Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / libc / AOR_v20.02 / math / tools / log2_abs.sollya
blobecbc7e075003f09a10c74fa6d172a96b71f9d5ec
1 // polynomial for approximating log2(1+x)
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 deg = 7; // poly degree
8 // interval ~= 1/(2*N), where N is the table entries
9 a= -0x1.f45p-8;
10 b=  0x1.f45p-8;
12 ln2 = evaluate(log(2),0);
13 invln2hi = double(1/ln2 + 0x1p21) - 0x1p21; // round away last 21 bits
14 invln2lo = double(1/ln2 - invln2hi);
16 // find log2(1+x) polynomial with minimal absolute error
17 f = log(1+x)/ln2;
19 // return p that minimizes |f(x) - poly(x) - x^d*p(x)|
20 approx = proc(poly,d) {
21   return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10);
24 // first coeff is fixed, iteratively find optimal double prec coeffs
25 poly = x*(invln2lo + invln2hi);
26 for i from 2 to deg do {
27   p = roundcoefficients(approx(poly,i), [|D ...|]);
28   poly = poly + x^i*coeff(p,0);
31 display = hexadecimal;
32 print("invln2hi:", invln2hi);
33 print("invln2lo:", invln2lo);
34 print("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30));
35 //// relative error computation fails if f(0)==0
36 //// g = f(x)/x = log2(1+x)/x; using taylor series
37 //g = 0;
38 //for i from 0 to 60 do { g = g + (-x)^i/(i+1)/ln2; };
39 //print("rel error:", accurateinfnorm(1-(poly(x)/x)/g(x), [a;b], 30));
40 print("in [",a,b,"]");
41 print("coeffs:");
42 for i from 0 to deg do coeff(poly,i);