Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / compiler-rt / lib / tsan / rtl / tsan_fd.cpp
blobab295a69dce17b3b001b65eb0868d2da54fc4d53
1 //===-- tsan_fd.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //===----------------------------------------------------------------------===//
13 #include "tsan_fd.h"
15 #include <sanitizer_common/sanitizer_atomic.h>
17 #include "tsan_interceptors.h"
18 #include "tsan_rtl.h"
20 namespace __tsan {
22 const int kTableSizeL1 = 1024;
23 const int kTableSizeL2 = 1024;
24 const int kTableSize = kTableSizeL1 * kTableSizeL2;
26 struct FdSync {
27 atomic_uint64_t rc;
30 struct FdDesc {
31 FdSync *sync;
32 // This is used to establish write -> epoll_wait synchronization
33 // where epoll_wait receives notification about the write.
34 atomic_uintptr_t aux_sync; // FdSync*
35 Tid creation_tid;
36 StackID creation_stack;
37 bool closed;
40 struct FdContext {
41 atomic_uintptr_t tab[kTableSizeL1];
42 // Addresses used for synchronization.
43 FdSync globsync;
44 FdSync filesync;
45 FdSync socksync;
46 u64 connectsync;
49 static FdContext fdctx;
51 static bool bogusfd(int fd) {
52 // Apparently a bogus fd value.
53 return fd < 0 || fd >= kTableSize;
56 static FdSync *allocsync(ThreadState *thr, uptr pc) {
57 FdSync *s = (FdSync*)user_alloc_internal(thr, pc, sizeof(FdSync),
58 kDefaultAlignment, false);
59 atomic_store(&s->rc, 1, memory_order_relaxed);
60 return s;
63 static FdSync *ref(FdSync *s) {
64 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
65 atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
66 return s;
69 static void unref(ThreadState *thr, uptr pc, FdSync *s) {
70 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
71 if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
72 CHECK_NE(s, &fdctx.globsync);
73 CHECK_NE(s, &fdctx.filesync);
74 CHECK_NE(s, &fdctx.socksync);
75 user_free(thr, pc, s, false);
80 static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
81 CHECK_GE(fd, 0);
82 CHECK_LT(fd, kTableSize);
83 atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
84 uptr l1 = atomic_load(pl1, memory_order_consume);
85 if (l1 == 0) {
86 uptr size = kTableSizeL2 * sizeof(FdDesc);
87 // We need this to reside in user memory to properly catch races on it.
88 void *p = user_alloc_internal(thr, pc, size, kDefaultAlignment, false);
89 internal_memset(p, 0, size);
90 MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
91 if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
92 l1 = (uptr)p;
93 else
94 user_free(thr, pc, p, false);
96 FdDesc *fds = reinterpret_cast<FdDesc *>(l1);
97 return &fds[fd % kTableSizeL2];
100 // pd must be already ref'ed.
101 static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
102 bool write = true) {
103 FdDesc *d = fddesc(thr, pc, fd);
104 // As a matter of fact, we don't intercept all close calls.
105 // See e.g. libc __res_iclose().
106 if (d->sync) {
107 unref(thr, pc, d->sync);
108 d->sync = 0;
110 unref(thr, pc,
111 reinterpret_cast<FdSync *>(
112 atomic_load(&d->aux_sync, memory_order_relaxed)));
113 atomic_store(&d->aux_sync, 0, memory_order_relaxed);
114 if (flags()->io_sync == 0) {
115 unref(thr, pc, s);
116 } else if (flags()->io_sync == 1) {
117 d->sync = s;
118 } else if (flags()->io_sync == 2) {
119 unref(thr, pc, s);
120 d->sync = &fdctx.globsync;
122 d->creation_tid = thr->tid;
123 d->creation_stack = CurrentStackId(thr, pc);
124 d->closed = false;
125 // This prevents false positives on fd_close_norace3.cpp test.
126 // The mechanics of the false positive are not completely clear,
127 // but it happens only if global reset is enabled (flush_memory_ms=1)
128 // and may be related to lost writes during asynchronous MADV_DONTNEED.
129 SlotLocker locker(thr);
130 if (write) {
131 // To catch races between fd usage and open.
132 MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
133 } else {
134 // See the dup-related comment in FdClose.
135 MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead | kAccessSlotLocked);
139 void FdInit() {
140 atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
141 atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
142 atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
145 void FdOnFork(ThreadState *thr, uptr pc) {
146 // On fork() we need to reset all fd's, because the child is going
147 // close all them, and that will cause races between previous read/write
148 // and the close.
149 for (int l1 = 0; l1 < kTableSizeL1; l1++) {
150 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
151 if (tab == 0)
152 break;
153 for (int l2 = 0; l2 < kTableSizeL2; l2++) {
154 FdDesc *d = &tab[l2];
155 MemoryResetRange(thr, pc, (uptr)d, 8);
160 bool FdLocation(uptr addr, int *fd, Tid *tid, StackID *stack, bool *closed) {
161 for (int l1 = 0; l1 < kTableSizeL1; l1++) {
162 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
163 if (tab == 0)
164 break;
165 if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
166 int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
167 FdDesc *d = &tab[l2];
168 *fd = l1 * kTableSizeL1 + l2;
169 *tid = d->creation_tid;
170 *stack = d->creation_stack;
171 *closed = d->closed;
172 return true;
175 return false;
178 void FdAcquire(ThreadState *thr, uptr pc, int fd) {
179 if (bogusfd(fd))
180 return;
181 FdDesc *d = fddesc(thr, pc, fd);
182 FdSync *s = d->sync;
183 DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
184 MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
185 if (s)
186 Acquire(thr, pc, (uptr)s);
189 void FdRelease(ThreadState *thr, uptr pc, int fd) {
190 if (bogusfd(fd))
191 return;
192 FdDesc *d = fddesc(thr, pc, fd);
193 FdSync *s = d->sync;
194 DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
195 MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
196 if (s)
197 Release(thr, pc, (uptr)s);
198 if (uptr aux_sync = atomic_load(&d->aux_sync, memory_order_acquire))
199 Release(thr, pc, aux_sync);
202 void FdAccess(ThreadState *thr, uptr pc, int fd) {
203 DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
204 if (bogusfd(fd))
205 return;
206 FdDesc *d = fddesc(thr, pc, fd);
207 MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
210 void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
211 DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
212 if (bogusfd(fd))
213 return;
214 FdDesc *d = fddesc(thr, pc, fd);
216 // Need to lock the slot to make MemoryAccess and MemoryResetRange atomic
217 // with respect to global reset. See the comment in MemoryRangeFreed.
218 SlotLocker locker(thr);
219 if (!MustIgnoreInterceptor(thr)) {
220 if (write) {
221 // To catch races between fd usage and close.
222 MemoryAccess(thr, pc, (uptr)d, 8,
223 kAccessWrite | kAccessCheckOnly | kAccessSlotLocked);
224 } else {
225 // This path is used only by dup2/dup3 calls.
226 // We do read instead of write because there is a number of legitimate
227 // cases where write would lead to false positives:
228 // 1. Some software dups a closed pipe in place of a socket before
229 // closing
230 // the socket (to prevent races actually).
231 // 2. Some daemons dup /dev/null in place of stdin/stdout.
232 // On the other hand we have not seen cases when write here catches real
233 // bugs.
234 MemoryAccess(thr, pc, (uptr)d, 8,
235 kAccessRead | kAccessCheckOnly | kAccessSlotLocked);
238 // We need to clear it, because if we do not intercept any call out there
239 // that creates fd, we will hit false postives.
240 MemoryResetRange(thr, pc, (uptr)d, 8);
242 unref(thr, pc, d->sync);
243 d->sync = 0;
244 unref(thr, pc,
245 reinterpret_cast<FdSync *>(
246 atomic_load(&d->aux_sync, memory_order_relaxed)));
247 atomic_store(&d->aux_sync, 0, memory_order_relaxed);
248 d->closed = true;
249 d->creation_tid = thr->tid;
250 d->creation_stack = CurrentStackId(thr, pc);
253 void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
254 DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
255 if (bogusfd(fd))
256 return;
257 init(thr, pc, fd, &fdctx.filesync);
260 void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
261 DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
262 if (bogusfd(oldfd) || bogusfd(newfd))
263 return;
264 // Ignore the case when user dups not yet connected socket.
265 FdDesc *od = fddesc(thr, pc, oldfd);
266 MemoryAccess(thr, pc, (uptr)od, 8, kAccessRead);
267 FdClose(thr, pc, newfd, write);
268 init(thr, pc, newfd, ref(od->sync), write);
271 void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
272 DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
273 FdSync *s = allocsync(thr, pc);
274 init(thr, pc, rfd, ref(s));
275 init(thr, pc, wfd, ref(s));
276 unref(thr, pc, s);
279 void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
280 DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
281 if (bogusfd(fd))
282 return;
283 init(thr, pc, fd, allocsync(thr, pc));
286 void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
287 DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
288 if (bogusfd(fd))
289 return;
290 init(thr, pc, fd, 0);
293 void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
294 DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
295 if (bogusfd(fd))
296 return;
297 init(thr, pc, fd, 0);
300 void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
301 DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
302 if (bogusfd(fd))
303 return;
304 init(thr, pc, fd, allocsync(thr, pc));
307 void FdPollAdd(ThreadState *thr, uptr pc, int epfd, int fd) {
308 DPrintf("#%d: FdPollAdd(%d, %d)\n", thr->tid, epfd, fd);
309 if (bogusfd(epfd) || bogusfd(fd))
310 return;
311 FdDesc *d = fddesc(thr, pc, fd);
312 // Associate fd with epoll fd only once.
313 // While an fd can be associated with multiple epolls at the same time,
314 // or with different epolls during different phases of lifetime,
315 // synchronization semantics (and examples) of this are unclear.
316 // So we don't support this for now.
317 // If we change the association, it will also create lifetime management
318 // problem for FdRelease which accesses the aux_sync.
319 if (atomic_load(&d->aux_sync, memory_order_relaxed))
320 return;
321 FdDesc *epd = fddesc(thr, pc, epfd);
322 FdSync *s = epd->sync;
323 if (!s)
324 return;
325 uptr cmp = 0;
326 if (atomic_compare_exchange_strong(
327 &d->aux_sync, &cmp, reinterpret_cast<uptr>(s), memory_order_release))
328 ref(s);
331 void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
332 DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
333 if (bogusfd(fd))
334 return;
335 // It can be a UDP socket.
336 init(thr, pc, fd, &fdctx.socksync);
339 void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
340 DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
341 if (bogusfd(fd))
342 return;
343 // Synchronize connect->accept.
344 Acquire(thr, pc, (uptr)&fdctx.connectsync);
345 init(thr, pc, newfd, &fdctx.socksync);
348 void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
349 DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
350 if (bogusfd(fd))
351 return;
352 // Synchronize connect->accept.
353 Release(thr, pc, (uptr)&fdctx.connectsync);
356 void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
357 DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
358 if (bogusfd(fd))
359 return;
360 init(thr, pc, fd, &fdctx.socksync);
363 uptr File2addr(const char *path) {
364 (void)path;
365 static u64 addr;
366 return (uptr)&addr;
369 uptr Dir2addr(const char *path) {
370 (void)path;
371 static u64 addr;
372 return (uptr)&addr;
375 } // namespace __tsan