Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / compiler-rt / lib / sanitizer_common / sanitizer_win.cpp
blob06e496523eeaa1dc91f3aae9b9afc38c4fed6bad
1 //===-- sanitizer_win.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements windows-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
14 #include "sanitizer_platform.h"
15 #if SANITIZER_WINDOWS
17 #define WIN32_LEAN_AND_MEAN
18 #define NOGDI
19 #include <windows.h>
20 #include <io.h>
21 #include <psapi.h>
22 #include <stdlib.h>
24 #include "sanitizer_common.h"
25 #include "sanitizer_file.h"
26 #include "sanitizer_libc.h"
27 #include "sanitizer_mutex.h"
28 #include "sanitizer_placement_new.h"
29 #include "sanitizer_win_defs.h"
31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32 #pragma comment(lib, "psapi")
33 #endif
34 #if SANITIZER_WIN_TRACE
35 #include <traceloggingprovider.h>
36 // Windows trace logging provider init
37 #pragma comment(lib, "advapi32.lib")
38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41 (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42 0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43 #else
44 #define TraceLoggingUnregister(x)
45 #endif
47 // For WaitOnAddress
48 # pragma comment(lib, "synchronization.lib")
50 // A macro to tell the compiler that this part of the code cannot be reached,
51 // if the compiler supports this feature. Since we're using this in
52 // code that is called when terminating the process, the expansion of the
53 // macro should not terminate the process to avoid infinite recursion.
54 #if defined(__clang__)
55 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
56 #elif defined(__GNUC__) && \
57 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
58 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
59 #elif defined(_MSC_VER)
60 # define BUILTIN_UNREACHABLE() __assume(0)
61 #else
62 # define BUILTIN_UNREACHABLE()
63 #endif
65 namespace __sanitizer {
67 #include "sanitizer_syscall_generic.inc"
69 // --------------------- sanitizer_common.h
70 uptr GetPageSize() {
71 SYSTEM_INFO si;
72 GetSystemInfo(&si);
73 return si.dwPageSize;
76 uptr GetMmapGranularity() {
77 SYSTEM_INFO si;
78 GetSystemInfo(&si);
79 return si.dwAllocationGranularity;
82 uptr GetMaxUserVirtualAddress() {
83 SYSTEM_INFO si;
84 GetSystemInfo(&si);
85 return (uptr)si.lpMaximumApplicationAddress;
88 uptr GetMaxVirtualAddress() {
89 return GetMaxUserVirtualAddress();
92 bool FileExists(const char *filename) {
93 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
96 bool DirExists(const char *path) {
97 auto attr = ::GetFileAttributesA(path);
98 return (attr != INVALID_FILE_ATTRIBUTES) && (attr & FILE_ATTRIBUTE_DIRECTORY);
101 uptr internal_getpid() {
102 return GetProcessId(GetCurrentProcess());
105 int internal_dlinfo(void *handle, int request, void *p) {
106 UNIMPLEMENTED();
109 // In contrast to POSIX, on Windows GetCurrentThreadId()
110 // returns a system-unique identifier.
111 tid_t GetTid() {
112 return GetCurrentThreadId();
115 uptr GetThreadSelf() {
116 return GetTid();
119 #if !SANITIZER_GO
120 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
121 uptr *stack_bottom) {
122 CHECK(stack_top);
123 CHECK(stack_bottom);
124 MEMORY_BASIC_INFORMATION mbi;
125 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
126 // FIXME: is it possible for the stack to not be a single allocation?
127 // Are these values what ASan expects to get (reserved, not committed;
128 // including stack guard page) ?
129 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
130 *stack_bottom = (uptr)mbi.AllocationBase;
132 #endif // #if !SANITIZER_GO
134 bool ErrorIsOOM(error_t err) {
135 // TODO: This should check which `err`s correspond to OOM.
136 return false;
139 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
140 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
141 if (rv == 0)
142 ReportMmapFailureAndDie(size, mem_type, "allocate",
143 GetLastError(), raw_report);
144 return rv;
147 void UnmapOrDie(void *addr, uptr size) {
148 if (!size || !addr)
149 return;
151 MEMORY_BASIC_INFORMATION mbi;
152 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
154 // MEM_RELEASE can only be used to unmap whole regions previously mapped with
155 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
156 // fails try MEM_DECOMMIT.
157 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
158 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
159 Report("ERROR: %s failed to "
160 "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
161 SanitizerToolName, size, size, addr, GetLastError());
162 CHECK("unable to unmap" && 0);
167 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
168 const char *mmap_type) {
169 error_t last_error = GetLastError();
170 if (last_error == ERROR_NOT_ENOUGH_MEMORY)
171 return nullptr;
172 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
175 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
176 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
177 if (rv == 0)
178 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
179 return rv;
182 // We want to map a chunk of address space aligned to 'alignment'.
183 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
184 const char *mem_type) {
185 CHECK(IsPowerOfTwo(size));
186 CHECK(IsPowerOfTwo(alignment));
188 // Windows will align our allocations to at least 64K.
189 alignment = Max(alignment, GetMmapGranularity());
191 uptr mapped_addr =
192 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
193 if (!mapped_addr)
194 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
196 // If we got it right on the first try, return. Otherwise, unmap it and go to
197 // the slow path.
198 if (IsAligned(mapped_addr, alignment))
199 return (void*)mapped_addr;
200 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
201 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
203 // If we didn't get an aligned address, overallocate, find an aligned address,
204 // unmap, and try to allocate at that aligned address.
205 int retries = 0;
206 const int kMaxRetries = 10;
207 for (; retries < kMaxRetries &&
208 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
209 retries++) {
210 // Overallocate size + alignment bytes.
211 mapped_addr =
212 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
213 if (!mapped_addr)
214 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
216 // Find the aligned address.
217 uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
219 // Free the overallocation.
220 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
221 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
223 // Attempt to allocate exactly the number of bytes we need at the aligned
224 // address. This may fail for a number of reasons, in which case we continue
225 // the loop.
226 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
227 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
230 // Fail if we can't make this work quickly.
231 if (retries == kMaxRetries && mapped_addr == 0)
232 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
234 return (void *)mapped_addr;
237 // ZeroMmapFixedRegion zero's out a region of memory previously returned from a
238 // call to one of the MmapFixed* helpers. On non-windows systems this would be
239 // done with another mmap, but on windows remapping is not an option.
240 // VirtualFree(DECOMMIT)+VirtualAlloc(RECOMMIT) would also be a way to zero the
241 // memory, but we can't do this atomically, so instead we fall back to using
242 // internal_memset.
243 bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) {
244 internal_memset((void*) fixed_addr, 0, size);
245 return true;
248 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
249 // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
250 // but on Win64 it does.
251 (void)name; // unsupported
252 #if !SANITIZER_GO && SANITIZER_WINDOWS64
253 // On asan/Windows64, use MEM_COMMIT would result in error
254 // 1455:ERROR_COMMITMENT_LIMIT.
255 // Asan uses exception handler to commit page on demand.
256 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
257 #else
258 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
259 PAGE_READWRITE);
260 #endif
261 if (p == 0) {
262 Report("ERROR: %s failed to "
263 "allocate %p (%zd) bytes at %p (error code: %d)\n",
264 SanitizerToolName, size, size, fixed_addr, GetLastError());
265 return false;
267 return true;
270 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
271 // FIXME: Windows support large pages too. Might be worth checking
272 return MmapFixedNoReserve(fixed_addr, size, name);
275 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
276 // 'MmapFixedNoAccess'.
277 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
278 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
279 MEM_COMMIT, PAGE_READWRITE);
280 if (p == 0) {
281 char mem_type[30];
282 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
283 fixed_addr);
284 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
286 return p;
289 // Uses fixed_addr for now.
290 // Will use offset instead once we've implemented this function for real.
291 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
292 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
295 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
296 const char *name) {
297 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
300 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
301 // Only unmap if it covers the entire range.
302 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
303 // We unmap the whole range, just null out the base.
304 base_ = nullptr;
305 size_ = 0;
306 UnmapOrDie(reinterpret_cast<void*>(addr), size);
309 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
310 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
311 MEM_COMMIT, PAGE_READWRITE);
312 if (p == 0) {
313 char mem_type[30];
314 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
315 fixed_addr);
316 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
318 return p;
321 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
322 // FIXME: make this really NoReserve?
323 return MmapOrDie(size, mem_type);
326 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
327 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
328 size_ = size;
329 name_ = name;
330 (void)os_handle_; // unsupported
331 return reinterpret_cast<uptr>(base_);
335 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
336 (void)name; // unsupported
337 void *res = VirtualAlloc((LPVOID)fixed_addr, size,
338 MEM_RESERVE, PAGE_NOACCESS);
339 if (res == 0)
340 Report("WARNING: %s failed to "
341 "mprotect %p (%zd) bytes at %p (error code: %d)\n",
342 SanitizerToolName, size, size, fixed_addr, GetLastError());
343 return res;
346 void *MmapNoAccess(uptr size) {
347 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
348 if (res == 0)
349 Report("WARNING: %s failed to "
350 "mprotect %p (%zd) bytes (error code: %d)\n",
351 SanitizerToolName, size, size, GetLastError());
352 return res;
355 bool MprotectNoAccess(uptr addr, uptr size) {
356 DWORD old_protection;
357 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
360 bool MprotectReadOnly(uptr addr, uptr size) {
361 DWORD old_protection;
362 return VirtualProtect((LPVOID)addr, size, PAGE_READONLY, &old_protection);
365 bool MprotectReadWrite(uptr addr, uptr size) {
366 DWORD old_protection;
367 return VirtualProtect((LPVOID)addr, size, PAGE_READWRITE, &old_protection);
370 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
371 uptr beg_aligned = RoundDownTo(beg, GetPageSizeCached()),
372 end_aligned = RoundDownTo(end, GetPageSizeCached());
373 CHECK(beg < end); // make sure the region is sane
374 if (beg_aligned == end_aligned) // make sure we're freeing at least 1 page;
375 return;
376 UnmapOrDie((void *)beg, end_aligned - beg_aligned);
379 void SetShadowRegionHugePageMode(uptr addr, uptr size) {
380 // FIXME: probably similar to ReleaseMemoryToOS.
383 bool DontDumpShadowMemory(uptr addr, uptr length) {
384 // This is almost useless on 32-bits.
385 // FIXME: add madvise-analog when we move to 64-bits.
386 return true;
389 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
390 uptr min_shadow_base_alignment,
391 UNUSED uptr &high_mem_end) {
392 const uptr granularity = GetMmapGranularity();
393 const uptr alignment =
394 Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
395 const uptr left_padding =
396 Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
397 uptr space_size = shadow_size_bytes + left_padding;
398 uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
399 granularity, nullptr, nullptr);
400 CHECK_NE((uptr)0, shadow_start);
401 CHECK(IsAligned(shadow_start, alignment));
402 return shadow_start;
405 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
406 uptr *largest_gap_found,
407 uptr *max_occupied_addr) {
408 uptr address = 0;
409 while (true) {
410 MEMORY_BASIC_INFORMATION info;
411 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
412 return 0;
414 if (info.State == MEM_FREE) {
415 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
416 alignment);
417 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
418 return shadow_address;
421 // Move to the next region.
422 address = (uptr)info.BaseAddress + info.RegionSize;
424 return 0;
427 uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
428 uptr num_aliases, uptr ring_buffer_size) {
429 CHECK(false && "HWASan aliasing is unimplemented on Windows");
430 return 0;
433 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
434 MEMORY_BASIC_INFORMATION mbi;
435 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
436 return mbi.Protect == PAGE_NOACCESS &&
437 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
440 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
441 UNIMPLEMENTED();
444 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
445 UNIMPLEMENTED();
448 static const int kMaxEnvNameLength = 128;
449 static const DWORD kMaxEnvValueLength = 32767;
451 namespace {
453 struct EnvVariable {
454 char name[kMaxEnvNameLength];
455 char value[kMaxEnvValueLength];
458 } // namespace
460 static const int kEnvVariables = 5;
461 static EnvVariable env_vars[kEnvVariables];
462 static int num_env_vars;
464 const char *GetEnv(const char *name) {
465 // Note: this implementation caches the values of the environment variables
466 // and limits their quantity.
467 for (int i = 0; i < num_env_vars; i++) {
468 if (0 == internal_strcmp(name, env_vars[i].name))
469 return env_vars[i].value;
471 CHECK_LT(num_env_vars, kEnvVariables);
472 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
473 kMaxEnvValueLength);
474 if (rv > 0 && rv < kMaxEnvValueLength) {
475 CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
476 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
477 num_env_vars++;
478 return env_vars[num_env_vars - 1].value;
480 return 0;
483 const char *GetPwd() {
484 UNIMPLEMENTED();
487 u32 GetUid() {
488 UNIMPLEMENTED();
491 namespace {
492 struct ModuleInfo {
493 const char *filepath;
494 uptr base_address;
495 uptr end_address;
498 #if !SANITIZER_GO
499 int CompareModulesBase(const void *pl, const void *pr) {
500 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
501 if (l->base_address < r->base_address)
502 return -1;
503 return l->base_address > r->base_address;
505 #endif
506 } // namespace
508 #if !SANITIZER_GO
509 void DumpProcessMap() {
510 Report("Dumping process modules:\n");
511 ListOfModules modules;
512 modules.init();
513 uptr num_modules = modules.size();
515 InternalMmapVector<ModuleInfo> module_infos(num_modules);
516 for (size_t i = 0; i < num_modules; ++i) {
517 module_infos[i].filepath = modules[i].full_name();
518 module_infos[i].base_address = modules[i].ranges().front()->beg;
519 module_infos[i].end_address = modules[i].ranges().back()->end;
521 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
522 CompareModulesBase);
524 for (size_t i = 0; i < num_modules; ++i) {
525 const ModuleInfo &mi = module_infos[i];
526 if (mi.end_address != 0) {
527 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
528 mi.filepath[0] ? mi.filepath : "[no name]");
529 } else if (mi.filepath[0]) {
530 Printf("\t??\?-??? %s\n", mi.filepath);
531 } else {
532 Printf("\t???\n");
536 #endif
538 void DisableCoreDumperIfNecessary() {
539 // Do nothing.
542 void ReExec() {
543 UNIMPLEMENTED();
546 void PlatformPrepareForSandboxing(void *args) {}
548 bool StackSizeIsUnlimited() {
549 UNIMPLEMENTED();
552 void SetStackSizeLimitInBytes(uptr limit) {
553 UNIMPLEMENTED();
556 bool AddressSpaceIsUnlimited() {
557 UNIMPLEMENTED();
560 void SetAddressSpaceUnlimited() {
561 UNIMPLEMENTED();
564 bool IsPathSeparator(const char c) {
565 return c == '\\' || c == '/';
568 static bool IsAlpha(char c) {
569 c = ToLower(c);
570 return c >= 'a' && c <= 'z';
573 bool IsAbsolutePath(const char *path) {
574 return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
575 IsPathSeparator(path[2]);
578 void internal_usleep(u64 useconds) { Sleep(useconds / 1000); }
580 u64 NanoTime() {
581 static LARGE_INTEGER frequency = {};
582 LARGE_INTEGER counter;
583 if (UNLIKELY(frequency.QuadPart == 0)) {
584 QueryPerformanceFrequency(&frequency);
585 CHECK_NE(frequency.QuadPart, 0);
587 QueryPerformanceCounter(&counter);
588 counter.QuadPart *= 1000ULL * 1000000ULL;
589 counter.QuadPart /= frequency.QuadPart;
590 return counter.QuadPart;
593 u64 MonotonicNanoTime() { return NanoTime(); }
595 void Abort() {
596 internal__exit(3);
599 bool CreateDir(const char *pathname) {
600 return CreateDirectoryA(pathname, nullptr) != 0;
603 #if !SANITIZER_GO
604 // Read the file to extract the ImageBase field from the PE header. If ASLR is
605 // disabled and this virtual address is available, the loader will typically
606 // load the image at this address. Therefore, we call it the preferred base. Any
607 // addresses in the DWARF typically assume that the object has been loaded at
608 // this address.
609 static uptr GetPreferredBase(const char *modname, char *buf, size_t buf_size) {
610 fd_t fd = OpenFile(modname, RdOnly, nullptr);
611 if (fd == kInvalidFd)
612 return 0;
613 FileCloser closer(fd);
615 // Read just the DOS header.
616 IMAGE_DOS_HEADER dos_header;
617 uptr bytes_read;
618 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
619 bytes_read != sizeof(dos_header))
620 return 0;
622 // The file should start with the right signature.
623 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
624 return 0;
626 // The layout at e_lfanew is:
627 // "PE\0\0"
628 // IMAGE_FILE_HEADER
629 // IMAGE_OPTIONAL_HEADER
630 // Seek to e_lfanew and read all that data.
631 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
632 INVALID_SET_FILE_POINTER)
633 return 0;
634 if (!ReadFromFile(fd, buf, buf_size, &bytes_read) || bytes_read != buf_size)
635 return 0;
637 // Check for "PE\0\0" before the PE header.
638 char *pe_sig = &buf[0];
639 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
640 return 0;
642 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
643 IMAGE_OPTIONAL_HEADER *pe_header =
644 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
646 // Check for more magic in the PE header.
647 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
648 return 0;
650 // Finally, return the ImageBase.
651 return (uptr)pe_header->ImageBase;
654 void ListOfModules::init() {
655 clearOrInit();
656 HANDLE cur_process = GetCurrentProcess();
658 // Query the list of modules. Start by assuming there are no more than 256
659 // modules and retry if that's not sufficient.
660 HMODULE *hmodules = 0;
661 uptr modules_buffer_size = sizeof(HMODULE) * 256;
662 DWORD bytes_required;
663 while (!hmodules) {
664 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
665 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
666 &bytes_required));
667 if (bytes_required > modules_buffer_size) {
668 // Either there turned out to be more than 256 hmodules, or new hmodules
669 // could have loaded since the last try. Retry.
670 UnmapOrDie(hmodules, modules_buffer_size);
671 hmodules = 0;
672 modules_buffer_size = bytes_required;
676 InternalMmapVector<char> buf(4 + sizeof(IMAGE_FILE_HEADER) +
677 sizeof(IMAGE_OPTIONAL_HEADER));
678 InternalMmapVector<wchar_t> modname_utf16(kMaxPathLength);
679 InternalMmapVector<char> module_name(kMaxPathLength);
680 // |num_modules| is the number of modules actually present,
681 size_t num_modules = bytes_required / sizeof(HMODULE);
682 for (size_t i = 0; i < num_modules; ++i) {
683 HMODULE handle = hmodules[i];
684 MODULEINFO mi;
685 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
686 continue;
688 // Get the UTF-16 path and convert to UTF-8.
689 int modname_utf16_len =
690 GetModuleFileNameW(handle, &modname_utf16[0], kMaxPathLength);
691 if (modname_utf16_len == 0)
692 modname_utf16[0] = '\0';
693 int module_name_len = ::WideCharToMultiByte(
694 CP_UTF8, 0, &modname_utf16[0], modname_utf16_len + 1, &module_name[0],
695 kMaxPathLength, NULL, NULL);
696 module_name[module_name_len] = '\0';
698 uptr base_address = (uptr)mi.lpBaseOfDll;
699 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
701 // Adjust the base address of the module so that we get a VA instead of an
702 // RVA when computing the module offset. This helps llvm-symbolizer find the
703 // right DWARF CU. In the common case that the image is loaded at it's
704 // preferred address, we will now print normal virtual addresses.
705 uptr preferred_base =
706 GetPreferredBase(&module_name[0], &buf[0], buf.size());
707 uptr adjusted_base = base_address - preferred_base;
709 modules_.push_back(LoadedModule());
710 LoadedModule &cur_module = modules_.back();
711 cur_module.set(&module_name[0], adjusted_base);
712 // We add the whole module as one single address range.
713 cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
714 /*writable*/ true);
716 UnmapOrDie(hmodules, modules_buffer_size);
719 void ListOfModules::fallbackInit() { clear(); }
721 // We can't use atexit() directly at __asan_init time as the CRT is not fully
722 // initialized at this point. Place the functions into a vector and use
723 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
724 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
726 static int queueAtexit(void (*function)(void)) {
727 atexit_functions.push_back(function);
728 return 0;
731 // If Atexit() is being called after RunAtexit() has already been run, it needs
732 // to be able to call atexit() directly. Here we use a function ponter to
733 // switch out its behaviour.
734 // An example of where this is needed is the asan_dynamic runtime on MinGW-w64.
735 // On this environment, __asan_init is called during global constructor phase,
736 // way after calling the .CRT$XID initializer.
737 static int (*volatile queueOrCallAtExit)(void (*)(void)) = &queueAtexit;
739 int Atexit(void (*function)(void)) { return queueOrCallAtExit(function); }
741 static int RunAtexit() {
742 TraceLoggingUnregister(g_asan_provider);
743 queueOrCallAtExit = &atexit;
744 int ret = 0;
745 for (uptr i = 0; i < atexit_functions.size(); ++i) {
746 ret |= atexit(atexit_functions[i]);
748 return ret;
751 #pragma section(".CRT$XID", long, read)
752 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
753 #endif
755 // ------------------ sanitizer_libc.h
756 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
757 // FIXME: Use the wide variants to handle Unicode filenames.
758 fd_t res;
759 if (mode == RdOnly) {
760 res = CreateFileA(filename, GENERIC_READ,
761 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
762 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
763 } else if (mode == WrOnly) {
764 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
765 FILE_ATTRIBUTE_NORMAL, nullptr);
766 } else {
767 UNIMPLEMENTED();
769 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
770 CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
771 if (res == kInvalidFd && last_error)
772 *last_error = GetLastError();
773 return res;
776 void CloseFile(fd_t fd) {
777 CloseHandle(fd);
780 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
781 error_t *error_p) {
782 CHECK(fd != kInvalidFd);
784 // bytes_read can't be passed directly to ReadFile:
785 // uptr is unsigned long long on 64-bit Windows.
786 unsigned long num_read_long;
788 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
789 if (!success && error_p)
790 *error_p = GetLastError();
791 if (bytes_read)
792 *bytes_read = num_read_long;
793 return success;
796 bool SupportsColoredOutput(fd_t fd) {
797 // FIXME: support colored output.
798 return false;
801 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
802 error_t *error_p) {
803 CHECK(fd != kInvalidFd);
805 // Handle null optional parameters.
806 error_t dummy_error;
807 error_p = error_p ? error_p : &dummy_error;
808 uptr dummy_bytes_written;
809 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
811 // Initialize output parameters in case we fail.
812 *error_p = 0;
813 *bytes_written = 0;
815 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
816 // closed, in which case this will fail.
817 if (fd == kStdoutFd || fd == kStderrFd) {
818 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
819 if (fd == 0) {
820 *error_p = ERROR_INVALID_HANDLE;
821 return false;
825 DWORD bytes_written_32;
826 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
827 *error_p = GetLastError();
828 return false;
829 } else {
830 *bytes_written = bytes_written_32;
831 return true;
835 uptr internal_sched_yield() {
836 Sleep(0);
837 return 0;
840 void internal__exit(int exitcode) {
841 TraceLoggingUnregister(g_asan_provider);
842 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
843 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
844 // so add our own breakpoint here.
845 if (::IsDebuggerPresent())
846 __debugbreak();
847 TerminateProcess(GetCurrentProcess(), exitcode);
848 BUILTIN_UNREACHABLE();
851 uptr internal_ftruncate(fd_t fd, uptr size) {
852 UNIMPLEMENTED();
855 uptr GetRSS() {
856 PROCESS_MEMORY_COUNTERS counters;
857 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
858 return 0;
859 return counters.WorkingSetSize;
862 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
863 void internal_join_thread(void *th) { }
865 void FutexWait(atomic_uint32_t *p, u32 cmp) {
866 WaitOnAddress(p, &cmp, sizeof(cmp), INFINITE);
869 void FutexWake(atomic_uint32_t *p, u32 count) {
870 if (count == 1)
871 WakeByAddressSingle(p);
872 else
873 WakeByAddressAll(p);
876 uptr GetTlsSize() {
877 return 0;
880 void InitTlsSize() {
883 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
884 uptr *tls_addr, uptr *tls_size) {
885 #if SANITIZER_GO
886 *stk_addr = 0;
887 *stk_size = 0;
888 *tls_addr = 0;
889 *tls_size = 0;
890 #else
891 uptr stack_top, stack_bottom;
892 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
893 *stk_addr = stack_bottom;
894 *stk_size = stack_top - stack_bottom;
895 *tls_addr = 0;
896 *tls_size = 0;
897 #endif
900 void ReportFile::Write(const char *buffer, uptr length) {
901 SpinMutexLock l(mu);
902 ReopenIfNecessary();
903 if (!WriteToFile(fd, buffer, length)) {
904 // stderr may be closed, but we may be able to print to the debugger
905 // instead. This is the case when launching a program from Visual Studio,
906 // and the following routine should write to its console.
907 OutputDebugStringA(buffer);
911 void SetAlternateSignalStack() {
912 // FIXME: Decide what to do on Windows.
915 void UnsetAlternateSignalStack() {
916 // FIXME: Decide what to do on Windows.
919 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
920 (void)handler;
921 // FIXME: Decide what to do on Windows.
924 HandleSignalMode GetHandleSignalMode(int signum) {
925 // FIXME: Decide what to do on Windows.
926 return kHandleSignalNo;
929 // Check based on flags if we should handle this exception.
930 bool IsHandledDeadlyException(DWORD exceptionCode) {
931 switch (exceptionCode) {
932 case EXCEPTION_ACCESS_VIOLATION:
933 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
934 case EXCEPTION_STACK_OVERFLOW:
935 case EXCEPTION_DATATYPE_MISALIGNMENT:
936 case EXCEPTION_IN_PAGE_ERROR:
937 return common_flags()->handle_segv;
938 case EXCEPTION_ILLEGAL_INSTRUCTION:
939 case EXCEPTION_PRIV_INSTRUCTION:
940 case EXCEPTION_BREAKPOINT:
941 return common_flags()->handle_sigill;
942 case EXCEPTION_FLT_DENORMAL_OPERAND:
943 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
944 case EXCEPTION_FLT_INEXACT_RESULT:
945 case EXCEPTION_FLT_INVALID_OPERATION:
946 case EXCEPTION_FLT_OVERFLOW:
947 case EXCEPTION_FLT_STACK_CHECK:
948 case EXCEPTION_FLT_UNDERFLOW:
949 case EXCEPTION_INT_DIVIDE_BY_ZERO:
950 case EXCEPTION_INT_OVERFLOW:
951 return common_flags()->handle_sigfpe;
953 return false;
956 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
957 SYSTEM_INFO si;
958 GetNativeSystemInfo(&si);
959 uptr page_size = si.dwPageSize;
960 uptr page_mask = ~(page_size - 1);
962 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
963 page <= end;) {
964 MEMORY_BASIC_INFORMATION info;
965 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
966 return false;
968 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
969 info.Protect == PAGE_EXECUTE)
970 return false;
972 if (info.RegionSize == 0)
973 return false;
975 page += info.RegionSize;
978 return true;
981 bool SignalContext::IsStackOverflow() const {
982 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
985 void SignalContext::InitPcSpBp() {
986 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
987 CONTEXT *context_record = (CONTEXT *)context;
989 pc = (uptr)exception_record->ExceptionAddress;
990 # if SANITIZER_WINDOWS64
991 # if SANITIZER_ARM64
992 bp = (uptr)context_record->Fp;
993 sp = (uptr)context_record->Sp;
994 # else
995 bp = (uptr)context_record->Rbp;
996 sp = (uptr)context_record->Rsp;
997 # endif
998 # else
999 bp = (uptr)context_record->Ebp;
1000 sp = (uptr)context_record->Esp;
1001 # endif
1004 uptr SignalContext::GetAddress() const {
1005 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1006 if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
1007 return exception_record->ExceptionInformation[1];
1008 return (uptr)exception_record->ExceptionAddress;
1011 bool SignalContext::IsMemoryAccess() const {
1012 return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
1013 EXCEPTION_ACCESS_VIOLATION;
1016 bool SignalContext::IsTrueFaultingAddress() const { return true; }
1018 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
1019 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1021 // The write flag is only available for access violation exceptions.
1022 if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
1023 return SignalContext::Unknown;
1025 // The contents of this array are documented at
1026 // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
1027 // The first element indicates read as 0, write as 1, or execute as 8. The
1028 // second element is the faulting address.
1029 switch (exception_record->ExceptionInformation[0]) {
1030 case 0:
1031 return SignalContext::Read;
1032 case 1:
1033 return SignalContext::Write;
1034 case 8:
1035 return SignalContext::Unknown;
1037 return SignalContext::Unknown;
1040 void SignalContext::DumpAllRegisters(void *context) {
1041 // FIXME: Implement this.
1044 int SignalContext::GetType() const {
1045 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
1048 const char *SignalContext::Describe() const {
1049 unsigned code = GetType();
1050 // Get the string description of the exception if this is a known deadly
1051 // exception.
1052 switch (code) {
1053 case EXCEPTION_ACCESS_VIOLATION:
1054 return "access-violation";
1055 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1056 return "array-bounds-exceeded";
1057 case EXCEPTION_STACK_OVERFLOW:
1058 return "stack-overflow";
1059 case EXCEPTION_DATATYPE_MISALIGNMENT:
1060 return "datatype-misalignment";
1061 case EXCEPTION_IN_PAGE_ERROR:
1062 return "in-page-error";
1063 case EXCEPTION_ILLEGAL_INSTRUCTION:
1064 return "illegal-instruction";
1065 case EXCEPTION_PRIV_INSTRUCTION:
1066 return "priv-instruction";
1067 case EXCEPTION_BREAKPOINT:
1068 return "breakpoint";
1069 case EXCEPTION_FLT_DENORMAL_OPERAND:
1070 return "flt-denormal-operand";
1071 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1072 return "flt-divide-by-zero";
1073 case EXCEPTION_FLT_INEXACT_RESULT:
1074 return "flt-inexact-result";
1075 case EXCEPTION_FLT_INVALID_OPERATION:
1076 return "flt-invalid-operation";
1077 case EXCEPTION_FLT_OVERFLOW:
1078 return "flt-overflow";
1079 case EXCEPTION_FLT_STACK_CHECK:
1080 return "flt-stack-check";
1081 case EXCEPTION_FLT_UNDERFLOW:
1082 return "flt-underflow";
1083 case EXCEPTION_INT_DIVIDE_BY_ZERO:
1084 return "int-divide-by-zero";
1085 case EXCEPTION_INT_OVERFLOW:
1086 return "int-overflow";
1088 return "unknown exception";
1091 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1092 if (buf_len == 0)
1093 return 0;
1095 // Get the UTF-16 path and convert to UTF-8.
1096 InternalMmapVector<wchar_t> binname_utf16(kMaxPathLength);
1097 int binname_utf16_len =
1098 GetModuleFileNameW(NULL, &binname_utf16[0], kMaxPathLength);
1099 if (binname_utf16_len == 0) {
1100 buf[0] = '\0';
1101 return 0;
1103 int binary_name_len =
1104 ::WideCharToMultiByte(CP_UTF8, 0, &binname_utf16[0], binname_utf16_len,
1105 buf, buf_len, NULL, NULL);
1106 if ((unsigned)binary_name_len == buf_len)
1107 --binary_name_len;
1108 buf[binary_name_len] = '\0';
1109 return binary_name_len;
1112 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1113 return ReadBinaryName(buf, buf_len);
1116 void CheckVMASize() {
1117 // Do nothing.
1120 void InitializePlatformEarly() {
1121 // Do nothing.
1124 void CheckASLR() {
1125 // Do nothing
1128 void CheckMPROTECT() {
1129 // Do nothing
1132 char **GetArgv() {
1133 // FIXME: Actually implement this function.
1134 return 0;
1137 char **GetEnviron() {
1138 // FIXME: Actually implement this function.
1139 return 0;
1142 pid_t StartSubprocess(const char *program, const char *const argv[],
1143 const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1144 fd_t stderr_fd) {
1145 // FIXME: implement on this platform
1146 // Should be implemented based on
1147 // SymbolizerProcess::StarAtSymbolizerSubprocess
1148 // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1149 return -1;
1152 bool IsProcessRunning(pid_t pid) {
1153 // FIXME: implement on this platform.
1154 return false;
1157 int WaitForProcess(pid_t pid) { return -1; }
1159 // FIXME implement on this platform.
1160 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
1162 void CheckNoDeepBind(const char *filename, int flag) {
1163 // Do nothing.
1166 // FIXME: implement on this platform.
1167 bool GetRandom(void *buffer, uptr length, bool blocking) {
1168 UNIMPLEMENTED();
1171 u32 GetNumberOfCPUs() {
1172 SYSTEM_INFO sysinfo = {};
1173 GetNativeSystemInfo(&sysinfo);
1174 return sysinfo.dwNumberOfProcessors;
1177 #if SANITIZER_WIN_TRACE
1178 // TODO(mcgov): Rename this project-wide to PlatformLogInit
1179 void AndroidLogInit(void) {
1180 HRESULT hr = TraceLoggingRegister(g_asan_provider);
1181 if (!SUCCEEDED(hr))
1182 return;
1185 void SetAbortMessage(const char *) {}
1187 void LogFullErrorReport(const char *buffer) {
1188 if (common_flags()->log_to_syslog) {
1189 InternalMmapVector<wchar_t> filename;
1190 DWORD filename_length = 0;
1191 do {
1192 filename.resize(filename.size() + 0x100);
1193 filename_length =
1194 GetModuleFileNameW(NULL, filename.begin(), filename.size());
1195 } while (filename_length >= filename.size());
1196 TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1197 TraceLoggingValue(filename.begin(), "ExecutableName"),
1198 TraceLoggingValue(buffer, "AsanReportContents"));
1201 #endif // SANITIZER_WIN_TRACE
1203 void InitializePlatformCommonFlags(CommonFlags *cf) {}
1205 } // namespace __sanitizer
1207 #endif // _WIN32