Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / libc / src / math / generic / tanhf.cpp
blob7d9f86cf9044b237941896b150f16779aeee882b
1 //===-- Single-precision tanh function ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "src/math/tanhf.h"
10 #include "src/__support/FPUtil/FPBits.h"
11 #include "src/__support/FPUtil/PolyEval.h"
12 #include "src/__support/FPUtil/multiply_add.h"
13 #include "src/__support/FPUtil/nearest_integer.h"
14 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
15 #include "src/__support/macros/properties/cpu_features.h"
16 #include "src/math/generic/explogxf.h"
18 namespace LIBC_NAMESPACE {
20 // 2^6 * log2(e)
21 constexpr double LOG2_E_EXP2_6 = ExpBase::LOG2_B * 2.0;
23 LLVM_LIBC_FUNCTION(float, tanhf, (float x)) {
24 using FPBits = typename fputil::FPBits<float>;
25 FPBits xbits(x);
26 uint32_t x_u = xbits.uintval();
27 uint32_t x_abs = x_u & FPBits::FloatProp::EXP_MANT_MASK;
29 // When |x| >= 15, or x is inf or nan, or |x| <= 0.078125
30 if (LIBC_UNLIKELY((x_abs >= 0x4170'0000U) || (x_abs <= 0x3da0'0000U))) {
31 if (x_abs <= 0x3da0'0000U) {
32 // |x| <= 0.078125
33 if (LIBC_UNLIKELY(x_abs <= 0x3280'0000U)) {
34 // |x| <= 2^-26
35 return (x_abs != 0)
36 ? static_cast<float>(x - 0x1.5555555555555p-2 * x * x * x)
37 : x;
40 const double TAYLOR[] = {-0x1.5555555555555p-2, 0x1.1111111111111p-3,
41 -0x1.ba1ba1ba1ba1cp-5, 0x1.664f4882c10fap-6,
42 -0x1.226e355e6c23dp-7};
43 double xdbl = x;
44 double x2 = xdbl * xdbl;
45 // Taylor polynomial.
46 double x4 = x2 * x2;
47 double c0 = x2 * TAYLOR[0];
48 double c1 = fputil::multiply_add(x2, TAYLOR[2], TAYLOR[1]);
49 double c2 = fputil::multiply_add(x2, TAYLOR[4], TAYLOR[3]);
50 double pe = fputil::polyeval(x4, c0, c1, c2);
52 return static_cast<float>(fputil::multiply_add(xdbl, pe, xdbl));
55 // |x| >= 15
56 if (LIBC_UNLIKELY(xbits.is_nan()))
57 return x + 1.0f; // sNaN to qNaN + signal
59 constexpr float SIGNS[2][2] = {{1.0f, -0x1.0p-25f}, {-1.0f, 0x1.0p-25f}};
61 bool sign = xbits.get_sign();
62 int idx = static_cast<int>(sign);
64 if (LIBC_UNLIKELY(xbits.is_inf()))
65 return SIGNS[idx][0];
67 return SIGNS[idx][0] + SIGNS[idx][1];
70 // Range reduction: e^(2x) = 2^(hi + mid) * e^lo
71 // Let k = round( x * 2^6 * log2(e)),
72 // So k = (hi + mid) * 2^5
73 // Then lo = 2x - (hi + mid) * log(2) = 2x - k * 2^-5 * log(2).
75 double xd = static_cast<double>(x);
76 // k = round( x* 2^6 * log2(e) )
77 double k;
78 // mk = -k
79 int mk;
80 #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT
81 k = fputil::nearest_integer(xd * LOG2_E_EXP2_6);
82 mk = -static_cast<int>(k);
83 #else
84 constexpr double HALF_WAY[2] = {-0.5, 0.5};
86 mk = static_cast<int>(
87 fputil::multiply_add(xd, -LOG2_E_EXP2_6, HALF_WAY[xbits.get_sign()]));
88 k = static_cast<double>(-mk);
89 #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT
90 // -hi = floor(-k * 2^(-MID_BITS))
91 // exp_mhi = shift -hi to the exponent field of double precision.
92 int64_t exp_mhi = static_cast<int64_t>(mk >> ExpBase::MID_BITS)
93 << fputil::FloatProperties<double>::MANTISSA_WIDTH;
94 // mh = 2^(-hi - mid)
95 int64_t mh_bits = ExpBase::EXP_2_MID[mk & ExpBase::MID_MASK] + exp_mhi;
96 double mh = fputil::FPBits<double>(uint64_t(mh_bits)).get_val();
97 // dx = lo/2 = x - (hi + mid) * log(2)/2 = x - k * 2^-6 * log(2)
98 double dx = fputil::multiply_add(
99 k, ExpBase::M_LOGB_2_LO * 0.5,
100 fputil::multiply_add(k, ExpBase::M_LOGB_2_HI * 0.5, xd));
102 // > P = fpminimax(expm1(2*x)/x, 4, [|D...|], [-log(2)/128, log(2)/128]);
103 constexpr double COEFFS[] = {0x1.ffffffffe5bc8p0, 0x1.555555555cd67p0,
104 0x1.5555c2a9b48b4p-1, 0x1.11112a0e34bdbp-2};
106 double dx2 = dx * dx;
107 double c0 = fputil::multiply_add(dx, 2.0, 1.0);
108 double c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]);
109 double c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]);
110 double r = fputil::polyeval(dx2, c0, c1, c2);
112 // tanh(x) = sinh(x) / cosh(x)
113 // = (e^x - e^(-x)) / (e^x + e^(-x))
114 // = (e^(2x) - 1) / (e^(2x) + 1)
115 // = (2^(hi + mid) * e^lo - 1) / (2^(hi + mid) * e^lo + 1)
116 // = (e^lo - 2^(-hi - mid)) / (e^lo + 2^(-hi - mid))
117 // = (r - mh) / (r + mh)
118 return static_cast<float>((r - mh) / (r + mh));
121 } // namespace LIBC_NAMESPACE