely have more than 16K loaded modules.
908 static const uptr kInitialCapacity = 1 << 14;
909 bool initialized;
912 // Callback type for iterating over a set of memory ranges.
913 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
915 enum AndroidApiLevel {
916 ANDROID_NOT_ANDROID = 0,
917 ANDROID_KITKAT = 19,
918 ANDROID_LOLLIPOP_MR1 = 22,
919 ANDROID_POST_LOLLIPOP = 23
922 void WriteToSyslog(const char *buffer);
924 #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
925 #define SANITIZER_WIN_TRACE 1
926 #else
927 #define SANITIZER_WIN_TRACE 0
928 #endif
930 #if SANITIZER_APPLE || SANITIZER_WIN_TRACE
931 void LogFullErrorReport(const char *buffer);
932 #else
933 inline void LogFullErrorReport(const char *buffer) {}
934 #endif
936 #if SANITIZER_LINUX || SANITIZER_APPLE
937 void WriteOneLineToSyslog(const char *s);
938 void LogMessageOnPrintf(const char *str);
939 #else
940 inline void WriteOneLineToSyslog(const char *s) {}
941 inline void LogMessageOnPrintf(const char *str) {}
942 #endif
944 #if SANITIZER_LINUX || SANITIZER_WIN_TRACE
945 // Initialize Android logging. Any writes before this are silently lost.
946 void AndroidLogInit();
947 void SetAbortMessage(const char *);
948 #else
949 inline void AndroidLogInit() {}
950 // FIXME: MacOS implementation could use CRSetCrashLogMessage.
951 inline void SetAbortMessage(const char *) {}
952 #endif
954 #if SANITIZER_ANDROID
955 void SanitizerInitializeUnwinder();
956 AndroidApiLevel AndroidGetApiLevel();
957 #else
958 inline void AndroidLogWrite(const char *buffer_unused) {}
959 inline void SanitizerInitializeUnwinder() {}
960 inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
961 #endif
963 inline uptr GetPthreadDestructorIterations() {
964 #if SANITIZER_ANDROID
965 return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
966 #elif SANITIZER_POSIX
967 return 4;
968 #else
969 // Unused on Windows.
970 return 0;
971 #endif
974 void *internal_start_thread(void *(*func)(void*), void *arg);
975 void internal_join_thread(void *th);
976 void MaybeStartBackgroudThread();
978 // Make the compiler think that something is going on there.
979 // Use this inside a loop that looks like memset/memcpy/etc to prevent the
980 // compiler from recognising it and turning it into an actual call to
981 // memset/memcpy/etc.
982 static inline void SanitizerBreakOptimization(void *arg) {
983 #if defined(_MSC_VER) && !defined(__clang__)
984 _ReadWriteBarrier();
985 #else
986 __asm__ __volatile__("" : : "r" (arg) : "memory");
987 #endif
990 struct SignalContext {
991 void *siginfo;
992 void *context;
993 uptr addr;
994 uptr pc;
995 uptr sp;
996 uptr bp;
997 bool is_memory_access;
998 enum WriteFlag { Unknown, Read, Write } write_flag;
1000 // In some cases the kernel cannot provide the true faulting address; `addr`
1001 // will be zero then. This field allows to distinguish between these cases
1002 // and dereferences of null.
1003 bool is_true_faulting_addr;
1005 // VS2013 doesn't implement unrestricted unions, so we need a trivial default
1006 // constructor
1007 SignalContext() = default;
1009 // Creates signal context in a platform-specific manner.
1010 // SignalContext is going to keep pointers to siginfo and context without
1011 // owning them.
1012 SignalContext(void *siginfo, void *context)
1013 : siginfo(siginfo),
1014 context(context),
1015 addr(GetAddress()),
1016 is_memory_access(IsMemoryAccess()),
1017 write_flag(GetWriteFlag()),
1018 is_true_faulting_addr(IsTrueFaultingAddress()) {
1019 InitPcSpBp();
1022 static void DumpAllRegisters(void *context);
1024 // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
1025 int GetType() const;
1027 // String description of the signal.
1028 const char *Describe() const;
1030 // Returns true if signal is stack overflow.
1031 bool IsStackOverflow() const;
1033 private:
1034 // Platform specific initialization.
1035 void InitPcSpBp();
1036 uptr GetAddress() const;
1037 WriteFlag GetWriteFlag() const;
1038 bool IsMemoryAccess() const;
1039 bool IsTrueFaultingAddress() const;
1042 void InitializePlatformEarly();
1044 template <typename Fn>
1045 class RunOnDestruction {
1046 public:
1047 explicit RunOnDestruction(Fn fn) : fn_(fn) {}
1048 ~RunOnDestruction() { fn_(); }
1050 private:
1051 Fn fn_;
1054 // A simple scope guard. Usage:
1055 // auto cleanup = at_scope_exit([]{ do_cleanup; });
1056 template <typename Fn>
1057 RunOnDestruction<Fn> at_scope_exit(Fn fn) {
1058 return RunOnDestruction<Fn>(fn);
1061 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine
1062 // if a process uses virtual memory over 4TB (as many sanitizers like
1063 // to do). This function will abort the process if running on a kernel
1064 // that looks vulnerable.
1065 #if SANITIZER_LINUX && SANITIZER_S390_64
1066 void AvoidCVE_2016_2143();
1067 #else
1068 inline void AvoidCVE_2016_2143() {}
1069 #endif
1071 struct StackDepotStats {
1072 uptr n_uniq_ids;
1073 uptr allocated;
1076 // The default value for allocator_release_to_os_interval_ms common flag to
1077 // indicate that sanitizer allocator should not attempt to release memory to OS.
1078 const s32 kReleaseToOSIntervalNever = -1;
1080 void CheckNoDeepBind(const char *filename, int flag);
1082 // Returns the requested amount of random data (up to 256 bytes) that can then
1083 // be used to seed a PRNG. Defaults to blocking like the underlying syscall.
1084 bool GetRandom(void *buffer, uptr length, bool blocking = true);
1086 // Returns the number of logical processors on the system.
1087 u32 GetNumberOfCPUs();
1088 extern u32 NumberOfCPUsCached;
1089 inline u32 GetNumberOfCPUsCached() {
1090 if (!NumberOfCPUsCached)
1091 NumberOfCPUsCached = GetNumberOfCPUs();
1092 return NumberOfCPUsCached;
1095 } // namespace __sanitizer
1097 inline void *operator new(__sanitizer::operator_new_size_type size,
1098 __sanitizer::LowLevelAllocator &alloc) {
1099 return alloc.Allocate(size);
1102 #endif // SANITIZER_COMMON_H