Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / compiler-rt / lib / xray / xray_x86_64.cpp
blobb9666a40861d48cfaceea88598a2e6fe5e61a530
1 #include "cpuid.h"
2 #include "sanitizer_common/sanitizer_common.h"
3 #if !SANITIZER_FUCHSIA
4 #include "sanitizer_common/sanitizer_posix.h"
5 #endif
6 #include "xray_defs.h"
7 #include "xray_interface_internal.h"
9 #if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_APPLE
10 #include <sys/types.h>
11 #include <sys/sysctl.h>
12 #elif SANITIZER_FUCHSIA
13 #include <zircon/syscalls.h>
14 #endif
16 #include <atomic>
17 #include <cstdint>
18 #include <errno.h>
19 #include <fcntl.h>
20 #include <iterator>
21 #include <limits>
22 #include <tuple>
23 #include <unistd.h>
25 namespace __xray {
27 #if SANITIZER_LINUX
28 static std::pair<ssize_t, bool>
29 retryingReadSome(int Fd, char *Begin, char *End) XRAY_NEVER_INSTRUMENT {
30 auto BytesToRead = std::distance(Begin, End);
31 ssize_t BytesRead;
32 ssize_t TotalBytesRead = 0;
33 while (BytesToRead && (BytesRead = read(Fd, Begin, BytesToRead))) {
34 if (BytesRead == -1) {
35 if (errno == EINTR)
36 continue;
37 Report("Read error; errno = %d\n", errno);
38 return std::make_pair(TotalBytesRead, false);
41 TotalBytesRead += BytesRead;
42 BytesToRead -= BytesRead;
43 Begin += BytesRead;
45 return std::make_pair(TotalBytesRead, true);
48 static bool readValueFromFile(const char *Filename,
49 long long *Value) XRAY_NEVER_INSTRUMENT {
50 int Fd = open(Filename, O_RDONLY | O_CLOEXEC);
51 if (Fd == -1)
52 return false;
53 static constexpr size_t BufSize = 256;
54 char Line[BufSize] = {};
55 ssize_t BytesRead;
56 bool Success;
57 std::tie(BytesRead, Success) = retryingReadSome(Fd, Line, Line + BufSize);
58 close(Fd);
59 if (!Success)
60 return false;
61 const char *End = nullptr;
62 long long Tmp = internal_simple_strtoll(Line, &End, 10);
63 bool Result = false;
64 if (Line[0] != '\0' && (*End == '\n' || *End == '\0')) {
65 *Value = Tmp;
66 Result = true;
68 return Result;
71 uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
72 long long TSCFrequency = -1;
73 if (readValueFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz",
74 &TSCFrequency)) {
75 TSCFrequency *= 1000;
76 } else if (readValueFromFile(
77 "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
78 &TSCFrequency)) {
79 TSCFrequency *= 1000;
80 } else {
81 Report("Unable to determine CPU frequency for TSC accounting.\n");
83 return TSCFrequency == -1 ? 0 : static_cast<uint64_t>(TSCFrequency);
85 #elif SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_APPLE
86 uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
87 long long TSCFrequency = -1;
88 size_t tscfreqsz = sizeof(TSCFrequency);
89 #if SANITIZER_APPLE
90 if (internal_sysctlbyname("machdep.tsc.frequency", &TSCFrequency,
91 &tscfreqsz, NULL, 0) != -1) {
93 #else
94 if (internal_sysctlbyname("machdep.tsc_freq", &TSCFrequency, &tscfreqsz,
95 NULL, 0) != -1) {
96 #endif
97 return static_cast<uint64_t>(TSCFrequency);
98 } else {
99 Report("Unable to determine CPU frequency for TSC accounting.\n");
102 return 0;
104 #elif !SANITIZER_FUCHSIA
105 uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
106 /* Not supported */
107 return 0;
109 #endif
111 static constexpr uint8_t CallOpCode = 0xe8;
112 static constexpr uint16_t MovR10Seq = 0xba41;
113 static constexpr uint16_t Jmp9Seq = 0x09eb;
114 static constexpr uint16_t Jmp20Seq = 0x14eb;
115 static constexpr uint16_t Jmp15Seq = 0x0feb;
116 static constexpr uint8_t JmpOpCode = 0xe9;
117 static constexpr uint8_t RetOpCode = 0xc3;
118 static constexpr uint16_t NopwSeq = 0x9066;
120 static constexpr int64_t MinOffset{std::numeric_limits<int32_t>::min()};
121 static constexpr int64_t MaxOffset{std::numeric_limits<int32_t>::max()};
123 bool patchFunctionEntry(const bool Enable, const uint32_t FuncId,
124 const XRaySledEntry &Sled,
125 void (*Trampoline)()) XRAY_NEVER_INSTRUMENT {
126 // Here we do the dance of replacing the following sled:
128 // xray_sled_n:
129 // jmp +9
130 // <9 byte nop>
132 // With the following:
134 // mov r10d, <function id>
135 // call <relative 32bit offset to entry trampoline>
137 // We need to do this in the following order:
139 // 1. Put the function id first, 2 bytes from the start of the sled (just
140 // after the 2-byte jmp instruction).
141 // 2. Put the call opcode 6 bytes from the start of the sled.
142 // 3. Put the relative offset 7 bytes from the start of the sled.
143 // 4. Do an atomic write over the jmp instruction for the "mov r10d"
144 // opcode and first operand.
146 // Prerequisite is to compute the relative offset to the trampoline's address.
147 const uint64_t Address = Sled.address();
148 int64_t TrampolineOffset = reinterpret_cast<int64_t>(Trampoline) -
149 (static_cast<int64_t>(Address) + 11);
150 if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
151 Report("XRay Entry trampoline (%p) too far from sled (%p)\n",
152 reinterpret_cast<void *>(Trampoline),
153 reinterpret_cast<void *>(Address));
154 return false;
156 if (Enable) {
157 *reinterpret_cast<uint32_t *>(Address + 2) = FuncId;
158 *reinterpret_cast<uint8_t *>(Address + 6) = CallOpCode;
159 *reinterpret_cast<uint32_t *>(Address + 7) = TrampolineOffset;
160 std::atomic_store_explicit(
161 reinterpret_cast<std::atomic<uint16_t> *>(Address), MovR10Seq,
162 std::memory_order_release);
163 } else {
164 std::atomic_store_explicit(
165 reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp9Seq,
166 std::memory_order_release);
167 // FIXME: Write out the nops still?
169 return true;
172 bool patchFunctionExit(const bool Enable, const uint32_t FuncId,
173 const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
174 // Here we do the dance of replacing the following sled:
176 // xray_sled_n:
177 // ret
178 // <10 byte nop>
180 // With the following:
182 // mov r10d, <function id>
183 // jmp <relative 32bit offset to exit trampoline>
185 // 1. Put the function id first, 2 bytes from the start of the sled (just
186 // after the 1-byte ret instruction).
187 // 2. Put the jmp opcode 6 bytes from the start of the sled.
188 // 3. Put the relative offset 7 bytes from the start of the sled.
189 // 4. Do an atomic write over the jmp instruction for the "mov r10d"
190 // opcode and first operand.
192 // Prerequisite is to compute the relative offset fo the
193 // __xray_FunctionExit function's address.
194 const uint64_t Address = Sled.address();
195 int64_t TrampolineOffset = reinterpret_cast<int64_t>(__xray_FunctionExit) -
196 (static_cast<int64_t>(Address) + 11);
197 if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
198 Report("XRay Exit trampoline (%p) too far from sled (%p)\n",
199 reinterpret_cast<void *>(__xray_FunctionExit),
200 reinterpret_cast<void *>(Address));
201 return false;
203 if (Enable) {
204 *reinterpret_cast<uint32_t *>(Address + 2) = FuncId;
205 *reinterpret_cast<uint8_t *>(Address + 6) = JmpOpCode;
206 *reinterpret_cast<uint32_t *>(Address + 7) = TrampolineOffset;
207 std::atomic_store_explicit(
208 reinterpret_cast<std::atomic<uint16_t> *>(Address), MovR10Seq,
209 std::memory_order_release);
210 } else {
211 std::atomic_store_explicit(
212 reinterpret_cast<std::atomic<uint8_t> *>(Address), RetOpCode,
213 std::memory_order_release);
214 // FIXME: Write out the nops still?
216 return true;
219 bool patchFunctionTailExit(const bool Enable, const uint32_t FuncId,
220 const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
221 // Here we do the dance of replacing the tail call sled with a similar
222 // sequence as the entry sled, but calls the tail exit sled instead.
223 const uint64_t Address = Sled.address();
224 int64_t TrampolineOffset =
225 reinterpret_cast<int64_t>(__xray_FunctionTailExit) -
226 (static_cast<int64_t>(Address) + 11);
227 if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
228 Report("XRay Tail Exit trampoline (%p) too far from sled (%p)\n",
229 reinterpret_cast<void *>(__xray_FunctionTailExit),
230 reinterpret_cast<void *>(Address));
231 return false;
233 if (Enable) {
234 *reinterpret_cast<uint32_t *>(Address + 2) = FuncId;
235 *reinterpret_cast<uint8_t *>(Address + 6) = CallOpCode;
236 *reinterpret_cast<uint32_t *>(Address + 7) = TrampolineOffset;
237 std::atomic_store_explicit(
238 reinterpret_cast<std::atomic<uint16_t> *>(Address), MovR10Seq,
239 std::memory_order_release);
240 } else {
241 std::atomic_store_explicit(
242 reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp9Seq,
243 std::memory_order_release);
244 // FIXME: Write out the nops still?
246 return true;
249 bool patchCustomEvent(const bool Enable, const uint32_t FuncId,
250 const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
251 // Here we do the dance of replacing the following sled:
253 // xray_sled_n:
254 // jmp +15 // 2 bytes
255 // ...
257 // With the following:
259 // nopw // 2 bytes*
260 // ...
263 // The "unpatch" should just turn the 'nopw' back to a 'jmp +15'.
264 const uint64_t Address = Sled.address();
265 if (Enable) {
266 std::atomic_store_explicit(
267 reinterpret_cast<std::atomic<uint16_t> *>(Address), NopwSeq,
268 std::memory_order_release);
269 } else {
270 std::atomic_store_explicit(
271 reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp15Seq,
272 std::memory_order_release);
274 return false;
277 bool patchTypedEvent(const bool Enable, const uint32_t FuncId,
278 const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
279 // Here we do the dance of replacing the following sled:
281 // xray_sled_n:
282 // jmp +20 // 2 byte instruction
283 // ...
285 // With the following:
287 // nopw // 2 bytes
288 // ...
291 // The "unpatch" should just turn the 'nopw' back to a 'jmp +20'.
292 // The 20 byte sled stashes three argument registers, calls the trampoline,
293 // unstashes the registers and returns. If the arguments are already in
294 // the correct registers, the stashing and unstashing become equivalently
295 // sized nops.
296 const uint64_t Address = Sled.address();
297 if (Enable) {
298 std::atomic_store_explicit(
299 reinterpret_cast<std::atomic<uint16_t> *>(Address), NopwSeq,
300 std::memory_order_release);
301 } else {
302 std::atomic_store_explicit(
303 reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp20Seq,
304 std::memory_order_release);
306 return false;
309 #if !SANITIZER_FUCHSIA
310 // We determine whether the CPU we're running on has the correct features we
311 // need. In x86_64 this will be rdtscp support.
312 bool probeRequiredCPUFeatures() XRAY_NEVER_INSTRUMENT {
313 unsigned int EAX, EBX, ECX, EDX;
315 // We check whether rdtscp support is enabled. According to the x86_64 manual,
316 // level should be set at 0x80000001, and we should have a look at bit 27 in
317 // EDX. That's 0x8000000 (or 1u << 27).
318 __asm__ __volatile__("cpuid" : "=a"(EAX), "=b"(EBX), "=c"(ECX), "=d"(EDX)
319 : "0"(0x80000001));
320 if (!(EDX & (1u << 27))) {
321 Report("Missing rdtscp support.\n");
322 return false;
324 // Also check whether we can determine the CPU frequency, since if we cannot,
325 // we should use the emulated TSC instead.
326 if (!getTSCFrequency()) {
327 Report("Unable to determine CPU frequency.\n");
328 return false;
330 return true;
332 #endif
334 } // namespace __xray