Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / libc / benchmarks / automemcpy / lib / CodeGen.cpp
blob3837bd97d9f9a703e59a5017ace4c6291adc6209
1 //===-- C++ code generation from NamedFunctionDescriptors -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This code is responsible for generating the "Implementation.cpp" file.
9 // The file is composed like this:
11 // 1. Includes
12 // 2. Using statements to help readability.
13 // 3. Source code for all the mem function implementations.
14 // 4. The function to retrieve all the function descriptors with their name.
15 // llvm::ArrayRef<NamedFunctionDescriptor> getFunctionDescriptors();
16 // 5. The functions for the benchmarking infrastructure:
17 // llvm::ArrayRef<MemcpyConfiguration> getMemcpyConfigurations();
18 // llvm::ArrayRef<MemcmpOrBcmpConfiguration> getMemcmpConfigurations();
19 // llvm::ArrayRef<MemcmpOrBcmpConfiguration> getBcmpConfigurations();
20 // llvm::ArrayRef<MemsetConfiguration> getMemsetConfigurations();
21 // llvm::ArrayRef<BzeroConfiguration> getBzeroConfigurations();
24 // Sections 3, 4 and 5 are handled by the following namespaces:
25 // - codegen::functions
26 // - codegen::descriptors
27 // - codegen::configurations
29 // The programming style is functionnal. In each of these namespace, the
30 // original `NamedFunctionDescriptor` object is turned into a different type. We
31 // make use of overloaded stream operators to format the resulting type into
32 // either a function, a descriptor or a configuration. The entry point of each
33 // namespace is the Serialize function.
35 // Note the code here is better understood by starting from the `Serialize`
36 // function at the end of the file.
38 #include "automemcpy/CodeGen.h"
39 #include <cassert>
40 #include <llvm/ADT/STLExtras.h>
41 #include <llvm/ADT/StringSet.h>
42 #include <llvm/Support/FormatVariadic.h>
43 #include <llvm/Support/raw_ostream.h>
44 #include <optional>
45 #include <set>
47 namespace llvm {
48 namespace automemcpy {
49 namespace codegen {
51 // The indentation string.
52 static constexpr StringRef kIndent = " ";
54 // The codegen namespace handles the serialization of a NamedFunctionDescriptor
55 // into source code for the function, the descriptor and the configuration.
57 namespace functions {
59 // This namespace turns a NamedFunctionDescriptor into an actual implementation.
60 // -----------------------------------------------------------------------------
61 // e.g.
62 // static void memcpy_0xB20D4702493C397E(char *__restrict dst,
63 // const char *__restrict src,
64 // size_t size) {
65 // using namespace LIBC_NAMESPACE::x86;
66 // if(size == 0) return;
67 // if(size == 1) return copy<_1>(dst, src);
68 // if(size < 4) return copy<HeadTail<_2>>(dst, src, size);
69 // if(size < 8) return copy<HeadTail<_4>>(dst, src, size);
70 // if(size < 16) return copy<HeadTail<_8>>(dst, src, size);
71 // if(size < 32) return copy<HeadTail<_16>>(dst, src, size);
72 // return copy<Accelerator>(dst, src, size);
73 // }
75 // The `Serialize` method turns a `NamedFunctionDescriptor` into a
76 // `FunctionImplementation` which holds all the information needed to produce
77 // the C++ source code.
79 // An Element with its size (e.g. `_16` in the example above).
80 struct ElementType {
81 size_t Size;
83 // The case `if(size == 0)` is encoded as a the Zero type.
84 struct Zero {
85 StringRef DefaultReturnValue;
87 // An individual size `if(size == X)` is encoded as an Individual type.
88 struct Individual {
89 size_t IfEq;
90 ElementType Element;
92 // An overlap strategy is encoded as an Overlap type.
93 struct Overlap {
94 size_t IfLt;
95 ElementType Element;
97 // A loop strategy is encoded as a Loop type.
98 struct Loop {
99 size_t IfLt;
100 ElementType Element;
102 // An aligned loop strategy is encoded as an AlignedLoop type.
103 struct AlignedLoop {
104 size_t IfLt;
105 ElementType Element;
106 ElementType Alignment;
107 StringRef AlignTo;
109 // The accelerator strategy.
110 struct Accelerator {
111 size_t IfLt;
113 // The Context stores data about the function type.
114 struct Context {
115 StringRef FunctionReturnType; // e.g. void* or int
116 StringRef FunctionArgs;
117 StringRef ElementOp; // copy, three_way_compare, splat_set, ...
118 StringRef FixedSizeArgs;
119 StringRef RuntimeSizeArgs;
120 StringRef DefaultReturnValue;
122 // A detailed representation of the function implementation mapped from the
123 // NamedFunctionDescriptor.
124 struct FunctionImplementation {
125 Context Ctx;
126 StringRef Name;
127 std::vector<Individual> Individuals;
128 std::vector<Overlap> Overlaps;
129 std::optional<Loop> Loop;
130 std::optional<AlignedLoop> AlignedLoop;
131 std::optional<Accelerator> Accelerator;
132 ElementTypeClass ElementClass;
135 // Returns the Context for each FunctionType.
136 static Context getCtx(FunctionType FT) {
137 switch (FT) {
138 case FunctionType::MEMCPY:
139 return {"void",
140 "(char *__restrict dst, const char *__restrict src, size_t size)",
141 "copy",
142 "(dst, src)",
143 "(dst, src, size)",
144 ""};
145 case FunctionType::MEMCMP:
146 return {"int",
147 "(const char * lhs, const char * rhs, size_t size)",
148 "three_way_compare",
149 "(lhs, rhs)",
150 "(lhs, rhs, size)",
151 "0"};
152 case FunctionType::MEMSET:
153 return {"void",
154 "(char * dst, int value, size_t size)",
155 "splat_set",
156 "(dst, value)",
157 "(dst, value, size)",
158 ""};
159 case FunctionType::BZERO:
160 return {"void", "(char * dst, size_t size)",
161 "splat_set", "(dst, 0)",
162 "(dst, 0, size)", ""};
163 default:
164 report_fatal_error("Not yet implemented");
168 static StringRef getAligntoString(const AlignArg &AlignTo) {
169 switch (AlignTo) {
170 case AlignArg::_1:
171 return "Arg::P1";
172 case AlignArg::_2:
173 return "Arg::P2";
174 case AlignArg::ARRAY_SIZE:
175 report_fatal_error("logic error");
179 static raw_ostream &operator<<(raw_ostream &Stream, const ElementType &E) {
180 return Stream << '_' << E.Size;
182 static raw_ostream &operator<<(raw_ostream &Stream, const Individual &O) {
183 return Stream << O.Element;
185 static raw_ostream &operator<<(raw_ostream &Stream, const Overlap &O) {
186 return Stream << "HeadTail<" << O.Element << '>';
188 static raw_ostream &operator<<(raw_ostream &Stream, const Loop &O) {
189 return Stream << "Loop<" << O.Element << '>';
191 static raw_ostream &operator<<(raw_ostream &Stream, const AlignedLoop &O) {
192 return Stream << "Align<" << O.Alignment << ',' << O.AlignTo << ">::Then<"
193 << Loop{O.IfLt, O.Element} << ">";
195 static raw_ostream &operator<<(raw_ostream &Stream, const Accelerator &O) {
196 return Stream << "Accelerator";
199 template <typename T> struct IfEq {
200 StringRef Op;
201 StringRef Args;
202 const T &Element;
205 template <typename T> struct IfLt {
206 StringRef Op;
207 StringRef Args;
208 const T &Element;
211 static raw_ostream &operator<<(raw_ostream &Stream, const Zero &O) {
212 Stream << kIndent << "if(size == 0) return";
213 if (!O.DefaultReturnValue.empty())
214 Stream << ' ' << O.DefaultReturnValue;
215 return Stream << ";\n";
218 template <typename T>
219 static raw_ostream &operator<<(raw_ostream &Stream, const IfEq<T> &O) {
220 return Stream << kIndent << "if(size == " << O.Element.IfEq << ") return "
221 << O.Op << '<' << O.Element << '>' << O.Args << ";\n";
224 template <typename T>
225 static raw_ostream &operator<<(raw_ostream &Stream, const IfLt<T> &O) {
226 Stream << kIndent;
227 if (O.Element.IfLt != kMaxSize)
228 Stream << "if(size < " << O.Element.IfLt << ") ";
229 return Stream << "return " << O.Op << '<' << O.Element << '>' << O.Args
230 << ";\n";
233 static raw_ostream &operator<<(raw_ostream &Stream,
234 const ElementTypeClass &Class) {
235 switch (Class) {
236 case ElementTypeClass::SCALAR:
237 return Stream << "scalar";
238 case ElementTypeClass::BUILTIN:
239 return Stream << "builtin";
240 case ElementTypeClass::NATIVE:
241 // FIXME: the framework should provide a `native` namespace that redirect to
242 // x86, arm or other architectures.
243 return Stream << "x86";
247 static raw_ostream &operator<<(raw_ostream &Stream,
248 const FunctionImplementation &FI) {
249 const auto &Ctx = FI.Ctx;
250 Stream << "static " << Ctx.FunctionReturnType << ' ' << FI.Name
251 << Ctx.FunctionArgs << " {\n";
252 Stream << kIndent << "using namespace LIBC_NAMESPACE::" << FI.ElementClass
253 << ";\n";
254 for (const auto &I : FI.Individuals)
255 if (I.Element.Size == 0)
256 Stream << Zero{Ctx.DefaultReturnValue};
257 else
258 Stream << IfEq<Individual>{Ctx.ElementOp, Ctx.FixedSizeArgs, I};
259 for (const auto &O : FI.Overlaps)
260 Stream << IfLt<Overlap>{Ctx.ElementOp, Ctx.RuntimeSizeArgs, O};
261 if (const auto &C = FI.Loop)
262 Stream << IfLt<Loop>{Ctx.ElementOp, Ctx.RuntimeSizeArgs, *C};
263 if (const auto &C = FI.AlignedLoop)
264 Stream << IfLt<AlignedLoop>{Ctx.ElementOp, Ctx.RuntimeSizeArgs, *C};
265 if (const auto &C = FI.Accelerator)
266 Stream << IfLt<Accelerator>{Ctx.ElementOp, Ctx.RuntimeSizeArgs, *C};
267 return Stream << "}\n";
270 // Turns a `NamedFunctionDescriptor` into a `FunctionImplementation` unfolding
271 // the contiguous and overlap region into several statements. The zero case is
272 // also mapped to its own type.
273 static FunctionImplementation
274 getImplementation(const NamedFunctionDescriptor &NamedFD) {
275 const FunctionDescriptor &FD = NamedFD.Desc;
276 FunctionImplementation Impl;
277 Impl.Ctx = getCtx(FD.Type);
278 Impl.Name = NamedFD.Name;
279 Impl.ElementClass = FD.ElementClass;
280 if (auto C = FD.Contiguous)
281 for (size_t I = C->Span.Begin; I < C->Span.End; ++I)
282 Impl.Individuals.push_back(Individual{I, ElementType{I}});
283 if (auto C = FD.Overlap)
284 for (size_t I = C->Span.Begin; I < C->Span.End; I *= 2)
285 Impl.Overlaps.push_back(Overlap{2 * I, ElementType{I}});
286 if (const auto &L = FD.Loop)
287 Impl.Loop = Loop{L->Span.End, ElementType{L->BlockSize}};
288 if (const auto &AL = FD.AlignedLoop)
289 Impl.AlignedLoop =
290 AlignedLoop{AL->Loop.Span.End, ElementType{AL->Loop.BlockSize},
291 ElementType{AL->Alignment}, getAligntoString(AL->AlignTo)};
292 if (const auto &A = FD.Accelerator)
293 Impl.Accelerator = Accelerator{A->Span.End};
294 return Impl;
297 static void Serialize(raw_ostream &Stream,
298 ArrayRef<NamedFunctionDescriptor> Descriptors) {
300 for (const auto &FD : Descriptors)
301 Stream << getImplementation(FD);
304 } // namespace functions
306 namespace descriptors {
308 // This namespace generates the getFunctionDescriptors function:
309 // -------------------------------------------------------------
310 // e.g.
311 // ArrayRef<NamedFunctionDescriptor> getFunctionDescriptors() {
312 // static constexpr NamedFunctionDescriptor kDescriptors[] = {
313 // {"memcpy_0xE00E29EE73994E2B",{FunctionType::MEMCPY,std::nullopt,std::nullopt,std::nullopt,std::nullopt,Accelerator{{0,kMaxSize}},ElementTypeClass::NATIVE}},
314 // {"memcpy_0x8661D80472487AB5",{FunctionType::MEMCPY,Contiguous{{0,1}},std::nullopt,std::nullopt,std::nullopt,Accelerator{{1,kMaxSize}},ElementTypeClass::NATIVE}},
315 // ...
316 // };
317 // return ArrayRef(kDescriptors);
318 // }
320 static raw_ostream &operator<<(raw_ostream &Stream, const SizeSpan &SS) {
321 Stream << "{" << SS.Begin << ',';
322 if (SS.End == kMaxSize)
323 Stream << "kMaxSize";
324 else
325 Stream << SS.End;
326 return Stream << '}';
328 static raw_ostream &operator<<(raw_ostream &Stream, const Contiguous &O) {
329 return Stream << "Contiguous{" << O.Span << '}';
331 static raw_ostream &operator<<(raw_ostream &Stream, const Overlap &O) {
332 return Stream << "Overlap{" << O.Span << '}';
334 static raw_ostream &operator<<(raw_ostream &Stream, const Loop &O) {
335 return Stream << "Loop{" << O.Span << ',' << O.BlockSize << '}';
337 static raw_ostream &operator<<(raw_ostream &Stream, const AlignArg &O) {
338 switch (O) {
339 case AlignArg::_1:
340 return Stream << "AlignArg::_1";
341 case AlignArg::_2:
342 return Stream << "AlignArg::_2";
343 case AlignArg::ARRAY_SIZE:
344 report_fatal_error("logic error");
347 static raw_ostream &operator<<(raw_ostream &Stream, const AlignedLoop &O) {
348 return Stream << "AlignedLoop{" << O.Loop << ',' << O.Alignment << ','
349 << O.AlignTo << '}';
351 static raw_ostream &operator<<(raw_ostream &Stream, const Accelerator &O) {
352 return Stream << "Accelerator{" << O.Span << '}';
354 static raw_ostream &operator<<(raw_ostream &Stream, const ElementTypeClass &O) {
355 switch (O) {
356 case ElementTypeClass::SCALAR:
357 return Stream << "ElementTypeClass::SCALAR";
358 case ElementTypeClass::BUILTIN:
359 return Stream << "ElementTypeClass::BUILTIN";
360 case ElementTypeClass::NATIVE:
361 return Stream << "ElementTypeClass::NATIVE";
364 static raw_ostream &operator<<(raw_ostream &Stream, const FunctionType &T) {
365 switch (T) {
366 case FunctionType::MEMCPY:
367 return Stream << "FunctionType::MEMCPY";
368 case FunctionType::MEMCMP:
369 return Stream << "FunctionType::MEMCMP";
370 case FunctionType::BCMP:
371 return Stream << "FunctionType::BCMP";
372 case FunctionType::MEMSET:
373 return Stream << "FunctionType::MEMSET";
374 case FunctionType::BZERO:
375 return Stream << "FunctionType::BZERO";
378 template <typename T>
379 static raw_ostream &operator<<(raw_ostream &Stream,
380 const std::optional<T> &MaybeT) {
381 if (MaybeT)
382 return Stream << *MaybeT;
383 return Stream << "std::nullopt";
385 static raw_ostream &operator<<(raw_ostream &Stream,
386 const FunctionDescriptor &FD) {
387 return Stream << '{' << FD.Type << ',' << FD.Contiguous << ',' << FD.Overlap
388 << ',' << FD.Loop << ',' << FD.AlignedLoop << ','
389 << FD.Accelerator << ',' << FD.ElementClass << '}';
391 static raw_ostream &operator<<(raw_ostream &Stream,
392 const NamedFunctionDescriptor &NFD) {
393 return Stream << '{' << '"' << NFD.Name << '"' << ',' << NFD.Desc << '}';
395 template <typename T>
396 static raw_ostream &operator<<(raw_ostream &Stream,
397 const std::vector<T> &VectorT) {
398 Stream << '{';
399 bool First = true;
400 for (const auto &Obj : VectorT) {
401 if (!First)
402 Stream << ',';
403 Stream << Obj;
404 First = false;
406 return Stream << '}';
409 static void Serialize(raw_ostream &Stream,
410 ArrayRef<NamedFunctionDescriptor> Descriptors) {
411 Stream << R"(ArrayRef<NamedFunctionDescriptor> getFunctionDescriptors() {
412 static constexpr NamedFunctionDescriptor kDescriptors[] = {
414 for (size_t I = 0, E = Descriptors.size(); I < E; ++I) {
415 Stream << kIndent << kIndent << Descriptors[I] << ",\n";
417 Stream << R"( };
418 return ArrayRef(kDescriptors);
423 } // namespace descriptors
425 namespace configurations {
427 // This namespace generates the getXXXConfigurations functions:
428 // ------------------------------------------------------------
429 // e.g.
430 // llvm::ArrayRef<MemcpyConfiguration> getMemcpyConfigurations() {
431 // using namespace LIBC_NAMESPACE;
432 // static constexpr MemcpyConfiguration kConfigurations[] = {
433 // {Wrap<memcpy_0xE00E29EE73994E2B>, "memcpy_0xE00E29EE73994E2B"},
434 // {Wrap<memcpy_0x8661D80472487AB5>, "memcpy_0x8661D80472487AB5"},
435 // ...
436 // };
437 // return llvm::ArrayRef(kConfigurations);
438 // }
440 // The `Wrap` template function is provided in the `Main` function below.
441 // It is used to adapt the gnerated code to the prototype of the C function.
442 // For instance, the generated code for a `memcpy` takes `char*` pointers and
443 // returns nothing but the original C `memcpy` function take and returns `void*`
444 // pointers.
446 struct FunctionName {
447 FunctionType ForType;
450 struct ReturnType {
451 FunctionType ForType;
454 struct Configuration {
455 FunctionName Name;
456 ReturnType Type;
457 std::vector<const NamedFunctionDescriptor *> Descriptors;
460 static raw_ostream &operator<<(raw_ostream &Stream, const FunctionName &FN) {
461 switch (FN.ForType) {
462 case FunctionType::MEMCPY:
463 return Stream << "getMemcpyConfigurations";
464 case FunctionType::MEMCMP:
465 return Stream << "getMemcmpConfigurations";
466 case FunctionType::BCMP:
467 return Stream << "getBcmpConfigurations";
468 case FunctionType::MEMSET:
469 return Stream << "getMemsetConfigurations";
470 case FunctionType::BZERO:
471 return Stream << "getBzeroConfigurations";
475 static raw_ostream &operator<<(raw_ostream &Stream, const ReturnType &RT) {
476 switch (RT.ForType) {
477 case FunctionType::MEMCPY:
478 return Stream << "MemcpyConfiguration";
479 case FunctionType::MEMCMP:
480 case FunctionType::BCMP:
481 return Stream << "MemcmpOrBcmpConfiguration";
482 case FunctionType::MEMSET:
483 return Stream << "MemsetConfiguration";
484 case FunctionType::BZERO:
485 return Stream << "BzeroConfiguration";
489 static raw_ostream &operator<<(raw_ostream &Stream,
490 const NamedFunctionDescriptor *FD) {
491 return Stream << formatv("{Wrap<{0}>, \"{0}\"}", FD->Name);
494 static raw_ostream &
495 operator<<(raw_ostream &Stream,
496 const std::vector<const NamedFunctionDescriptor *> &Descriptors) {
497 for (size_t I = 0, E = Descriptors.size(); I < E; ++I)
498 Stream << kIndent << kIndent << Descriptors[I] << ",\n";
499 return Stream;
502 static raw_ostream &operator<<(raw_ostream &Stream, const Configuration &C) {
503 Stream << "llvm::ArrayRef<" << C.Type << "> " << C.Name << "() {\n";
504 if (C.Descriptors.empty())
505 Stream << kIndent << "return {};\n";
506 else {
507 Stream << kIndent << "using namespace LIBC_NAMESPACE;\n";
508 Stream << kIndent << "static constexpr " << C.Type
509 << " kConfigurations[] = {\n";
510 Stream << C.Descriptors;
511 Stream << kIndent << "};\n";
512 Stream << kIndent << "return llvm::ArrayRef(kConfigurations);\n";
514 Stream << "}\n";
515 return Stream;
518 static void Serialize(raw_ostream &Stream, FunctionType FT,
519 ArrayRef<NamedFunctionDescriptor> Descriptors) {
520 Configuration Conf;
521 Conf.Name = {FT};
522 Conf.Type = {FT};
523 for (const auto &FD : Descriptors)
524 if (FD.Desc.Type == FT)
525 Conf.Descriptors.push_back(&FD);
526 Stream << Conf;
529 } // namespace configurations
530 static void Serialize(raw_ostream &Stream,
531 ArrayRef<NamedFunctionDescriptor> Descriptors) {
532 Stream << "// This file is auto-generated by libc/benchmarks/automemcpy.\n";
533 Stream << "// Functions : " << Descriptors.size() << "\n";
534 Stream << "\n";
535 Stream << "#include \"LibcFunctionPrototypes.h\"\n";
536 Stream << "#include \"automemcpy/FunctionDescriptor.h\"\n";
537 Stream << "#include \"src/string/memory_utils/elements.h\"\n";
538 Stream << "\n";
539 Stream << "using llvm::libc_benchmarks::BzeroConfiguration;\n";
540 Stream << "using llvm::libc_benchmarks::MemcmpOrBcmpConfiguration;\n";
541 Stream << "using llvm::libc_benchmarks::MemcpyConfiguration;\n";
542 Stream << "using llvm::libc_benchmarks::MemmoveConfiguration;\n";
543 Stream << "using llvm::libc_benchmarks::MemsetConfiguration;\n";
544 Stream << "\n";
545 Stream << "namespace LIBC_NAMESPACE {\n";
546 Stream << "\n";
547 codegen::functions::Serialize(Stream, Descriptors);
548 Stream << "\n";
549 Stream << "} // namespace LIBC_NAMESPACE\n";
550 Stream << "\n";
551 Stream << "namespace llvm {\n";
552 Stream << "namespace automemcpy {\n";
553 Stream << "\n";
554 codegen::descriptors::Serialize(Stream, Descriptors);
555 Stream << "\n";
556 Stream << "} // namespace automemcpy\n";
557 Stream << "} // namespace llvm\n";
558 Stream << "\n";
559 Stream << R"(
560 using MemcpyStub = void (*)(char *__restrict, const char *__restrict, size_t);
561 template <MemcpyStub Foo>
562 void *Wrap(void *__restrict dst, const void *__restrict src, size_t size) {
563 Foo(reinterpret_cast<char *__restrict>(dst),
564 reinterpret_cast<const char *__restrict>(src), size);
565 return dst;
568 codegen::configurations::Serialize(Stream, FunctionType::MEMCPY, Descriptors);
569 Stream << R"(
570 using MemcmpStub = int (*)(const char *, const char *, size_t);
571 template <MemcmpStub Foo>
572 int Wrap(const void *lhs, const void *rhs, size_t size) {
573 return Foo(reinterpret_cast<const char *>(lhs),
574 reinterpret_cast<const char *>(rhs), size);
577 codegen::configurations::Serialize(Stream, FunctionType::MEMCMP, Descriptors);
578 codegen::configurations::Serialize(Stream, FunctionType::BCMP, Descriptors);
579 Stream << R"(
580 using MemsetStub = void (*)(char *, int, size_t);
581 template <MemsetStub Foo> void *Wrap(void *dst, int value, size_t size) {
582 Foo(reinterpret_cast<char *>(dst), value, size);
583 return dst;
586 codegen::configurations::Serialize(Stream, FunctionType::MEMSET, Descriptors);
587 Stream << R"(
588 using BzeroStub = void (*)(char *, size_t);
589 template <BzeroStub Foo> void Wrap(void *dst, size_t size) {
590 Foo(reinterpret_cast<char *>(dst), size);
593 codegen::configurations::Serialize(Stream, FunctionType::BZERO, Descriptors);
594 Stream << R"(
595 llvm::ArrayRef<MemmoveConfiguration> getMemmoveConfigurations() {
596 return {};
599 Stream << "// Functions : " << Descriptors.size() << "\n";
602 } // namespace codegen
604 // Stores `VolatileStr` into a cache and returns a StringRef of the cached
605 // version.
606 StringRef getInternalizedString(std::string VolatileStr) {
607 static llvm::StringSet StringCache;
608 return StringCache.insert(std::move(VolatileStr)).first->getKey();
611 static StringRef getString(FunctionType FT) {
612 switch (FT) {
613 case FunctionType::MEMCPY:
614 return "memcpy";
615 case FunctionType::MEMCMP:
616 return "memcmp";
617 case FunctionType::BCMP:
618 return "bcmp";
619 case FunctionType::MEMSET:
620 return "memset";
621 case FunctionType::BZERO:
622 return "bzero";
626 void Serialize(raw_ostream &Stream, ArrayRef<FunctionDescriptor> Descriptors) {
627 std::vector<NamedFunctionDescriptor> FunctionDescriptors;
628 FunctionDescriptors.reserve(Descriptors.size());
629 for (auto &FD : Descriptors) {
630 FunctionDescriptors.emplace_back();
631 FunctionDescriptors.back().Name = getInternalizedString(
632 formatv("{0}_{1:X16}", getString(FD.Type), FD.id()));
633 FunctionDescriptors.back().Desc = std::move(FD);
635 // Sort functions so they are easier to spot in the generated C++ file.
636 std::sort(FunctionDescriptors.begin(), FunctionDescriptors.end(),
637 [](const NamedFunctionDescriptor &A,
638 const NamedFunctionDescriptor &B) { return A.Desc < B.Desc; });
639 codegen::Serialize(Stream, FunctionDescriptors);
642 } // namespace automemcpy
643 } // namespace llvm