Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / libc / src / math / generic / inv_trigf_utils.h
blobc88ded20b5bf24f4da93451cd1cad2d22604ba62
1 //===-- Single-precision general inverse trigonometric functions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIBC_SRC_MATH_GENERIC_INV_TRIGF_UTILS_H
10 #define LLVM_LIBC_SRC_MATH_GENERIC_INV_TRIGF_UTILS_H
12 #include "math_utils.h"
13 #include "src/__support/FPUtil/FEnvImpl.h"
14 #include "src/__support/FPUtil/FPBits.h"
15 #include "src/__support/FPUtil/PolyEval.h"
16 #include "src/__support/FPUtil/nearest_integer.h"
17 #include "src/__support/common.h"
19 #include <errno.h>
21 namespace LIBC_NAMESPACE {
23 // PI and PI / 2
24 constexpr double M_MATH_PI = 0x1.921fb54442d18p+1;
25 constexpr double M_MATH_PI_2 = 0x1.921fb54442d18p+0;
27 // atan table size
28 constexpr int ATAN_T_BITS = 4;
29 constexpr int ATAN_T_SIZE = 1 << ATAN_T_BITS;
31 // N[Table[ArcTan[x], {x, 1/8, 8/8, 1/8}], 40]
32 extern const double ATAN_T[ATAN_T_SIZE];
33 extern const double ATAN_K[5];
35 // The main idea of the function is to use formula
36 // atan(u) + atan(v) = atan((u+v)/(1-uv))
38 // x should be positive, normal finite value
39 LIBC_INLINE double atan_eval(double x) {
40 using FPB = fputil::FPBits<double>;
41 // Added some small value to umin and umax mantissa to avoid possible rounding
42 // errors.
43 FPB::UIntType umin =
44 FPB::create_value(false, FPB::EXPONENT_BIAS - ATAN_T_BITS - 1,
45 0x100000000000UL)
46 .uintval();
47 FPB::UIntType umax =
48 FPB::create_value(false, FPB::EXPONENT_BIAS + ATAN_T_BITS,
49 0xF000000000000UL)
50 .uintval();
52 FPB bs(x);
53 bool sign = bs.get_sign();
54 auto x_abs = bs.uintval() & FPB::FloatProp::EXP_MANT_MASK;
56 if (x_abs <= umin) {
57 double pe = LIBC_NAMESPACE::fputil::polyeval(
58 x * x, 0.0, ATAN_K[1], ATAN_K[2], ATAN_K[3], ATAN_K[4]);
59 return fputil::multiply_add(pe, x, x);
62 if (x_abs >= umax) {
63 double one_over_x_m = -1.0 / x;
64 double one_over_x2 = one_over_x_m * one_over_x_m;
65 double pe = LIBC_NAMESPACE::fputil::polyeval(
66 one_over_x2, ATAN_K[0], ATAN_K[1], ATAN_K[2], ATAN_K[3]);
67 return fputil::multiply_add(pe, one_over_x_m, sign ? (-M_MATH_PI_2) : (M_MATH_PI_2));
70 double pos_x = FPB(x_abs).get_val();
71 bool one_over_x = pos_x > 1.0;
72 if (one_over_x) {
73 pos_x = 1.0 / pos_x;
76 double near_x = fputil::nearest_integer(pos_x * ATAN_T_SIZE);
77 int val = static_cast<int>(near_x);
78 near_x *= 1.0 / ATAN_T_SIZE;
80 double v = (pos_x - near_x) / fputil::multiply_add(near_x, pos_x, 1.0);
81 double v2 = v * v;
82 double pe = LIBC_NAMESPACE::fputil::polyeval(v2, ATAN_K[0], ATAN_K[1],
83 ATAN_K[2], ATAN_K[3], ATAN_K[4]);
84 double result;
85 if (one_over_x)
86 result = M_MATH_PI_2 - fputil::multiply_add(pe, v, ATAN_T[val - 1]);
87 else
88 result = fputil::multiply_add(pe, v, ATAN_T[val - 1]);
89 return sign ? -result : result;
92 // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|],
93 // [|1, D...|], [0, 0.5]);
94 constexpr double ASIN_COEFFS[10] = {0x1.5555555540fa1p-3, 0x1.333333512edc2p-4,
95 0x1.6db6cc1541b31p-5, 0x1.f1caff324770ep-6,
96 0x1.6e43899f5f4f4p-6, 0x1.1f847cf652577p-6,
97 0x1.9b60f47f87146p-7, 0x1.259e2634c494fp-6,
98 -0x1.df946fa875ddp-8, 0x1.02311ecf99c28p-5};
100 // Evaluate P(x^2) - 1, where P(x^2) ~ asin(x)/x
101 LIBC_INLINE double asin_eval(double xsq) {
102 double x4 = xsq * xsq;
103 double r1 = fputil::polyeval(x4, ASIN_COEFFS[0], ASIN_COEFFS[2],
104 ASIN_COEFFS[4], ASIN_COEFFS[6], ASIN_COEFFS[8]);
105 double r2 = fputil::polyeval(x4, ASIN_COEFFS[1], ASIN_COEFFS[3],
106 ASIN_COEFFS[5], ASIN_COEFFS[7], ASIN_COEFFS[9]);
107 return fputil::multiply_add(xsq, r2, r1);
110 } // namespace LIBC_NAMESPACE
112 #endif // LLVM_LIBC_SRC_MATH_GENERIC_INV_TRIGF_UTILS_H