Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / libc / src / math / generic / explogxf.h
blob512785be2cb858b735661e69a2ac76c32fdd20dd
1 //===-- Single-precision general exp/log functions ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
10 #define LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H
12 #include "common_constants.h"
13 #include "math_utils.h"
14 #include "src/__support/CPP/bit.h"
15 #include "src/__support/CPP/optional.h"
16 #include "src/__support/FPUtil/FEnvImpl.h"
17 #include "src/__support/FPUtil/FPBits.h"
18 #include "src/__support/FPUtil/PolyEval.h"
19 #include "src/__support/FPUtil/nearest_integer.h"
20 #include "src/__support/common.h"
21 #include "src/__support/macros/properties/cpu_features.h"
23 #include <errno.h>
25 namespace LIBC_NAMESPACE {
27 struct ExpBase {
28 // Base = e
29 static constexpr int MID_BITS = 5;
30 static constexpr int MID_MASK = (1 << MID_BITS) - 1;
31 // log2(e) * 2^5
32 static constexpr double LOG2_B = 0x1.71547652b82fep+0 * (1 << MID_BITS);
33 // High and low parts of -log(2) * 2^(-5)
34 static constexpr double M_LOGB_2_HI = -0x1.62e42fefa0000p-1 / (1 << MID_BITS);
35 static constexpr double M_LOGB_2_LO =
36 -0x1.cf79abc9e3b3ap-40 / (1 << MID_BITS);
37 // Look up table for bit fields of 2^(i/32) for i = 0..31, generated by Sollya
38 // with:
39 // > for i from 0 to 31 do printdouble(round(2^(i/32), D, RN));
40 static constexpr int64_t EXP_2_MID[1 << MID_BITS] = {
41 0x3ff0000000000000, 0x3ff059b0d3158574, 0x3ff0b5586cf9890f,
42 0x3ff11301d0125b51, 0x3ff172b83c7d517b, 0x3ff1d4873168b9aa,
43 0x3ff2387a6e756238, 0x3ff29e9df51fdee1, 0x3ff306fe0a31b715,
44 0x3ff371a7373aa9cb, 0x3ff3dea64c123422, 0x3ff44e086061892d,
45 0x3ff4bfdad5362a27, 0x3ff5342b569d4f82, 0x3ff5ab07dd485429,
46 0x3ff6247eb03a5585, 0x3ff6a09e667f3bcd, 0x3ff71f75e8ec5f74,
47 0x3ff7a11473eb0187, 0x3ff82589994cce13, 0x3ff8ace5422aa0db,
48 0x3ff93737b0cdc5e5, 0x3ff9c49182a3f090, 0x3ffa5503b23e255d,
49 0x3ffae89f995ad3ad, 0x3ffb7f76f2fb5e47, 0x3ffc199bdd85529c,
50 0x3ffcb720dcef9069, 0x3ffd5818dcfba487, 0x3ffdfc97337b9b5f,
51 0x3ffea4afa2a490da, 0x3fff50765b6e4540,
54 // Approximating e^dx with degree-5 minimax polynomial generated by Sollya:
55 // > Q = fpminimax(expm1(x)/x, 4, [|1, D...|], [-log(2)/64, log(2)/64]);
56 // Then:
57 // e^dx ~ P(dx) = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[3] * dx^5.
58 static constexpr double COEFFS[4] = {
59 0x1.ffffffffe5bc8p-2, 0x1.555555555cd67p-3, 0x1.5555c2a9b48b4p-5,
60 0x1.11112a0e34bdbp-7};
62 LIBC_INLINE static double powb_lo(double dx) {
63 using fputil::multiply_add;
64 double dx2 = dx * dx;
65 double c0 = 1.0 + dx;
66 // c1 = COEFFS[0] + COEFFS[1] * dx
67 double c1 = multiply_add(dx, ExpBase::COEFFS[1], ExpBase::COEFFS[0]);
68 // c2 = COEFFS[2] + COEFFS[3] * dx
69 double c2 = multiply_add(dx, ExpBase::COEFFS[3], ExpBase::COEFFS[2]);
70 // r = c4 + c5 * dx^4
71 // = 1 + dx + COEFFS[0] * dx^2 + ... + COEFFS[5] * dx^7
72 return fputil::polyeval(dx2, c0, c1, c2);
76 struct Exp10Base : public ExpBase {
77 // log2(10) * 2^5
78 static constexpr double LOG2_B = 0x1.a934f0979a371p1 * (1 << MID_BITS);
79 // High and low parts of -log10(2) * 2^(-5).
80 // Notice that since |x * log2(10)| < 150:
81 // |k| = |round(x * log2(10) * 2^5)| < 2^8 * 2^5 = 2^13
82 // So when the FMA instructions are not available, in order for the product
83 // k * M_LOGB_2_HI
84 // to be exact, we only store the high part of log10(2) up to 38 bits
85 // (= 53 - 15) of precision.
86 // It is generated by Sollya with:
87 // > round(log10(2), 44, RN);
88 static constexpr double M_LOGB_2_HI = -0x1.34413509f8p-2 / (1 << MID_BITS);
89 // > round(log10(2) - 0x1.34413509f8p-2, D, RN);
90 static constexpr double M_LOGB_2_LO = 0x1.80433b83b532ap-44 / (1 << MID_BITS);
92 // Approximating 10^dx with degree-5 minimax polynomial generated by Sollya:
93 // > Q = fpminimax((10^x - 1)/x, 4, [|D...|], [-log10(2)/2^6, log10(2)/2^6]);
94 // Then:
95 // 10^dx ~ P(dx) = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5.
96 static constexpr double COEFFS[5] = {0x1.26bb1bbb55515p1, 0x1.53524c73bd3eap1,
97 0x1.0470591dff149p1, 0x1.2bd7c0a9fbc4dp0,
98 0x1.1429e74a98f43p-1};
100 static double powb_lo(double dx) {
101 using fputil::multiply_add;
102 double dx2 = dx * dx;
103 // c0 = 1 + COEFFS[0] * dx
104 double c0 = multiply_add(dx, Exp10Base::COEFFS[0], 1.0);
105 // c1 = COEFFS[1] + COEFFS[2] * dx
106 double c1 = multiply_add(dx, Exp10Base::COEFFS[2], Exp10Base::COEFFS[1]);
107 // c2 = COEFFS[3] + COEFFS[4] * dx
108 double c2 = multiply_add(dx, Exp10Base::COEFFS[4], Exp10Base::COEFFS[3]);
109 // r = c0 + dx^2 * (c1 + c2 * dx^2)
110 // = c0 + c1 * dx^2 + c2 * dx^4
111 // = 1 + COEFFS[0] * dx + ... + COEFFS[4] * dx^5.
112 return fputil::polyeval(dx2, c0, c1, c2);
116 constexpr int LOG_P1_BITS = 6;
117 constexpr int LOG_P1_SIZE = 1 << LOG_P1_BITS;
119 // N[Table[Log[2, 1 + x], {x, 0/64, 63/64, 1/64}], 40]
120 extern const double LOG_P1_LOG2[LOG_P1_SIZE];
122 // N[Table[1/(1 + x), {x, 0/64, 63/64, 1/64}], 40]
123 extern const double LOG_P1_1_OVER[LOG_P1_SIZE];
125 // Taylor series expansion for Log[2, 1 + x] splitted to EVEN AND ODD numbers
126 // K_LOG2_ODD starts from x^3
127 extern const double K_LOG2_ODD[4];
128 extern const double K_LOG2_EVEN[4];
130 // Output of range reduction for exp_b: (2^(mid + hi), lo)
131 // where:
132 // b^x = 2^(mid + hi) * b^lo
133 struct exp_b_reduc_t {
134 double mh; // 2^(mid + hi)
135 double lo;
138 // The function correctly calculates b^x value with at least float precision
139 // in a limited range.
140 // Range reduction:
141 // b^x = 2^(hi + mid) * b^lo
142 // where:
143 // x = (hi + mid) * log_b(2) + lo
144 // hi is an integer,
145 // 0 <= mid * 2^MID_BITS < 2^MID_BITS is an integer
146 // -2^(-MID_BITS - 1) <= lo * log2(b) <= 2^(-MID_BITS - 1)
147 // Base class needs to provide the following constants:
148 // - MID_BITS : number of bits after decimal points used for mid
149 // - MID_MASK : 2^MID_BITS - 1, mask to extract mid bits
150 // - LOG2_B : log2(b) * 2^MID_BITS for scaling
151 // - M_LOGB_2_HI : high part of -log_b(2) * 2^(-MID_BITS)
152 // - M_LOGB_2_LO : low part of -log_b(2) * 2^(-MID_BITS)
153 // - EXP_2_MID : look up table for bit fields of 2^mid
154 // Return:
155 // { 2^(hi + mid), lo }
156 template <class Base> LIBC_INLINE exp_b_reduc_t exp_b_range_reduc(float x) {
157 double xd = static_cast<double>(x);
158 // kd = round((hi + mid) * log2(b) * 2^MID_BITS)
159 double kd = fputil::nearest_integer(Base::LOG2_B * xd);
160 // k = round((hi + mid) * log2(b) * 2^MID_BITS)
161 int k = static_cast<int>(kd);
162 // hi = floor(kd * 2^(-MID_BITS))
163 // exp_hi = shift hi to the exponent field of double precision.
164 int64_t exp_hi = static_cast<int64_t>((k >> Base::MID_BITS))
165 << fputil::FloatProperties<double>::MANTISSA_WIDTH;
166 // mh = 2^hi * 2^mid
167 // mh_bits = bit field of mh
168 int64_t mh_bits = Base::EXP_2_MID[k & Base::MID_MASK] + exp_hi;
169 double mh = fputil::FPBits<double>(uint64_t(mh_bits)).get_val();
170 // dx = lo = x - (hi + mid) * log(2)
171 double dx = fputil::multiply_add(
172 kd, Base::M_LOGB_2_LO, fputil::multiply_add(kd, Base::M_LOGB_2_HI, xd));
173 return {mh, dx};
176 // The function correctly calculates sinh(x) and cosh(x) by calculating exp(x)
177 // and exp(-x) simultaneously.
178 // To compute e^x, we perform the following range
179 // reduction: find hi, mid, lo such that:
180 // x = (hi + mid) * log(2) + lo, in which
181 // hi is an integer,
182 // 0 <= mid * 2^5 < 32 is an integer
183 // -2^(-6) <= lo * log2(e) <= 2^-6.
184 // In particular,
185 // hi + mid = round(x * log2(e) * 2^5) * 2^(-5).
186 // Then,
187 // e^x = 2^(hi + mid) * e^lo = 2^hi * 2^mid * e^lo.
188 // 2^mid is stored in the lookup table of 32 elements.
189 // e^lo is computed using a degree-5 minimax polynomial
190 // generated by Sollya:
191 // e^lo ~ P(lo) = 1 + lo + c2 * lo^2 + ... + c5 * lo^5
192 // = (1 + c2*lo^2 + c4*lo^4) + lo * (1 + c3*lo^2 + c5*lo^4)
193 // = P_even + lo * P_odd
194 // We perform 2^hi * 2^mid by simply add hi to the exponent field
195 // of 2^mid.
196 // To compute e^(-x), notice that:
197 // e^(-x) = 2^(-(hi + mid)) * e^(-lo)
198 // ~ 2^(-(hi + mid)) * P(-lo)
199 // = 2^(-(hi + mid)) * (P_even - lo * P_odd)
200 // So:
201 // sinh(x) = (e^x - e^(-x)) / 2
202 // ~ 0.5 * (2^(hi + mid) * (P_even + lo * P_odd) -
203 // 2^(-(hi + mid)) * (P_even - lo * P_odd))
204 // = 0.5 * (P_even * (2^(hi + mid) - 2^(-(hi + mid))) +
205 // lo * P_odd * (2^(hi + mid) + 2^(-(hi + mid))))
206 // And similarly:
207 // cosh(x) = (e^x + e^(-x)) / 2
208 // ~ 0.5 * (P_even * (2^(hi + mid) + 2^(-(hi + mid))) +
209 // lo * P_odd * (2^(hi + mid) - 2^(-(hi + mid))))
210 // The main point of these formulas is that the expensive part of calculating
211 // the polynomials approximating lower parts of e^(x) and e^(-x) are shared
212 // and only done once.
213 template <bool is_sinh> LIBC_INLINE double exp_pm_eval(float x) {
214 double xd = static_cast<double>(x);
216 // kd = round(x * log2(e) * 2^5)
217 // k_p = round(x * log2(e) * 2^5)
218 // k_m = round(-x * log2(e) * 2^5)
219 double kd;
220 int k_p, k_m;
222 #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT
223 kd = fputil::nearest_integer(ExpBase::LOG2_B * xd);
224 k_p = static_cast<int>(kd);
225 k_m = -k_p;
226 #else
227 constexpr double HALF_WAY[2] = {0.5, -0.5};
229 k_p = static_cast<int>(
230 fputil::multiply_add(xd, ExpBase::LOG2_B, HALF_WAY[x < 0.0f]));
231 k_m = -k_p;
232 kd = static_cast<double>(k_p);
233 #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT
235 // hi = floor(kf * 2^(-5))
236 // exp_hi = shift hi to the exponent field of double precision.
237 int64_t exp_hi_p = static_cast<int64_t>((k_p >> ExpBase::MID_BITS))
238 << fputil::FloatProperties<double>::MANTISSA_WIDTH;
239 int64_t exp_hi_m = static_cast<int64_t>((k_m >> ExpBase::MID_BITS))
240 << fputil::FloatProperties<double>::MANTISSA_WIDTH;
241 // mh_p = 2^(hi + mid)
242 // mh_m = 2^(-(hi + mid))
243 // mh_bits_* = bit field of mh_*
244 int64_t mh_bits_p = ExpBase::EXP_2_MID[k_p & ExpBase::MID_MASK] + exp_hi_p;
245 int64_t mh_bits_m = ExpBase::EXP_2_MID[k_m & ExpBase::MID_MASK] + exp_hi_m;
246 double mh_p = fputil::FPBits<double>(uint64_t(mh_bits_p)).get_val();
247 double mh_m = fputil::FPBits<double>(uint64_t(mh_bits_m)).get_val();
248 // mh_sum = 2^(hi + mid) + 2^(-(hi + mid))
249 double mh_sum = mh_p + mh_m;
250 // mh_diff = 2^(hi + mid) - 2^(-(hi + mid))
251 double mh_diff = mh_p - mh_m;
253 // dx = lo = x - (hi + mid) * log(2)
254 double dx =
255 fputil::multiply_add(kd, ExpBase::M_LOGB_2_LO,
256 fputil::multiply_add(kd, ExpBase::M_LOGB_2_HI, xd));
257 double dx2 = dx * dx;
259 // c0 = 1 + COEFFS[0] * lo^2
260 // P_even = (1 + COEFFS[0] * lo^2 + COEFFS[2] * lo^4) / 2
261 double p_even = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[0] * 0.5,
262 ExpBase::COEFFS[2] * 0.5);
263 // P_odd = (1 + COEFFS[1] * lo^2 + COEFFS[3] * lo^4) / 2
264 double p_odd = fputil::polyeval(dx2, 0.5, ExpBase::COEFFS[1] * 0.5,
265 ExpBase::COEFFS[3] * 0.5);
267 double r;
268 if constexpr (is_sinh)
269 r = fputil::multiply_add(dx * mh_sum, p_odd, p_even * mh_diff);
270 else
271 r = fputil::multiply_add(dx * mh_diff, p_odd, p_even * mh_sum);
272 return r;
275 // x should be positive, normal finite value
276 LIBC_INLINE static double log2_eval(double x) {
277 using FPB = fputil::FPBits<double>;
278 FPB bs(x);
280 double result = 0;
281 result += bs.get_exponent();
283 int p1 =
284 (bs.get_mantissa() >> (FPB::FloatProp::MANTISSA_WIDTH - LOG_P1_BITS)) &
285 (LOG_P1_SIZE - 1);
287 bs.bits &= FPB::FloatProp::MANTISSA_MASK >> LOG_P1_BITS;
288 bs.set_unbiased_exponent(FPB::FloatProp::EXPONENT_BIAS);
289 double dx = (bs.get_val() - 1.0) * LOG_P1_1_OVER[p1];
291 // Taylor series for log(2,1+x)
292 double c1 = fputil::multiply_add(dx, K_LOG2_ODD[0], K_LOG2_EVEN[0]);
293 double c2 = fputil::multiply_add(dx, K_LOG2_ODD[1], K_LOG2_EVEN[1]);
294 double c3 = fputil::multiply_add(dx, K_LOG2_ODD[2], K_LOG2_EVEN[2]);
295 double c4 = fputil::multiply_add(dx, K_LOG2_ODD[3], K_LOG2_EVEN[3]);
297 // c0 = dx * (1.0 / ln(2)) + LOG_P1_LOG2[p1]
298 double c0 = fputil::multiply_add(dx, 0x1.71547652b82fep+0, LOG_P1_LOG2[p1]);
299 result += LIBC_NAMESPACE::fputil::polyeval(dx * dx, c0, c1, c2, c3, c4);
300 return result;
303 // x should be positive, normal finite value
304 LIBC_INLINE static double log_eval(double x) {
305 // For x = 2^ex * (1 + mx)
306 // log(x) = ex * log(2) + log(1 + mx)
307 using FPB = fputil::FPBits<double>;
308 FPB bs(x);
310 double ex = static_cast<double>(bs.get_exponent());
312 // p1 is the leading 7 bits of mx, i.e.
313 // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7).
314 int p1 = (bs.get_mantissa() >> (FPB::FloatProp::MANTISSA_WIDTH - 7));
316 // Set bs to (1 + (mx - p1*2^(-7))
317 bs.bits &= FPB::FloatProp::MANTISSA_MASK >> 7;
318 bs.set_unbiased_exponent(FPB::FloatProp::EXPONENT_BIAS);
319 // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)).
320 double dx = (bs.get_val() - 1.0) * ONE_OVER_F[p1];
322 // Minimax polynomial of log(1 + dx) generated by Sollya with:
323 // > P = fpminimax(log(1 + x)/x, 6, [|D...|], [0, 2^-7]);
324 const double COEFFS[6] = {-0x1.ffffffffffffcp-2, 0x1.5555555552ddep-2,
325 -0x1.ffffffefe562dp-3, 0x1.9999817d3a50fp-3,
326 -0x1.554317b3f67a5p-3, 0x1.1dc5c45e09c18p-3};
327 double dx2 = dx * dx;
328 double c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]);
329 double c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]);
330 double c3 = fputil::multiply_add(dx, COEFFS[5], COEFFS[4]);
332 double p = fputil::polyeval(dx2, dx, c1, c2, c3);
333 double result =
334 fputil::multiply_add(ex, /*log(2)*/ 0x1.62e42fefa39efp-1, LOG_F[p1] + p);
335 return result;
338 // Rounding tests for 2^hi * (mid + lo) when the output might be denormal. We
339 // assume further that 1 <= mid < 2, mid + lo < 2, and |lo| << mid.
340 // Notice that, if 0 < x < 2^-1022,
341 // double(2^-1022 + x) - 2^-1022 = double(x).
342 // So if we scale x up by 2^1022, we can use
343 // double(1.0 + 2^1022 * x) - 1.0 to test how x is rounded in denormal range.
344 LIBC_INLINE cpp::optional<double> ziv_test_denorm(int hi, double mid, double lo,
345 double err) {
346 using FloatProp = typename fputil::FloatProperties<double>;
348 // Scaling factor = 1/(min normal number) = 2^1022
349 int64_t exp_hi = static_cast<int64_t>(hi + 1022) << FloatProp::MANTISSA_WIDTH;
350 double mid_hi = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(mid));
351 double lo_scaled =
352 (lo != 0.0) ? cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(lo))
353 : 0.0;
355 double extra_factor = 0.0;
356 uint64_t scale_down = 0x3FE0'0000'0000'0000; // 1022 in the exponent field.
358 // Result is denormal if (mid_hi + lo_scale < 1.0).
359 if ((1.0 - mid_hi) > lo_scaled) {
360 // Extra rounding step is needed, which adds more rounding errors.
361 err += 0x1.0p-52;
362 extra_factor = 1.0;
363 scale_down = 0x3FF0'0000'0000'0000; // 1023 in the exponent field.
366 double err_scaled =
367 cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(err));
369 double lo_u = lo_scaled + err_scaled;
370 double lo_l = lo_scaled - err_scaled;
372 // By adding 1.0, the results will have similar rounding points as denormal
373 // outputs.
374 double upper = extra_factor + (mid_hi + lo_u);
375 double lower = extra_factor + (mid_hi + lo_l);
377 if (LIBC_LIKELY(upper == lower)) {
378 return cpp::bit_cast<double>(cpp::bit_cast<uint64_t>(upper) - scale_down);
381 return cpp::nullopt;
384 } // namespace LIBC_NAMESPACE
386 #endif // LLVM_LIBC_SRC_MATH_GENERIC_EXPLOGXF_H