1 //===-- Single-precision general exp/log functions ------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
10 #define LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
12 #include "common_constants.h"
13 #include "math_utils.h"
14 #include "src/__support/CPP/bit.h"
15 #include "src/__support/CPP/optional.h"
16 #include "src/__support/FPUtil/FEnvImpl.h"
17 #include "src/__support/FPUtil/FPBits.h"
18 #include "src/__support/FPUtil/PolyEval.h"
19 #include "src/__support/FPUtil/nearest_integer.h"
20 #include "src/__support/common.h"
21 #include "src/__support/macros/properties/cpu_features.h"
25 namespace LIBC_NAMESPACE
{
29 static constexpr int MID_BITS
= 5;
30 static constexpr int MID_MASK
= (1 << MID_BITS
) - 1;
32 static constexpr double LOG2_B
= 0x1.71547652b82fep
+0 * (1 << MID_BITS
);
33 // High and low parts of -log(2) * 2^(-5)
34 static constexpr double M_LOGB_2_HI
= -0x1.62e42fefa0000p
-1 / (1 << MID_BITS
);
35 static constexpr double M_LOGB_2_LO
=
36 -0x1.cf79abc9e3b3ap
-40 / (1 << MID_BITS
);
37 // Look up table for bit fields of 2^(i/32) for i = 0..31, generated by Sollya
39 // > for i from 0 to 31 do printdouble(round(2^(i/32), D, RN));
40 static constexpr int64_t EXP_2_MID
[1 << MID_BITS
] = {
41 0x3ff0000000000000, 0x3ff059b0d3158574, 0x3ff0b5586cf9890f,
42 0x3ff11301d0125b51, 0x3ff172b83c7d517b, 0x3ff1d4873168b9aa,
43 0x3ff2387a6e756238, 0x3ff29e9df51fdee1, 0x3ff306fe0a31b715,
44 0x3ff371a7373aa9cb, 0x3ff3dea64c123422, 0x3ff44e086061892d,
45 0x3ff4bfdad5362a27, 0x3ff5342b569d4f82, 0x3ff5ab07dd485429,
46 0x3ff6247eb03a5585, 0x3ff6a09e667f3bcd, 0x3ff71f75e8ec5f74,
47 0x3ff7a11473eb0187, 0x3ff82589994cce13, 0x3ff8ace5422aa0db,
48 0x3ff93737b0cdc5e5, 0x3ff9c49182a3f090, 0x3ffa5503b23e255d,
49 0x3ffae89f995ad3ad, 0x3ffb7f76f2fb5e47, 0x3ffc199bdd85529c,
50 0x3ffcb720dcef9069, 0x3ffd5818dcfba487, 0x3ffdfc97337b9b5f,
51 0x3ffea4afa2a490da, 0x3fff50765b6e4540,
54 // Approximating e^dx with degree-5 minimax polynomial generated by Sollya:
55 // > Q = fpminimax(expm1(x)/x, 4, [|1, D...|], [-log(2)/64, log(2)/64]);
57 // e^dx ~ P(dx) = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[3] * dx^5.
58 static constexpr double COEFFS
[4] = {
59 0x1.ffffffffe5bc8p
-2, 0x1.555555555cd67p
-3, 0x1.5555c2a9b48b4p
-5,
60 0x1.11112a0e34bdbp
-7};
62 LIBC_INLINE
static double powb_lo(double dx
) {
63 using fputil::multiply_add
;
66 // c1 = COEFFS[0] + COEFFS[1] * dx
67 double c1
= multiply_add(dx
, ExpBase::COEFFS
[1], ExpBase::COEFFS
[0]);
68 // c2 = COEFFS[2] + COEFFS[3] * dx
69 double c2
= multiply_add(dx
, ExpBase::COEFFS
[3], ExpBase::COEFFS
[2]);
71 // = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[5] * dx^7
72 return fputil::polyeval(dx2
, c0
, c1
, c2
);
76 struct Exp10Base
: public ExpBase
{
78 static constexpr double LOG2_B
= 0x1.a934f0979a371p1
* (1 << MID_BITS
);
79 // High and low parts of -log10(2) * 2^(-5).
80 // Notice that since |x * log2(10)| < 150:
81 // |k| = |round(x * log2(10) * 2^5)| < 2^8 * 2^5 = 2^13
82 // So when the FMA instructions are not available, in order for the product
84 // to be exact, we only store the high part of log10(2) up to 38 bits
85 // (= 53 - 15) of precision.
86 // It is generated by Sollya with:
87 // > round(log10(2), 44, RN);
88 static constexpr double M_LOGB_2_HI
= -0x1.34413509f8p
-2 / (1 << MID_BITS
);
89 // > round(log10(2) - 0x1.34413509f8p-2, D, RN);
90 static constexpr double M_LOGB_2_LO
= 0x1.80433b83b532ap
-44 / (1 << MID_BITS
);
92 // Approximating 10^dx with degree-5 minimax polynomial generated by Sollya:
93 // > Q = fpminimax((10^x - 1)/x, 4, [|D...|], [-log10(2)/2^6, log10(2)/2^6]);
95 // 10^dx ~ P(dx) = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5.
96 static constexpr double COEFFS
[5] = {0x1.26bb1bbb55515p1
, 0x1.53524c73bd3eap1
,
97 0x1.0470591dff149p1
, 0x1.2bd7c0a9fbc4dp0
,
98 0x1.1429e74a98f43p
-1};
100 static double powb_lo(double dx
) {
101 using fputil::multiply_add
;
102 double dx2
= dx
* dx
;
103 // c0 = 1 + COEFFS[0] * dx
104 double c0
= multiply_add(dx
, Exp10Base::COEFFS
[0], 1.0);
105 // c1 = COEFFS[1] + COEFFS[2] * dx
106 double c1
= multiply_add(dx
, Exp10Base::COEFFS
[2], Exp10Base::COEFFS
[1]);
107 // c2 = COEFFS[3] + COEFFS[4] * dx
108 double c2
= multiply_add(dx
, Exp10Base::COEFFS
[4], Exp10Base::COEFFS
[3]);
109 // r = c0 + dx^2 * (c1 + c2 * dx^2)
110 // = c0 + c1 * dx^2 + c2 * dx^4
111 // = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5.
112 return fputil::polyeval(dx2
, c0
, c1
, c2
);
116 constexpr int LOG_P1_BITS
= 6;
117 constexpr int LOG_P1_SIZE
= 1 << LOG_P1_BITS
;
119 // N[Table[Log[2, 1 + x], {x, 0/64, 63/64, 1/64}], 40]
120 extern const double LOG_P1_LOG2
[LOG_P1_SIZE
];
122 // N[Table[1/(1 + x), {x, 0/64, 63/64, 1/64}], 40]
123 extern const double LOG_P1_1_OVER
[LOG_P1_SIZE
];
125 // Taylor series expansion for Log[2, 1 + x] splitted to EVEN AND ODD numbers
126 // K_LOG2_ODD starts from x^3
127 extern const double K_LOG2_ODD
[4];
128 extern const double K_LOG2_EVEN
[4];
130 // Output of range reduction for exp_b: (2^(mid + hi), lo)
132 // b^x = 2^(mid + hi) * b^lo
133 struct exp_b_reduc_t
{
134 double mh
; // 2^(mid + hi)
138 // The function correctly calculates b^x value with at least float precision
139 // in a limited range.
141 // b^x = 2^(hi + mid) * b^lo
143 // x = (hi + mid) * log_b(2) + lo
145 // 0 <= mid * 2^MID_BITS < 2^MID_BITS is an integer
146 // -2^(-MID_BITS - 1) <= lo * log2(b) <= 2^(-MID_BITS - 1)
147 // Base class needs to provide the following constants:
148 // - MID_BITS : number of bits after decimal points used for mid
149 // - MID_MASK : 2^MID_BITS - 1, mask to extract mid bits
150 // - LOG2_B : log2(b) * 2^MID_BITS for scaling
151 // - M_LOGB_2_HI : high part of -log_b(2) * 2^(-MID_BITS)
152 // - M_LOGB_2_LO : low part of -log_b(2) * 2^(-MID_BITS)
153 // - EXP_2_MID : look up table for bit fields of 2^mid
155 // { 2^(hi + mid), lo }
156 template <class Base
> LIBC_INLINE exp_b_reduc_t
exp_b_range_reduc(float x
) {
157 double xd
= static_cast<double>(x
);
158 // kd = round((hi + mid) * log2(b) * 2^MID_BITS)
159 double kd
= fputil::nearest_integer(Base::LOG2_B
* xd
);
160 // k = round((hi + mid) * log2(b) * 2^MID_BITS)
161 int k
= static_cast<int>(kd
);
162 // hi = floor(kd * 2^(-MID_BITS))
163 // exp_hi = shift hi to the exponent field of double precision.
164 int64_t exp_hi
= static_cast<int64_t>((k
>> Base::MID_BITS
))
165 << fputil::FloatProperties
<double>::MANTISSA_WIDTH
;
167 // mh_bits = bit field of mh
168 int64_t mh_bits
= Base::EXP_2_MID
[k
& Base::MID_MASK
] + exp_hi
;
169 double mh
= fputil::FPBits
<double>(uint64_t(mh_bits
)).get_val();
170 // dx = lo = x - (hi + mid) * log(2)
171 double dx
= fputil::multiply_add(
172 kd
, Base::M_LOGB_2_LO
, fputil::multiply_add(kd
, Base::M_LOGB_2_HI
, xd
));
176 // The function correctly calculates sinh(x) and cosh(x) by calculating exp(x)
177 // and exp(-x) simultaneously.
178 // To compute e^x, we perform the following range
179 // reduction: find hi, mid, lo such that:
180 // x = (hi + mid) * log(2) + lo, in which
182 // 0 <= mid * 2^5 < 32 is an integer
183 // -2^(-6) <= lo * log2(e) <= 2^-6.
185 // hi + mid = round(x * log2(e) * 2^5) * 2^(-5).
187 // e^x = 2^(hi + mid) * e^lo = 2^hi * 2^mid * e^lo.
188 // 2^mid is stored in the lookup table of 32 elements.
189 // e^lo is computed using a degree-5 minimax polynomial
190 // generated by Sollya:
191 // e^lo ~ P(lo) = 1 + lo + c2 * lo^2 + ... + c5 * lo^5
192 // = (1 + c2*lo^2 + c4*lo^4) + lo * (1 + c3*lo^2 + c5*lo^4)
193 // = P_even + lo * P_odd
194 // We perform 2^hi * 2^mid by simply add hi to the exponent field
196 // To compute e^(-x), notice that:
197 // e^(-x) = 2^(-(hi + mid)) * e^(-lo)
198 // ~ 2^(-(hi + mid)) * P(-lo)
199 // = 2^(-(hi + mid)) * (P_even - lo * P_odd)
201 // sinh(x) = (e^x - e^(-x)) / 2
202 // ~ 0.5 * (2^(hi + mid) * (P_even + lo * P_odd) -
203 // 2^(-(hi + mid)) * (P_even - lo * P_odd))
204 // = 0.5 * (P_even * (2^(hi + mid) - 2^(-(hi + mid))) +
205 // lo * P_odd * (2^(hi + mid) + 2^(-(hi + mid))))
207 // cosh(x) = (e^x + e^(-x)) / 2
208 // ~ 0.5 * (P_even * (2^(hi + mid) + 2^(-(hi + mid))) +
209 // lo * P_odd * (2^(hi + mid) - 2^(-(hi + mid))))
210 // The main point of these formulas is that the expensive part of calculating
211 // the polynomials approximating lower parts of e^(x) and e^(-x) are shared
212 // and only done once.
213 template <bool is_sinh
> LIBC_INLINE
double exp_pm_eval(float x
) {
214 double xd
= static_cast<double>(x
);
216 // kd = round(x * log2(e) * 2^5)
217 // k_p = round(x * log2(e) * 2^5)
218 // k_m = round(-x * log2(e) * 2^5)
222 #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT
223 kd
= fputil::nearest_integer(ExpBase::LOG2_B
* xd
);
224 k_p
= static_cast<int>(kd
);
227 constexpr double HALF_WAY
[2] = {0.5, -0.5};
229 k_p
= static_cast<int>(
230 fputil::multiply_add(xd
, ExpBase::LOG2_B
, HALF_WAY
[x
< 0.0f
]));
232 kd
= static_cast<double>(k_p
);
233 #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT
235 // hi = floor(kf * 2^(-5))
236 // exp_hi = shift hi to the exponent field of double precision.
237 int64_t exp_hi_p
= static_cast<int64_t>((k_p
>> ExpBase::MID_BITS
))
238 << fputil::FloatProperties
<double>::MANTISSA_WIDTH
;
239 int64_t exp_hi_m
= static_cast<int64_t>((k_m
>> ExpBase::MID_BITS
))
240 << fputil::FloatProperties
<double>::MANTISSA_WIDTH
;
241 // mh_p = 2^(hi + mid)
242 // mh_m = 2^(-(hi + mid))
243 // mh_bits_* = bit field of mh_*
244 int64_t mh_bits_p
= ExpBase::EXP_2_MID
[k_p
& ExpBase::MID_MASK
] + exp_hi_p
;
245 int64_t mh_bits_m
= ExpBase::EXP_2_MID
[k_m
& ExpBase::MID_MASK
] + exp_hi_m
;
246 double mh_p
= fputil::FPBits
<double>(uint64_t(mh_bits_p
)).get_val();
247 double mh_m
= fputil::FPBits
<double>(uint64_t(mh_bits_m
)).get_val();
248 // mh_sum = 2^(hi + mid) + 2^(-(hi + mid))
249 double mh_sum
= mh_p
+ mh_m
;
250 // mh_diff = 2^(hi + mid) - 2^(-(hi + mid))
251 double mh_diff
= mh_p
- mh_m
;
253 // dx = lo = x - (hi + mid) * log(2)
255 fputil::multiply_add(kd
, ExpBase::M_LOGB_2_LO
,
256 fputil::multiply_add(kd
, ExpBase::M_LOGB_2_HI
, xd
));
257 double dx2
= dx
* dx
;
259 // c0 = 1 + COEFFS[0] * lo^2
260 // P_even = (1 + COEFFS[0] * lo^2 + COEFFS[2] * lo^4) / 2
261 double p_even
= fputil::polyeval(dx2
, 0.5, ExpBase::COEFFS
[0] * 0.5,
262 ExpBase::COEFFS
[2] * 0.5);
263 // P_odd = (1 + COEFFS[1] * lo^2 + COEFFS[3] * lo^4) / 2
264 double p_odd
= fputil::polyeval(dx2
, 0.5, ExpBase::COEFFS
[1] * 0.5,
265 ExpBase::COEFFS
[3] * 0.5);
268 if constexpr (is_sinh
)
269 r
= fputil::multiply_add(dx
* mh_sum
, p_odd
, p_even
* mh_diff
);
271 r
= fputil::multiply_add(dx
* mh_diff
, p_odd
, p_even
* mh_sum
);
275 // x should be positive, normal finite value
276 LIBC_INLINE
static double log2_eval(double x
) {
277 using FPB
= fputil::FPBits
<double>;
281 result
+= bs
.get_exponent();
284 (bs
.get_mantissa() >> (FPB::FloatProp::MANTISSA_WIDTH
- LOG_P1_BITS
)) &
287 bs
.bits
&= FPB::FloatProp::MANTISSA_MASK
>> LOG_P1_BITS
;
288 bs
.set_unbiased_exponent(FPB::FloatProp::EXPONENT_BIAS
);
289 double dx
= (bs
.get_val() - 1.0) * LOG_P1_1_OVER
[p1
];
291 // Taylor series for log(2,1+x)
292 double c1
= fputil::multiply_add(dx
, K_LOG2_ODD
[0], K_LOG2_EVEN
[0]);
293 double c2
= fputil::multiply_add(dx
, K_LOG2_ODD
[1], K_LOG2_EVEN
[1]);
294 double c3
= fputil::multiply_add(dx
, K_LOG2_ODD
[2], K_LOG2_EVEN
[2]);
295 double c4
= fputil::multiply_add(dx
, K_LOG2_ODD
[3], K_LOG2_EVEN
[3]);
297 // c0 = dx * (1.0 / ln(2)) + LOG_P1_LOG2[p1]
298 double c0
= fputil::multiply_add(dx
, 0x1.71547652b82fep
+0, LOG_P1_LOG2
[p1
]);
299 result
+= LIBC_NAMESPACE::fputil::polyeval(dx
* dx
, c0
, c1
, c2
, c3
, c4
);
303 // x should be positive, normal finite value
304 LIBC_INLINE
static double log_eval(double x
) {
305 // For x = 2^ex * (1 + mx)
306 // log(x) = ex * log(2) + log(1 + mx)
307 using FPB
= fputil::FPBits
<double>;
310 double ex
= static_cast<double>(bs
.get_exponent());
312 // p1 is the leading 7 bits of mx, i.e.
313 // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7).
314 int p1
= (bs
.get_mantissa() >> (FPB::FloatProp::MANTISSA_WIDTH
- 7));
316 // Set bs to (1 + (mx - p1*2^(-7))
317 bs
.bits
&= FPB::FloatProp::MANTISSA_MASK
>> 7;
318 bs
.set_unbiased_exponent(FPB::FloatProp::EXPONENT_BIAS
);
319 // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)).
320 double dx
= (bs
.get_val() - 1.0) * ONE_OVER_F
[p1
];
322 // Minimax polynomial of log(1 + dx) generated by Sollya with:
323 // > P = fpminimax(log(1 + x)/x, 6, [|D...|], [0, 2^-7]);
324 const double COEFFS
[6] = {-0x1.ffffffffffffcp
-2, 0x1.5555555552ddep
-2,
325 -0x1.ffffffefe562dp
-3, 0x1.9999817d3a50fp
-3,
326 -0x1.554317b3f67a5p
-3, 0x1.1dc5c45e09c18p
-3};
327 double dx2
= dx
* dx
;
328 double c1
= fputil::multiply_add(dx
, COEFFS
[1], COEFFS
[0]);
329 double c2
= fputil::multiply_add(dx
, COEFFS
[3], COEFFS
[2]);
330 double c3
= fputil::multiply_add(dx
, COEFFS
[5], COEFFS
[4]);
332 double p
= fputil::polyeval(dx2
, dx
, c1
, c2
, c3
);
334 fputil::multiply_add(ex
, /*log(2)*/ 0x1.62e42fefa39efp
-1, LOG_F
[p1
] + p
);
338 // Rounding tests for 2^hi * (mid + lo) when the output might be denormal. We
339 // assume further that 1 <= mid < 2, mid + lo < 2, and |lo| << mid.
340 // Notice that, if 0 < x < 2^-1022,
341 // double(2^-1022 + x) - 2^-1022 = double(x).
342 // So if we scale x up by 2^1022, we can use
343 // double(1.0 + 2^1022 * x) - 1.0 to test how x is rounded in denormal range.
344 LIBC_INLINE
cpp::optional
<double> ziv_test_denorm(int hi
, double mid
, double lo
,
346 using FloatProp
= typename
fputil::FloatProperties
<double>;
348 // Scaling factor = 1/(min normal number) = 2^1022
349 int64_t exp_hi
= static_cast<int64_t>(hi
+ 1022) << FloatProp::MANTISSA_WIDTH
;
350 double mid_hi
= cpp::bit_cast
<double>(exp_hi
+ cpp::bit_cast
<int64_t>(mid
));
352 (lo
!= 0.0) ? cpp::bit_cast
<double>(exp_hi
+ cpp::bit_cast
<int64_t>(lo
))
355 double extra_factor
= 0.0;
356 uint64_t scale_down
= 0x3FE0'0000'0000'0000; // 1022 in the exponent field.
358 // Result is denormal if (mid_hi + lo_scale < 1.0).
359 if ((1.0 - mid_hi
) > lo_scaled
) {
360 // Extra rounding step is needed, which adds more rounding errors.
363 scale_down
= 0x3FF0'0000'0000'0000; // 1023 in the exponent field.
367 cpp::bit_cast
<double>(exp_hi
+ cpp::bit_cast
<int64_t>(err
));
369 double lo_u
= lo_scaled
+ err_scaled
;
370 double lo_l
= lo_scaled
- err_scaled
;
372 // By adding 1.0, the results will have similar rounding points as denormal
374 double upper
= extra_factor
+ (mid_hi
+ lo_u
);
375 double lower
= extra_factor
+ (mid_hi
+ lo_l
);
377 if (LIBC_LIKELY(upper
== lower
)) {
378 return cpp::bit_cast
<double>(cpp::bit_cast
<uint64_t>(upper
) - scale_down
);
384 } // namespace LIBC_NAMESPACE
386 #endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H