Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / libcxx / include / __random / poisson_distribution.h
blobeed120ebb7a74f69585ad34c5bb37f1fc67b7b59
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
10 #define _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
12 #include <__config>
13 #include <__random/clamp_to_integral.h>
14 #include <__random/exponential_distribution.h>
15 #include <__random/is_valid.h>
16 #include <__random/normal_distribution.h>
17 #include <__random/uniform_real_distribution.h>
18 #include <cmath>
19 #include <iosfwd>
20 #include <limits>
22 #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
23 # pragma GCC system_header
24 #endif
26 _LIBCPP_PUSH_MACROS
27 #include <__undef_macros>
29 _LIBCPP_BEGIN_NAMESPACE_STD
31 template<class _IntType = int>
32 class _LIBCPP_TEMPLATE_VIS poisson_distribution
34 static_assert(__libcpp_random_is_valid_inttype<_IntType>::value, "IntType must be a supported integer type");
35 public:
36 // types
37 typedef _IntType result_type;
39 class _LIBCPP_TEMPLATE_VIS param_type
41 double __mean_;
42 double __s_;
43 double __d_;
44 double __l_;
45 double __omega_;
46 double __c0_;
47 double __c1_;
48 double __c2_;
49 double __c3_;
50 double __c_;
52 public:
53 typedef poisson_distribution distribution_type;
55 _LIBCPP_HIDE_FROM_ABI explicit param_type(double __mean = 1.0);
57 _LIBCPP_INLINE_VISIBILITY
58 double mean() const {return __mean_;}
60 friend _LIBCPP_INLINE_VISIBILITY
61 bool operator==(const param_type& __x, const param_type& __y)
62 {return __x.__mean_ == __y.__mean_;}
63 friend _LIBCPP_INLINE_VISIBILITY
64 bool operator!=(const param_type& __x, const param_type& __y)
65 {return !(__x == __y);}
67 friend class poisson_distribution;
70 private:
71 param_type __p_;
73 public:
74 // constructors and reset functions
75 #ifndef _LIBCPP_CXX03_LANG
76 _LIBCPP_INLINE_VISIBILITY
77 poisson_distribution() : poisson_distribution(1.0) {}
78 _LIBCPP_INLINE_VISIBILITY
79 explicit poisson_distribution(double __mean)
80 : __p_(__mean) {}
81 #else
82 _LIBCPP_INLINE_VISIBILITY
83 explicit poisson_distribution(double __mean = 1.0)
84 : __p_(__mean) {}
85 #endif
86 _LIBCPP_INLINE_VISIBILITY
87 explicit poisson_distribution(const param_type& __p) : __p_(__p) {}
88 _LIBCPP_INLINE_VISIBILITY
89 void reset() {}
91 // generating functions
92 template<class _URNG>
93 _LIBCPP_INLINE_VISIBILITY
94 result_type operator()(_URNG& __g)
95 {return (*this)(__g, __p_);}
96 template<class _URNG>
97 _LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g, const param_type& __p);
99 // property functions
100 _LIBCPP_INLINE_VISIBILITY
101 double mean() const {return __p_.mean();}
103 _LIBCPP_INLINE_VISIBILITY
104 param_type param() const {return __p_;}
105 _LIBCPP_INLINE_VISIBILITY
106 void param(const param_type& __p) {__p_ = __p;}
108 _LIBCPP_INLINE_VISIBILITY
109 result_type min() const {return 0;}
110 _LIBCPP_INLINE_VISIBILITY
111 result_type max() const {return numeric_limits<result_type>::max();}
113 friend _LIBCPP_INLINE_VISIBILITY
114 bool operator==(const poisson_distribution& __x,
115 const poisson_distribution& __y)
116 {return __x.__p_ == __y.__p_;}
117 friend _LIBCPP_INLINE_VISIBILITY
118 bool operator!=(const poisson_distribution& __x,
119 const poisson_distribution& __y)
120 {return !(__x == __y);}
123 template<class _IntType>
124 poisson_distribution<_IntType>::param_type::param_type(double __mean)
125 // According to the standard `inf` is a valid input, but it causes the
126 // distribution to hang, so we replace it with the maximum representable
127 // mean.
128 : __mean_(isinf(__mean) ? numeric_limits<double>::max() : __mean)
130 if (__mean_ < 10)
132 __s_ = 0;
133 __d_ = 0;
134 __l_ = _VSTD::exp(-__mean_);
135 __omega_ = 0;
136 __c3_ = 0;
137 __c2_ = 0;
138 __c1_ = 0;
139 __c0_ = 0;
140 __c_ = 0;
142 else
144 __s_ = _VSTD::sqrt(__mean_);
145 __d_ = 6 * __mean_ * __mean_;
146 __l_ = _VSTD::trunc(__mean_ - 1.1484);
147 __omega_ = .3989423 / __s_;
148 double __b1 = .4166667E-1 / __mean_;
149 double __b2 = .3 * __b1 * __b1;
150 __c3_ = .1428571 * __b1 * __b2;
151 __c2_ = __b2 - 15. * __c3_;
152 __c1_ = __b1 - 6. * __b2 + 45. * __c3_;
153 __c0_ = 1. - __b1 + 3. * __b2 - 15. * __c3_;
154 __c_ = .1069 / __mean_;
158 template <class _IntType>
159 template<class _URNG>
160 _IntType
161 poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
163 static_assert(__libcpp_random_is_valid_urng<_URNG>::value, "");
164 double __tx;
165 uniform_real_distribution<double> __urd;
166 if (__pr.__mean_ < 10)
168 __tx = 0;
169 for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx)
170 __p *= __urd(__urng);
172 else
174 double __difmuk;
175 double __g = __pr.__mean_ + __pr.__s_ * normal_distribution<double>()(__urng);
176 double __u;
177 if (__g > 0)
179 __tx = _VSTD::trunc(__g);
180 if (__tx >= __pr.__l_)
181 return _VSTD::__clamp_to_integral<result_type>(__tx);
182 __difmuk = __pr.__mean_ - __tx;
183 __u = __urd(__urng);
184 if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
185 return _VSTD::__clamp_to_integral<result_type>(__tx);
187 exponential_distribution<double> __edist;
188 for (bool __using_exp_dist = false; true; __using_exp_dist = true)
190 double __e;
191 if (__using_exp_dist || __g <= 0)
193 double __t;
196 __e = __edist(__urng);
197 __u = __urd(__urng);
198 __u += __u - 1;
199 __t = 1.8 + (__u < 0 ? -__e : __e);
200 } while (__t <= -.6744);
201 __tx = _VSTD::trunc(__pr.__mean_ + __pr.__s_ * __t);
202 __difmuk = __pr.__mean_ - __tx;
203 __using_exp_dist = true;
205 double __px;
206 double __py;
207 if (__tx < 10 && __tx >= 0)
209 const double __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040,
210 40320, 362880};
211 __px = -__pr.__mean_;
212 __py = _VSTD::pow(__pr.__mean_, (double)__tx) / __fac[static_cast<int>(__tx)];
214 else
216 double __del = .8333333E-1 / __tx;
217 __del -= 4.8 * __del * __del * __del;
218 double __v = __difmuk / __tx;
219 if (_VSTD::abs(__v) > 0.25)
220 __px = __tx * _VSTD::log(1 + __v) - __difmuk - __del;
221 else
222 __px = __tx * __v * __v * (((((((.1250060 * __v + -.1384794) *
223 __v + .1421878) * __v + -.1661269) * __v + .2000118) *
224 __v + -.2500068) * __v + .3333333) * __v + -.5) - __del;
225 __py = .3989423 / _VSTD::sqrt(__tx);
227 double __r = (0.5 - __difmuk) / __pr.__s_;
228 double __r2 = __r * __r;
229 double __fx = -0.5 * __r2;
230 double __fy = __pr.__omega_ * (((__pr.__c3_ * __r2 + __pr.__c2_) *
231 __r2 + __pr.__c1_) * __r2 + __pr.__c0_);
232 if (__using_exp_dist)
234 if (__pr.__c_ * _VSTD::abs(__u) <= __py * _VSTD::exp(__px + __e) -
235 __fy * _VSTD::exp(__fx + __e))
236 break;
238 else
240 if (__fy - __u * __fy <= __py * _VSTD::exp(__px - __fx))
241 break;
245 return _VSTD::__clamp_to_integral<result_type>(__tx);
248 template <class _CharT, class _Traits, class _IntType>
249 _LIBCPP_HIDE_FROM_ABI basic_ostream<_CharT, _Traits>&
250 operator<<(basic_ostream<_CharT, _Traits>& __os,
251 const poisson_distribution<_IntType>& __x)
253 __save_flags<_CharT, _Traits> __lx(__os);
254 typedef basic_ostream<_CharT, _Traits> _OStream;
255 __os.flags(_OStream::dec | _OStream::left | _OStream::fixed |
256 _OStream::scientific);
257 return __os << __x.mean();
260 template <class _CharT, class _Traits, class _IntType>
261 _LIBCPP_HIDE_FROM_ABI basic_istream<_CharT, _Traits>&
262 operator>>(basic_istream<_CharT, _Traits>& __is,
263 poisson_distribution<_IntType>& __x)
265 typedef poisson_distribution<_IntType> _Eng;
266 typedef typename _Eng::param_type param_type;
267 __save_flags<_CharT, _Traits> __lx(__is);
268 typedef basic_istream<_CharT, _Traits> _Istream;
269 __is.flags(_Istream::dec | _Istream::skipws);
270 double __mean;
271 __is >> __mean;
272 if (!__is.fail())
273 __x.param(param_type(__mean));
274 return __is;
277 _LIBCPP_END_NAMESPACE_STD
279 _LIBCPP_POP_MACROS
281 #endif // _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H