Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / libc / benchmarks / libc-benchmark-analysis.py3
blob9e01fda0776254d25fd5214461a275f5bc006da2
1 """Reads JSON files produced by the benchmarking framework and renders them.
3 Installation:
4 > apt-get install python3-pip
5 > pip3 install matplotlib pandas seaborn
7 Run:
8 > python3 libc/benchmarks/libc-benchmark-analysis.py3 <files>
9 """
11 import argparse
12 import json
13 import pandas as pd
14 import seaborn as sns
15 import matplotlib.pyplot as plt
16 from matplotlib.ticker import EngFormatter
18 def formatUnit(value, unit):
19     return EngFormatter(unit, sep="").format_data(value)
21 def formatCache(cache):
22   letter = cache["Type"][0].lower()
23   level = cache["Level"]
24   size = formatUnit(cache["Size"], "B")
25   ways = cache["NumSharing"]
26   return F'{letter}L{level}:{size}/{ways}'
28 def getCpuFrequency(study):
29     return study["Runtime"]["Host"]["CpuFrequency"]
31 def getId(study):
32     CpuName = study["Runtime"]["Host"]["CpuName"]
33     CpuFrequency = formatUnit(getCpuFrequency(study), "Hz")
34     Mode = " (Sweep)" if study["Configuration"]["IsSweepMode"] else ""
35     CpuCaches = ", ".join(formatCache(c) for c in study["Runtime"]["Host"]["Caches"])
36     return F'{CpuName} {CpuFrequency}{Mode}\n{CpuCaches}'
38 def getFunction(study):
39     return study["Configuration"]["Function"]
41 def getLabel(study):
42     return F'{getFunction(study)} {study["StudyName"]}'
44 def displaySweepData(id, studies, mode):
45     df = None
46     for study in studies:
47         Measurements = study["Measurements"]
48         SweepModeMaxSize = study["Configuration"]["SweepModeMaxSize"]
49         NumSizes = SweepModeMaxSize + 1
50         NumTrials = study["Configuration"]["NumTrials"]
51         assert NumTrials * NumSizes  == len(Measurements), 'not a multiple of NumSizes'
52         Index = pd.MultiIndex.from_product([range(NumSizes), range(NumTrials)], names=['size', 'trial'])
53         if df is None:
54             df = pd.DataFrame(Measurements, index=Index, columns=[getLabel(study)])
55         else:
56             df[getLabel(study)] = pd.Series(Measurements, index=Index)
57     df = df.reset_index(level='trial', drop=True)
58     if mode == "cycles":
59         df *= getCpuFrequency(study)
60     if mode == "bytespercycle":
61         df *= getCpuFrequency(study)
62         for col in df.columns:
63             df[col] = pd.Series(data=df.index, index=df.index).divide(df[col])
64     FormatterUnit = {"time":"s","cycles":"","bytespercycle":"B/cycle"}[mode]
65     Label = {"time":"Time","cycles":"Cycles","bytespercycle":"Byte/cycle"}[mode]
66     graph = sns.lineplot(data=df, palette="muted", ci=95)
67     graph.set_title(id)
68     graph.yaxis.set_major_formatter(EngFormatter(unit=FormatterUnit))
69     graph.yaxis.set_label_text(Label)
70     graph.xaxis.set_major_formatter(EngFormatter(unit="B"))
71     graph.xaxis.set_label_text("Copy Size")
72     _ = plt.xticks(rotation=90)
73     plt.show()
75 def displayDistributionData(id, studies, mode):
76     distributions = set()
77     df = None
78     for study in studies:
79         distribution = study["Configuration"]["SizeDistributionName"]
80         distributions.add(distribution)
81         local = pd.DataFrame(study["Measurements"], columns=["time"])
82         local["distribution"] = distribution
83         local["label"] = getLabel(study)
84         local["cycles"] = local["time"] * getCpuFrequency(study)
85         if df is None:
86             df = local
87         else:
88             df = df.append(local)
89     if mode == "bytespercycle":
90         mode = "time"
91         print("`--mode=bytespercycle` is ignored for distribution mode reports")
92     FormatterUnit = {"time":"s","cycles":""}[mode]
93     Label = {"time":"Time","cycles":"Cycles"}[mode]
94     graph = sns.violinplot(data=df, x="distribution", y=mode, palette="muted", hue="label", order=sorted(distributions))
95     graph.set_title(id)
96     graph.yaxis.set_major_formatter(EngFormatter(unit=FormatterUnit))
97     graph.yaxis.set_label_text(Label)
98     _ = plt.xticks(rotation=90)
99     plt.show()
102 def main():
103     parser = argparse.ArgumentParser(description="Process benchmark json files.")
104     parser.add_argument("--mode", choices=["time", "cycles", "bytespercycle"], default="time", help="Use to display either 'time', 'cycles' or 'bytes/cycle'.")
105     parser.add_argument("files", nargs="+", help="The json files to read from.")
107     args = parser.parse_args()
108     study_groups = dict()
109     for file in args.files:
110         with open(file) as json_file:
111             json_obj = json.load(json_file)
112             Id = getId(json_obj)
113             if Id in study_groups:
114                 study_groups[Id].append(json_obj)
115             else:
116                 study_groups[Id] = [json_obj]
118     plt.tight_layout()
119     sns.set_theme(style="ticks")
120     for id, study_collection in study_groups.items():
121         if "(Sweep)" in id:
122             displaySweepData(id, study_collection, args.mode)
123         else:
124             displayDistributionData(id, study_collection, args.mode)
127 if __name__ == "__main__":
128     main()