1 //===-- Double-precision e^x - 1 function ---------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "src/math/expm1.h"
10 #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
11 #include "explogxf.h" // ziv_test_denorm.
12 #include "src/__support/CPP/bit.h"
13 #include "src/__support/CPP/optional.h"
14 #include "src/__support/FPUtil/FEnvImpl.h"
15 #include "src/__support/FPUtil/FPBits.h"
16 #include "src/__support/FPUtil/PolyEval.h"
17 #include "src/__support/FPUtil/double_double.h"
18 #include "src/__support/FPUtil/dyadic_float.h"
19 #include "src/__support/FPUtil/except_value_utils.h"
20 #include "src/__support/FPUtil/multiply_add.h"
21 #include "src/__support/FPUtil/nearest_integer.h"
22 #include "src/__support/FPUtil/rounding_mode.h"
23 #include "src/__support/FPUtil/triple_double.h"
24 #include "src/__support/common.h"
25 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
36 namespace LIBC_NAMESPACE
{
38 using fputil::DoubleDouble
;
39 using fputil::TripleDouble
;
40 using Float128
= typename
fputil::DyadicFloat
<128>;
43 constexpr double LOG2_E
= 0x1.71547652b82fep
+0;
46 // Errors when using double precision.
48 constexpr uint64_t ERR_D
= 0x3c08000000000000;
49 // Errors when using double-double precision.
51 constexpr uint64_t ERR_DD
= 0x39c0000000000000;
54 // > a = -2^-12 * log(2);
55 // > b = round(a, 30, RN);
56 // > c = round(a - b, 30, RN);
57 // > d = round(a - b - c, D, RN);
58 // Errors < 1.5 * 2^-133
59 constexpr double MLOG_2_EXP2_M12_HI
= -0x1.62e42ffp
-13;
60 constexpr double MLOG_2_EXP2_M12_MID
= 0x1.718432a1b0e26p
-47;
61 constexpr double MLOG_2_EXP2_M12_MID_30
= 0x1.718432ap
-47;
62 constexpr double MLOG_2_EXP2_M12_LO
= 0x1.b0e2633fe0685p
-79;
64 // Polynomial approximations with double precision:
65 // Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
66 // For |dx| < 2^-13 + 2^-30:
67 // | output - expm1(dx) / dx | < 2^-51.
68 LIBC_INLINE
double poly_approx_d(double dx
) {
72 double c0
= fputil::multiply_add(dx
, 0.5, 1.0);
75 fputil::multiply_add(dx
, 0x1.5555555555555p
-5, 0x1.5555555555555p
-3);
76 // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24
77 double p
= fputil::multiply_add(dx2
, c1
, c0
);
81 // Polynomial approximation with double-double precision:
82 // Return expm1(dx) / dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040
83 // For |dx| < 2^-13 + 2^-30:
84 // | output - expm1(dx) | < 2^-101
85 DoubleDouble
poly_approx_dd(const DoubleDouble
&dx
) {
87 constexpr DoubleDouble COEFFS
[] = {
90 {0x1.5555555555555p
-57, 0x1.5555555555555p
-3}, // 1/6
91 {0x1.5555555555555p
-59, 0x1.5555555555555p
-5}, // 1/24
92 {0x1.1111111111111p
-63, 0x1.1111111111111p
-7}, // 1/120
93 {-0x1.f49f49f49f49fp
-65, 0x1.6c16c16c16c17p
-10}, // 1/720
94 {0x1.a01a01a01a01ap
-73, 0x1.a01a01a01a01ap
-13}, // 1/5040
97 DoubleDouble p
= fputil::polyeval(dx
, COEFFS
[0], COEFFS
[1], COEFFS
[2],
98 COEFFS
[3], COEFFS
[4], COEFFS
[5], COEFFS
[6]);
102 // Polynomial approximation with 128-bit precision:
103 // Return (exp(dx) - 1)/dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040
104 // For |dx| < 2^-13 + 2^-30:
105 // | output - exp(dx) | < 2^-126.
106 Float128
poly_approx_f128(const Float128
&dx
) {
107 using MType
= typename
Float128::MantissaType
;
109 constexpr Float128 COEFFS_128
[]{
110 {false, -127, MType({0, 0x8000000000000000})}, // 1.0
111 {false, -128, MType({0, 0x8000000000000000})}, // 0.5
112 {false, -130, MType({0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaaa})}, // 1/6
113 {false, -132, MType({0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaaa})}, // 1/24
114 {false, -134, MType({0x8888888888888889, 0x8888888888888888})}, // 1/120
115 {false, -137, MType({0x60b60b60b60b60b6, 0xb60b60b60b60b60b})}, // 1/720
116 {false, -140, MType({0x00d00d00d00d00d0, 0xd00d00d00d00d00d})}, // 1/5040
119 Float128 p
= fputil::polyeval(dx
, COEFFS_128
[0], COEFFS_128
[1], COEFFS_128
[2],
120 COEFFS_128
[3], COEFFS_128
[4], COEFFS_128
[5],
126 std::ostream
&operator<<(std::ostream
&OS
, const Float128
&r
) {
127 OS
<< (r
.sign
? "-(" : "(") << r
.mantissa
.val
[0] << " + " << r
.mantissa
.val
[1]
128 << " * 2^64) * 2^" << r
.exponent
<< "\n";
132 std::ostream
&operator<<(std::ostream
&OS
, const DoubleDouble
&r
) {
133 OS
<< std::hexfloat
<< r
.hi
<< " + " << r
.lo
<< std::defaultfloat
<< "\n";
138 // Compute exp(x) - 1 using 128-bit precision.
139 // TODO(lntue): investigate triple-double precision implementation for this
141 Float128
expm1_f128(double x
, double kd
, int idx1
, int idx2
) {
142 using MType
= typename
Float128::MantissaType
;
145 double t1
= fputil::multiply_add(kd
, MLOG_2_EXP2_M12_HI
, x
); // exact
146 double t2
= kd
* MLOG_2_EXP2_M12_MID_30
; // exact
147 double t3
= kd
* MLOG_2_EXP2_M12_LO
; // Error < 2^-133
149 Float128 dx
= fputil::quick_add(
150 Float128(t1
), fputil::quick_add(Float128(t2
), Float128(t3
)));
152 // TODO: Skip recalculating exp_mid1 and exp_mid2.
154 fputil::quick_add(Float128(EXP2_MID1
[idx1
].hi
),
155 fputil::quick_add(Float128(EXP2_MID1
[idx1
].mid
),
156 Float128(EXP2_MID1
[idx1
].lo
)));
159 fputil::quick_add(Float128(EXP2_MID2
[idx2
].hi
),
160 fputil::quick_add(Float128(EXP2_MID2
[idx2
].mid
),
161 Float128(EXP2_MID2
[idx2
].lo
)));
163 Float128 exp_mid
= fputil::quick_mul(exp_mid1
, exp_mid2
);
165 int hi
= static_cast<int>(kd
) >> 12;
166 Float128 minus_one
{true, -127 - hi
, MType({0, 0x8000000000000000})};
168 Float128 exp_mid_m1
= fputil::quick_add(exp_mid
, minus_one
);
170 Float128 p
= poly_approx_f128(dx
);
172 // r = exp_mid * (1 + dx * P) - 1
173 // = (exp_mid - 1) + (dx * exp_mid) * P
175 fputil::multiply_add(fputil::quick_mul(exp_mid
, dx
), p
, exp_mid_m1
);
180 std::cout
<< "=== VERY SLOW PASS ===\n"
181 << " kd: " << kd
<< "\n"
182 << " dx: " << dx
<< "exp_mid_m1: " << exp_mid_m1
183 << " exp_mid: " << exp_mid
<< " p: " << p
184 << " r: " << r
<< std::endl
;
190 // Compute exp(x) - 1 with double-double precision.
191 DoubleDouble
exp_double_double(double x
, double kd
, const DoubleDouble
&exp_mid
,
192 const DoubleDouble
&hi_part
) {
194 // dx = x - k * 2^-12 * log(2)
195 double t1
= fputil::multiply_add(kd
, MLOG_2_EXP2_M12_HI
, x
); // exact
196 double t2
= kd
* MLOG_2_EXP2_M12_MID_30
; // exact
197 double t3
= kd
* MLOG_2_EXP2_M12_LO
; // Error < 2^-130
199 DoubleDouble dx
= fputil::exact_add(t1
, t2
);
202 // Degree-6 Taylor polynomial approximation in double-double precision.
203 // | p - exp(x) | < 2^-100.
204 DoubleDouble p
= poly_approx_dd(dx
);
206 // Error bounds: 2^-99.
208 fputil::multiply_add(fputil::quick_mult(exp_mid
, dx
), p
, hi_part
);
211 std::cout
<< "=== SLOW PASS ===\n"
212 << " dx: " << dx
<< " p: " << p
<< " r: " << r
<< std::endl
;
218 // Check for exceptional cases when
219 // |x| <= 2^-53 or x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9
220 double set_exceptional(double x
) {
221 using FPBits
= typename
fputil::FPBits
<double>;
222 using FloatProp
= typename
fputil::FloatProperties
<double>;
225 uint64_t x_u
= xbits
.uintval();
226 uint64_t x_abs
= x_u
& FloatProp::EXP_MANT_MASK
;
229 if (x_abs
<= 0x3ca0'0000'0000'0000ULL
) {
232 if (LIBC_UNLIKELY(x_abs
<= 0x0370'0000'0000'0000ULL
)) {
233 if (LIBC_UNLIKELY(x_abs
== 0))
235 // |x| <= 2^-968, need to scale up a bit before rounding, then scale it
237 return 0x1.0p
-200 * fputil::multiply_add(x
, 0x1.0p
+200, 0x1.0p
-1022);
240 // 2^-968 < |x| <= 2^-53.
241 return fputil::round_result_slightly_up(x
);
244 // x < log(2^-54) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan.
246 // x < log(2^-54) or -inf/nan
247 if (x_u
>= 0xc042'b708'8723'20e2ULL
) {
256 return fputil::round_result_slightly_up(-1.0);
259 // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan
261 if (x_u
< 0x7ff0'0000'0000'0000ULL
) {
262 int rounding
= fputil::quick_get_round();
263 if (rounding
== FE_DOWNWARD
|| rounding
== FE_TOWARDZERO
)
264 return static_cast<double>(FPBits(FPBits::MAX_NORMAL
));
266 fputil::set_errno_if_required(ERANGE
);
267 fputil::raise_except_if_required(FE_OVERFLOW
);
270 return x
+ static_cast<double>(FPBits::inf());
273 LLVM_LIBC_FUNCTION(double, expm1
, (double x
)) {
274 using FPBits
= typename
fputil::FPBits
<double>;
275 using FloatProp
= typename
fputil::FloatProperties
<double>;
278 bool x_sign
= xbits
.get_sign();
279 uint64_t x_u
= xbits
.uintval();
281 // Upper bound: max normal number = 2^1023 * (2 - 2^-52)
282 // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9
283 // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9
284 // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9
285 // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty
287 // Lower bound: log(2^-54) = -0x1.2b708872320e2p5
288 // > round(log(2^-54), D, RN) = -0x1.2b708872320e2p5
290 // x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9 or |x| <= 2^-53.
292 if (LIBC_UNLIKELY(x_u
>= 0xc042b708872320e2 ||
293 (x_u
<= 0xbca0000000000000 && x_u
>= 0x40862e42fefa39f0) ||
294 x_u
<= 0x3ca0000000000000)) {
295 return set_exceptional(x
);
298 // Now log(2^-54) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52))
301 // Let x = log(2) * (hi + mid1 + mid2) + lo
304 // mid1 * 2^6 is an integer
305 // mid2 * 2^12 is an integer
307 // exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo).
308 // With this formula:
309 // - multiplying by 2^hi is exact and cheap, simply by adding the exponent
311 // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
312 // - exp(lo) ~ 1 + lo + a0 * lo^2 + ...
314 // They can be defined by:
315 // hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x)
316 // If we store L2E = round(log2(e), D, RN), then:
317 // log2(e) - L2E ~ 1.5 * 2^(-56)
318 // So the errors when computing in double precision is:
319 // | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <=
320 // <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | +
321 // + | x * 2^12 * L2E - D(x * 2^12 * L2E) |
322 // <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x)) for RN
323 // 2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes.
325 // hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely
326 // in double precision, the reduced argument:
327 // lo = x - log(2) * (hi + mid1 + mid2) is bounded by:
328 // |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x))
329 // < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52))
333 // The following trick computes the round(x * L2E) more efficiently
334 // than using the rounding instructions, with the tradeoff for less accuracy,
335 // and hence a slightly larger range for the reduced argument `lo`.
337 // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9,
338 // |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23,
339 // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t.
340 // Thus, the goal is to be able to use an additional addition and fixed width
341 // shift to get an int32_t representing round(x * 2^12 * L2E).
343 // Assuming int32_t using 2-complement representation, since the mantissa part
344 // of a double precision is unsigned with the leading bit hidden, if we add an
345 // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the
346 // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
347 // considered as a proper 2-complement representations of x*2^12*L2E.
349 // One small problem with this approach is that the sum (x*2^12*L2E + C) in
350 // double precision is rounded to the least significant bit of the dorminant
351 // factor C. In order to minimize the rounding errors from this addition, we
352 // want to minimize e1. Another constraint that we want is that after
353 // shifting the mantissa so that the least significant bit of int32_t
354 // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
355 // any adjustment. So combining these 2 requirements, we can choose
356 // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
357 // after right shifting the mantissa, the resulting int32_t has correct sign.
358 // With this choice of C, the number of mantissa bits we need to shift to the
359 // right is: 52 - 33 = 19.
361 // Moreover, since the integer right shifts are equivalent to rounding down,
362 // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
363 // +infinity. So in particular, we can compute:
364 // hmm = x * 2^12 * L2E + C,
365 // where C = 2^33 + 2^32 + 2^-1, then if
366 // k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19),
367 // the reduced argument:
368 // lo = x - log(2) * 2^-12 * k is bounded by:
369 // |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19
370 // = 2^-13 + 2^-31 + 2^-41.
372 // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the
373 // exponent 2^12 is not needed. So we can simply define
374 // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
375 // k = int32_t(lower 51 bits of double(x * L2E + C) >> 19).
377 // Rounding errors <= 2^-31 + 2^-41.
378 double tmp
= fputil::multiply_add(x
, LOG2_E
, 0x1.8000'0000'4p21
);
379 int k
= static_cast<int>(cpp::bit_cast
<uint64_t>(tmp
) >> 19);
380 double kd
= static_cast<double>(k
);
382 uint32_t idx1
= (k
>> 6) & 0x3f;
383 uint32_t idx2
= k
& 0x3f;
386 DoubleDouble exp_mid1
{EXP2_MID1
[idx1
].mid
, EXP2_MID1
[idx1
].hi
};
387 DoubleDouble exp_mid2
{EXP2_MID2
[idx2
].mid
, EXP2_MID2
[idx2
].hi
};
389 DoubleDouble exp_mid
= fputil::quick_mult(exp_mid1
, exp_mid2
);
393 FPBits::create_value(true, FPBits::EXPONENT_BIAS
- hi
, 0).get_val();
395 // 2^(mid1 + mid2) - 2^(-hi)
396 DoubleDouble hi_part
= x_sign
? fputil::exact_add(one_scaled
, exp_mid
.hi
)
397 : fputil::exact_add(exp_mid
.hi
, one_scaled
);
399 hi_part
.lo
+= exp_mid
.lo
;
401 // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo)
402 // = 2^11 * 2^-13 * 2^-52
404 // |dx| < 2^-13 + 2^-30.
405 double lo_h
= fputil::multiply_add(kd
, MLOG_2_EXP2_M12_HI
, x
); // exact
406 double dx
= fputil::multiply_add(kd
, MLOG_2_EXP2_M12_MID
, lo_h
);
408 // We use the degree-4 Taylor polynomial to approximate exp(lo):
409 // exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo)
410 // So that the errors are bounded by:
411 // |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
412 // Let P_ be an evaluation of P where all intermediate computations are in
413 // double precision. Using either Horner's or Estrin's schemes, the evaluated
414 // errors can be bounded by:
415 // |P_(dx) - P(dx)| < 2^-51
416 // => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64
417 // => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63.
418 // Since we approximate
419 // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
420 // We use the expression:
421 // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
422 // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
423 // with errors bounded by 1.5 * 2^-63.
425 // Finally, we have the following approximation formula:
426 // expm1(x) = 2^hi * 2^(mid1 + mid2) * exp(lo) - 1
427 // = 2^hi * ( 2^(mid1 + mid2) * exp(lo) - 2^(-hi) )
428 // ~ 2^hi * ( (exp_mid.hi - 2^-hi) +
429 // + (exp_mid.hi * dx * P_(dx) + exp_mid.lo))
431 double mid_lo
= dx
* exp_mid
.hi
;
433 // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
434 double p
= poly_approx_d(dx
);
436 double lo
= fputil::multiply_add(p
, mid_lo
, hi_part
.lo
);
438 uint64_t err
= x_sign
? (static_cast<uint64_t>(-hi
) << 52) : 0;
440 double err_d
= cpp::bit_cast
<double>(ERR_D
+ err
);
442 double upper
= hi_part
.hi
+ (lo
+ err_d
);
443 double lower
= hi_part
.hi
+ (lo
- err_d
);
446 std::cout
<< "=== FAST PASS ===\n"
447 << " x: " << std::hexfloat
<< x
<< std::defaultfloat
<< "\n"
448 << " k: " << k
<< "\n"
449 << " idx1: " << idx1
<< "\n"
450 << " idx2: " << idx2
<< "\n"
451 << " hi: " << hi
<< "\n"
452 << " dx: " << std::hexfloat
<< dx
<< std::defaultfloat
<< "\n"
453 << "exp_mid: " << exp_mid
<< "hi_part: " << hi_part
454 << " mid_lo: " << std::hexfloat
<< mid_lo
<< std::defaultfloat
456 << " p: " << std::hexfloat
<< p
<< std::defaultfloat
<< "\n"
457 << " lo: " << std::hexfloat
<< lo
<< std::defaultfloat
<< "\n"
458 << " upper: " << std::hexfloat
<< upper
<< std::defaultfloat
460 << " lower: " << std::hexfloat
<< lower
<< std::defaultfloat
465 if (LIBC_LIKELY(upper
== lower
)) {
466 // to multiply by 2^hi, a fast way is to simply add hi to the exponent
468 int64_t exp_hi
= static_cast<int64_t>(hi
) << FloatProp::MANTISSA_WIDTH
;
469 double r
= cpp::bit_cast
<double>(exp_hi
+ cpp::bit_cast
<int64_t>(upper
));
474 DoubleDouble r_dd
= exp_double_double(x
, kd
, exp_mid
, hi_part
);
476 double err_dd
= cpp::bit_cast
<double>(ERR_DD
+ err
);
478 double upper_dd
= r_dd
.hi
+ (r_dd
.lo
+ err_dd
);
479 double lower_dd
= r_dd
.hi
+ (r_dd
.lo
- err_dd
);
481 if (LIBC_LIKELY(upper_dd
== lower_dd
)) {
482 int64_t exp_hi
= static_cast<int64_t>(hi
) << FloatProp::MANTISSA_WIDTH
;
483 double r
= cpp::bit_cast
<double>(exp_hi
+ cpp::bit_cast
<int64_t>(upper_dd
));
487 // Use 128-bit precision
488 Float128 r_f128
= expm1_f128(x
, kd
, idx1
, idx2
);
490 return static_cast<double>(r_f128
);
493 } // namespace LIBC_NAMESPACE