Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / libcxx / test / std / utilities / charconv / charconv.msvc / float_to_chars_test_cases.hpp
blob65ed05b8a988c97548c89321923d87a70545fa0c
1 // Copyright (c) Microsoft Corporation.
2 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
5 // Copyright 2018 Ulf Adams
6 // Copyright (c) Microsoft Corporation. All rights reserved.
8 // Boost Software License - Version 1.0 - August 17th, 2003
10 // Permission is hereby granted, free of charge, to any person or organization
11 // obtaining a copy of the software and accompanying documentation covered by
12 // this license (the "Software") to use, reproduce, display, distribute,
13 // execute, and transmit the Software, and to prepare derivative works of the
14 // Software, and to permit third-parties to whom the Software is furnished to
15 // do so, all subject to the following:
17 // The copyright notices in the Software and this entire statement, including
18 // the above license grant, this restriction and the following disclaimer,
19 // must be included in all copies of the Software, in whole or in part, and
20 // all derivative works of the Software, unless such copies or derivative
21 // works are solely in the form of machine-executable object code generated by
22 // a source language processor.
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
27 // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
28 // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
29 // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
33 // This file contains test cases derived from:
34 // https://github.com/ulfjack/ryu
35 // See xcharconv_ryu.h for the exact commit.
36 // (Keep the cgmanifest.json commitHash in sync.)
39 #ifndef FLOAT_TO_CHARS_TEST_CASES_HPP
40 #define FLOAT_TO_CHARS_TEST_CASES_HPP
42 #include <charconv>
44 #include "test.hpp"
45 using namespace std;
47 inline constexpr FloatToCharsTestCase float_to_chars_test_cases[] = {
48 // Test special cases (zero, inf, nan) and an ordinary case. Also test negative signs.
49 {0.0f, chars_format::scientific, "0e+00"},
50 {-0.0f, chars_format::scientific, "-0e+00"},
51 {float_inf, chars_format::scientific, "inf"},
52 {-float_inf, chars_format::scientific, "-inf"},
53 {float_nan, chars_format::scientific, "nan"},
54 {-float_nan, chars_format::scientific, "-nan(ind)"},
55 {float_nan_payload, chars_format::scientific, "nan"},
56 {-float_nan_payload, chars_format::scientific, "-nan"},
57 {2.018f, chars_format::scientific, "2.018e+00"},
58 {-2.018f, chars_format::scientific, "-2.018e+00"},
60 // Ditto for fixed, which doesn't emit exponents.
61 {0.0f, chars_format::fixed, "0"},
62 {-0.0f, chars_format::fixed, "-0"},
63 {float_inf, chars_format::fixed, "inf"},
64 {-float_inf, chars_format::fixed, "-inf"},
65 {float_nan, chars_format::fixed, "nan"},
66 {-float_nan, chars_format::fixed, "-nan(ind)"},
67 {float_nan_payload, chars_format::fixed, "nan"},
68 {-float_nan_payload, chars_format::fixed, "-nan"},
69 {2.018f, chars_format::fixed, "2.018"},
70 {-2.018f, chars_format::fixed, "-2.018"},
72 // Ditto for general, which selects fixed for the scientific exponent 0.
73 {0.0f, chars_format::general, "0"},
74 {-0.0f, chars_format::general, "-0"},
75 {float_inf, chars_format::general, "inf"},
76 {-float_inf, chars_format::general, "-inf"},
77 {float_nan, chars_format::general, "nan"},
78 {-float_nan, chars_format::general, "-nan(ind)"},
79 {float_nan_payload, chars_format::general, "nan"},
80 {-float_nan_payload, chars_format::general, "-nan"},
81 {2.018f, chars_format::general, "2.018"},
82 {-2.018f, chars_format::general, "-2.018"},
84 // Ditto for plain, which selects fixed because it's shorter for these values.
85 {0.0f, chars_format{}, "0"},
86 {-0.0f, chars_format{}, "-0"},
87 {float_inf, chars_format{}, "inf"},
88 {-float_inf, chars_format{}, "-inf"},
89 {float_nan, chars_format{}, "nan"},
90 {-float_nan, chars_format{}, "-nan(ind)"},
91 {float_nan_payload, chars_format{}, "nan"},
92 {-float_nan_payload, chars_format{}, "-nan"},
93 {2.018f, chars_format{}, "2.018"},
94 {-2.018f, chars_format{}, "-2.018"},
96 // Ditto for hex.
97 {0.0f, chars_format::hex, "0p+0"},
98 {-0.0f, chars_format::hex, "-0p+0"},
99 {float_inf, chars_format::hex, "inf"},
100 {-float_inf, chars_format::hex, "-inf"},
101 {float_nan, chars_format::hex, "nan"},
102 {-float_nan, chars_format::hex, "-nan(ind)"},
103 {float_nan_payload, chars_format::hex, "nan"},
104 {-float_nan_payload, chars_format::hex, "-nan"},
105 {0x1.729p+0f, chars_format::hex, "1.729p+0"},
106 {-0x1.729p+0f, chars_format::hex, "-1.729p+0"},
108 // Ryu f2s_test.cc SwitchToSubnormal
109 {1.1754944e-38f, chars_format::scientific, "1.1754944e-38"},
111 // Ryu f2s_test.cc MinAndMax
112 {0x1.fffffep+127f, chars_format::scientific, "3.4028235e+38"},
113 {0x1.000000p-149f, chars_format::scientific, "1e-45"},
115 // Ryu f2s_test.cc BoundaryRoundEven
116 {3.355445e7f, chars_format::scientific, "3.355445e+07"},
117 {8.999999e9f, chars_format::scientific, "9e+09"},
118 {3.4366717e10f, chars_format::scientific, "3.436672e+10"},
120 // Ryu f2s_test.cc ExactValueRoundEven
121 {3.0540412e5f, chars_format::scientific, "3.0540412e+05"},
122 {8.0990312e3f, chars_format::scientific, "8.0990312e+03"},
124 // Ryu f2s_test.cc LotsOfTrailingZeros
125 {2.4414062e-4f, chars_format::scientific, "2.4414062e-04"},
126 {2.4414062e-3f, chars_format::scientific, "2.4414062e-03"},
127 {4.3945312e-3f, chars_format::scientific, "4.3945312e-03"},
128 {6.3476562e-3f, chars_format::scientific, "6.3476562e-03"},
130 // Ryu f2s_test.cc Regression
131 {4.7223665e21f, chars_format::scientific, "4.7223665e+21"},
132 {8388608.0f, chars_format::scientific, "8.388608e+06"},
133 {1.6777216e7f, chars_format::scientific, "1.6777216e+07"},
134 {3.3554436e7f, chars_format::scientific, "3.3554436e+07"},
135 {6.7131496e7f, chars_format::scientific, "6.7131496e+07"},
136 {1.9310392e-38f, chars_format::scientific, "1.9310392e-38"},
137 {-2.47e-43f, chars_format::scientific, "-2.47e-43"},
138 {1.993244e-38f, chars_format::scientific, "1.993244e-38"},
139 {4103.9003f, chars_format::scientific, "4.1039004e+03"},
140 {5.3399997e9f, chars_format::scientific, "5.3399997e+09"},
141 {6.0898e-39f, chars_format::scientific, "6.0898e-39"},
142 {0.0010310042f, chars_format::scientific, "1.0310042e-03"},
143 {2.8823261e17f, chars_format::scientific, "2.882326e+17"},
144 {0x1.5c87fap-84f, chars_format::scientific, "7.038531e-26"}, // TRANSITION, VSO-629490, should be 7.038531e-26f
145 {9.2234038e17f, chars_format::scientific, "9.223404e+17"},
146 {6.7108872e7f, chars_format::scientific, "6.710887e+07"},
147 {1.0e-44f, chars_format::scientific, "1e-44"},
148 {2.816025e14f, chars_format::scientific, "2.816025e+14"},
149 {9.223372e18f, chars_format::scientific, "9.223372e+18"},
150 {1.5846085e29f, chars_format::scientific, "1.5846086e+29"},
151 {1.1811161e19f, chars_format::scientific, "1.1811161e+19"},
152 {5.368709e18f, chars_format::scientific, "5.368709e+18"},
153 {4.6143165e18f, chars_format::scientific, "4.6143166e+18"},
154 {0.007812537f, chars_format::scientific, "7.812537e-03"},
155 {1.4e-45f, chars_format::scientific, "1e-45"},
156 {1.18697724e20f, chars_format::scientific, "1.18697725e+20"},
157 {1.00014165e-36f, chars_format::scientific, "1.00014165e-36"},
158 {200.0f, chars_format::scientific, "2e+02"},
159 {3.3554432e7f, chars_format::scientific, "3.3554432e+07"},
161 // Ryu f2s_test.cc LooksLikePow5
162 {0x1.2a05f2p+59f, chars_format::scientific, "6.7108864e+17"},
163 {0x1.2a05f2p+60f, chars_format::scientific, "1.3421773e+18"},
164 {0x1.2a05f2p+61f, chars_format::scientific, "2.6843546e+18"},
166 // Ryu f2s_test.cc OutputLength
167 {1.0f, chars_format::scientific, "1e+00"},
168 {1.2f, chars_format::scientific, "1.2e+00"},
169 {1.23f, chars_format::scientific, "1.23e+00"},
170 {1.234f, chars_format::scientific, "1.234e+00"},
171 {1.2345f, chars_format::scientific, "1.2345e+00"},
172 {1.23456f, chars_format::scientific, "1.23456e+00"},
173 {1.234567f, chars_format::scientific, "1.234567e+00"},
174 {1.2345678f, chars_format::scientific, "1.2345678e+00"},
175 {1.23456735e-36f, chars_format::scientific, "1.23456735e-36"},
177 // Test all exponents.
178 {1.729e-45f, chars_format::scientific, "1e-45"},
179 {1.729e-44f, chars_format::scientific, "1.7e-44"},
180 {1.729e-43f, chars_format::scientific, "1.72e-43"},
181 {1.729e-42f, chars_format::scientific, "1.729e-42"},
182 {1.729e-41f, chars_format::scientific, "1.729e-41"},
183 {1.729e-40f, chars_format::scientific, "1.729e-40"},
184 {1.729e-39f, chars_format::scientific, "1.729e-39"},
185 {1.729e-38f, chars_format::scientific, "1.729e-38"},
186 {1.729e-37f, chars_format::scientific, "1.729e-37"},
187 {1.729e-36f, chars_format::scientific, "1.729e-36"},
188 {1.729e-35f, chars_format::scientific, "1.729e-35"},
189 {1.729e-34f, chars_format::scientific, "1.729e-34"},
190 {1.729e-33f, chars_format::scientific, "1.729e-33"},
191 {1.729e-32f, chars_format::scientific, "1.729e-32"},
192 {1.729e-31f, chars_format::scientific, "1.729e-31"},
193 {1.729e-30f, chars_format::scientific, "1.729e-30"},
194 {1.729e-29f, chars_format::scientific, "1.729e-29"},
195 {1.729e-28f, chars_format::scientific, "1.729e-28"},
196 {1.729e-27f, chars_format::scientific, "1.729e-27"},
197 {1.729e-26f, chars_format::scientific, "1.729e-26"},
198 {1.729e-25f, chars_format::scientific, "1.729e-25"},
199 {1.729e-24f, chars_format::scientific, "1.729e-24"},
200 {1.729e-23f, chars_format::scientific, "1.729e-23"},
201 {1.729e-22f, chars_format::scientific, "1.729e-22"},
202 {1.729e-21f, chars_format::scientific, "1.729e-21"},
203 {1.729e-20f, chars_format::scientific, "1.729e-20"},
204 {1.729e-19f, chars_format::scientific, "1.729e-19"},
205 {1.729e-18f, chars_format::scientific, "1.729e-18"},
206 {1.729e-17f, chars_format::scientific, "1.729e-17"},
207 {1.729e-16f, chars_format::scientific, "1.729e-16"},
208 {1.729e-15f, chars_format::scientific, "1.729e-15"},
209 {1.729e-14f, chars_format::scientific, "1.729e-14"},
210 {1.729e-13f, chars_format::scientific, "1.729e-13"},
211 {1.729e-12f, chars_format::scientific, "1.729e-12"},
212 {1.729e-11f, chars_format::scientific, "1.729e-11"},
213 {1.729e-10f, chars_format::scientific, "1.729e-10"},
214 {1.729e-9f, chars_format::scientific, "1.729e-09"},
215 {1.729e-8f, chars_format::scientific, "1.729e-08"},
216 {1.729e-7f, chars_format::scientific, "1.729e-07"},
217 {1.729e-6f, chars_format::scientific, "1.729e-06"},
218 {1.729e-5f, chars_format::scientific, "1.729e-05"},
219 {1.729e-4f, chars_format::scientific, "1.729e-04"},
220 {1.729e-3f, chars_format::scientific, "1.729e-03"},
221 {1.729e-2f, chars_format::scientific, "1.729e-02"},
222 {1.729e-1f, chars_format::scientific, "1.729e-01"},
223 {1.729e0f, chars_format::scientific, "1.729e+00"},
224 {1.729e1f, chars_format::scientific, "1.729e+01"},
225 {1.729e2f, chars_format::scientific, "1.729e+02"},
226 {1.729e3f, chars_format::scientific, "1.729e+03"},
227 {1.729e4f, chars_format::scientific, "1.729e+04"},
228 {1.729e5f, chars_format::scientific, "1.729e+05"},
229 {1.729e6f, chars_format::scientific, "1.729e+06"},
230 {1.729e7f, chars_format::scientific, "1.729e+07"},
231 {1.729e8f, chars_format::scientific, "1.729e+08"},
232 {1.729e9f, chars_format::scientific, "1.729e+09"},
233 {1.729e10f, chars_format::scientific, "1.729e+10"},
234 {1.729e11f, chars_format::scientific, "1.729e+11"},
235 {1.729e12f, chars_format::scientific, "1.729e+12"},
236 {1.729e13f, chars_format::scientific, "1.729e+13"},
237 {1.729e14f, chars_format::scientific, "1.729e+14"},
238 {1.729e15f, chars_format::scientific, "1.729e+15"},
239 {1.729e16f, chars_format::scientific, "1.729e+16"},
240 {1.729e17f, chars_format::scientific, "1.729e+17"},
241 {1.729e18f, chars_format::scientific, "1.729e+18"},
242 {1.729e19f, chars_format::scientific, "1.729e+19"},
243 {1.729e20f, chars_format::scientific, "1.729e+20"},
244 {1.729e21f, chars_format::scientific, "1.729e+21"},
245 {1.729e22f, chars_format::scientific, "1.729e+22"},
246 {1.729e23f, chars_format::scientific, "1.729e+23"},
247 {1.729e24f, chars_format::scientific, "1.729e+24"},
248 {1.729e25f, chars_format::scientific, "1.729e+25"},
249 {1.729e26f, chars_format::scientific, "1.729e+26"},
250 {1.729e27f, chars_format::scientific, "1.729e+27"},
251 {1.729e28f, chars_format::scientific, "1.729e+28"},
252 {1.729e29f, chars_format::scientific, "1.729e+29"},
253 {1.729e30f, chars_format::scientific, "1.729e+30"},
254 {1.729e31f, chars_format::scientific, "1.729e+31"},
255 {1.729e32f, chars_format::scientific, "1.729e+32"},
256 {1.729e33f, chars_format::scientific, "1.729e+33"},
257 {1.729e34f, chars_format::scientific, "1.729e+34"},
258 {1.729e35f, chars_format::scientific, "1.729e+35"},
259 {1.729e36f, chars_format::scientific, "1.729e+36"},
260 {1.729e37f, chars_format::scientific, "1.729e+37"},
261 {1.729e38f, chars_format::scientific, "1.729e+38"},
263 // Test all of the cases for fixed notation, including the non-Ryu fallback for large integers.
264 {1.729e-4f, chars_format::fixed, "0.0001729"},
265 {1.729e-3f, chars_format::fixed, "0.001729"},
266 {1.729e-2f, chars_format::fixed, "0.01729"},
267 {1.729e-1f, chars_format::fixed, "0.1729"},
268 {1.729e0f, chars_format::fixed, "1.729"},
269 {1.729e1f, chars_format::fixed, "17.29"},
270 {1.729e2f, chars_format::fixed, "172.9"},
271 {1.729e3f, chars_format::fixed, "1729"},
272 {1.729e4f, chars_format::fixed, "17290"},
273 {1.729e5f, chars_format::fixed, "172900"},
274 {1.729e6f, chars_format::fixed, "1729000"},
275 {1.729e7f, chars_format::fixed, "17290000"},
276 {1.729e8f, chars_format::fixed, "172900000"},
277 {1.729e9f, chars_format::fixed, "1728999936"},
278 {1.729e10f, chars_format::fixed, "17290000384"},
279 {1.729e11f, chars_format::fixed, "172900007936"},
280 {1.729e12f, chars_format::fixed, "1728999981056"},
281 {1.729e13f, chars_format::fixed, "17290000072704"},
282 {1.729e14f, chars_format::fixed, "172899998629888"},
283 {1.729e15f, chars_format::fixed, "1729000019853312"},
284 {1.729e16f, chars_format::fixed, "17289999661662208"},
285 {1.729e17f, chars_format::fixed, "172900007354040320"},
286 {1.729e18f, chars_format::fixed, "1729000039180664832"},
287 {1.729e19f, chars_format::fixed, "17289999567172927488"},
288 {1.729e20f, chars_format::fixed, "172899997870752530432"},
289 {1.729e21f, chars_format::fixed, "1729000013891897393152"},
290 {1.729e22f, chars_format::fixed, "17290000138918973931520"},
291 {1.729e23f, chars_format::fixed, "172899999137389925629952"},
292 {1.729e24f, chars_format::fixed, "1729000063431493294227456"},
293 {1.729e25f, chars_format::fixed, "17289999481393428335427584"},
294 {1.729e26f, chars_format::fixed, "172900004037306320209051648"},
295 {1.729e27f, chars_format::fixed, "1729000040373063202090516480"},
296 {1.729e28f, chars_format::fixed, "17290000403730632020905164800"},
297 {1.729e29f, chars_format::fixed, "172900004037306320209051648000"},
298 {1.729e30f, chars_format::fixed, "1728999964815199476176193060864"},
299 {1.729e31f, chars_format::fixed, "17290000252614904569076517961728"},
300 {1.729e32f, chars_format::fixed, "172899990436890849544473432555520"},
301 {1.729e33f, chars_format::fixed, "1729000059111413406117268687945728"},
302 {1.729e34f, chars_format::fixed, "17290000281629124239827618154676224"},
303 {1.729e35f, chars_format::fixed, "172899995388651006685994532152016896"},
304 {1.729e36f, chars_format::fixed, "1728999993500591323992114118292144128"},
305 {1.729e37f, chars_format::fixed, "17289999935005913239921141182921441280"},
306 {1.729e38f, chars_format::fixed, "172899996814757931942752608835808002048"},
308 // Also test one-digit cases, where the decimal point can't appear between digits like "17.29".
309 {7e-3f, chars_format::fixed, "0.007"},
310 {7e-2f, chars_format::fixed, "0.07"},
311 {7e-1f, chars_format::fixed, "0.7"},
312 {7e0f, chars_format::fixed, "7"},
313 {7e1f, chars_format::fixed, "70"},
314 {7e2f, chars_format::fixed, "700"},
315 {7e3f, chars_format::fixed, "7000"},
317 // Test the maximum value in fixed notation.
318 {0x1.fffffep+127f, chars_format::fixed, "340282346638528859811704183484516925440"},
320 // Test highly-trimmed powers of 2.
321 {0x1p118f, chars_format::fixed, "332306998946228968225951765070086144"},
322 {0x1p118f, chars_format::scientific, "3.32307e+35"},
323 {0x1p119f, chars_format::fixed, "664613997892457936451903530140172288"},
324 {0x1p119f, chars_format::scientific, "6.64614e+35"},
326 // Test powers of 10 that are exactly representable.
327 {1e0f, chars_format::fixed, "1"},
328 {1e1f, chars_format::fixed, "10"},
329 {1e2f, chars_format::fixed, "100"},
330 {1e3f, chars_format::fixed, "1000"},
331 {1e4f, chars_format::fixed, "10000"},
332 {1e5f, chars_format::fixed, "100000"},
333 {1e6f, chars_format::fixed, "1000000"},
334 {1e7f, chars_format::fixed, "10000000"},
335 {1e8f, chars_format::fixed, "100000000"},
336 {1e9f, chars_format::fixed, "1000000000"},
337 {1e10f, chars_format::fixed, "10000000000"},
339 // Test powers of 10 that aren't exactly representable.
340 // This exercises the "adjustment" code.
341 {1e11f, chars_format::fixed, "99999997952"},
342 {1e12f, chars_format::fixed, "999999995904"},
343 {1e13f, chars_format::fixed, "9999999827968"},
344 {1e14f, chars_format::fixed, "100000000376832"},
345 {1e15f, chars_format::fixed, "999999986991104"},
346 {1e16f, chars_format::fixed, "10000000272564224"},
347 {1e17f, chars_format::fixed, "99999998430674944"},
348 {1e18f, chars_format::fixed, "999999984306749440"},
349 {1e19f, chars_format::fixed, "9999999980506447872"},
350 {1e20f, chars_format::fixed, "100000002004087734272"},
351 {1e21f, chars_format::fixed, "1000000020040877342720"},
352 {1e22f, chars_format::fixed, "9999999778196308361216"},
353 {1e23f, chars_format::fixed, "99999997781963083612160"},
354 {1e24f, chars_format::fixed, "1000000013848427855085568"},
355 {1e25f, chars_format::fixed, "9999999562023526247432192"},
356 {1e26f, chars_format::fixed, "100000002537764290115403776"},
357 {1e27f, chars_format::fixed, "999999988484154753734934528"},
358 {1e28f, chars_format::fixed, "9999999442119689768320106496"},
359 {1e29f, chars_format::fixed, "100000001504746621987668885504"},
360 {1e30f, chars_format::fixed, "1000000015047466219876688855040"},
361 {1e31f, chars_format::fixed, "9999999848243207295109594873856"},
362 {1e32f, chars_format::fixed, "100000003318135351409612647563264"},
363 {1e33f, chars_format::fixed, "999999994495727286427992885035008"},
364 {1e34f, chars_format::fixed, "9999999790214767953607394487959552"},
365 {1e35f, chars_format::fixed, "100000004091847875962975319375216640"},
366 {1e36f, chars_format::fixed, "999999961690316245365415600208216064"},
367 {1e37f, chars_format::fixed, "9999999933815812510711506376257961984"},
368 {1e38f, chars_format::fixed, "99999996802856924650656260769173209088"},
370 // These numbers have odd mantissas (unaffected by shifting)
371 // that are barely within the "max shifted mantissa" limit.
372 // They're exactly-representable multiples of powers of 10, and can use Ryu with zero-filling.
373 {3355443e1f, chars_format::fixed, "33554430"},
374 {671087e2f, chars_format::fixed, "67108700"},
375 {134217e3f, chars_format::fixed, "134217000"},
376 {26843e4f, chars_format::fixed, "268430000"},
377 {5367e5f, chars_format::fixed, "536700000"},
378 {1073e6f, chars_format::fixed, "1073000000"},
379 {213e7f, chars_format::fixed, "2130000000"},
380 {41e8f, chars_format::fixed, "4100000000"},
381 {7e9f, chars_format::fixed, "7000000000"},
382 {1e10f, chars_format::fixed, "10000000000"},
384 // These numbers have odd mantissas (unaffected by shifting)
385 // that are barely above the "max shifted mantissa" limit.
386 // This activates the non-Ryu fallback for large integers.
387 {3355445e1f, chars_format::fixed, "33554448"},
388 {671089e2f, chars_format::fixed, "67108896"},
389 {134219e3f, chars_format::fixed, "134219008"},
390 {26845e4f, chars_format::fixed, "268449984"},
391 {5369e5f, chars_format::fixed, "536899968"},
392 {1075e6f, chars_format::fixed, "1075000064"},
393 {215e7f, chars_format::fixed, "2150000128"},
394 {43e8f, chars_format::fixed, "4300000256"},
395 {9e9f, chars_format::fixed, "8999999488"},
396 {3e10f, chars_format::fixed, "30000001024"},
398 // Test the mantissa shifting logic.
399 {5495808e5f, chars_format::fixed, "549580800000"}, // 5367 * 2^10
400 {5497856e5f, chars_format::fixed, "549785567232"}, // 5369 * 2^10
402 // Inspect all of those numbers in scientific notation.
403 // For the within-limit numbers, this verifies that Ryu is actually being used with zero-filling above.
404 // For the above-limit numbers, this tests Ryu's trimming.
405 {3355443e1f, chars_format::scientific, "3.355443e+07"},
406 {671087e2f, chars_format::scientific, "6.71087e+07"},
407 {134217e3f, chars_format::scientific, "1.34217e+08"},
408 {26843e4f, chars_format::scientific, "2.6843e+08"},
409 {5367e5f, chars_format::scientific, "5.367e+08"},
410 {1073e6f, chars_format::scientific, "1.073e+09"},
411 {213e7f, chars_format::scientific, "2.13e+09"},
412 {41e8f, chars_format::scientific, "4.1e+09"},
413 {7e9f, chars_format::scientific, "7e+09"},
414 {1e10f, chars_format::scientific, "1e+10"},
415 {3355445e1f, chars_format::scientific, "3.355445e+07"},
416 {671089e2f, chars_format::scientific, "6.71089e+07"},
417 {134219e3f, chars_format::scientific, "1.34219e+08"},
418 {26845e4f, chars_format::scientific, "2.6845e+08"},
419 {5369e5f, chars_format::scientific, "5.369e+08"},
420 {1075e6f, chars_format::scientific, "1.075e+09"},
421 {215e7f, chars_format::scientific, "2.15e+09"},
422 {43e8f, chars_format::scientific, "4.3e+09"},
423 {9e9f, chars_format::scientific, "9e+09"},
424 {3e10f, chars_format::scientific, "3e+10"},
425 {5495808e5f, chars_format::scientific, "5.495808e+11"},
426 {5497856e5f, chars_format::scientific, "5.497856e+11"},
428 // Test the switching logic of chars_format::general.
429 // C11 7.21.6.1 "The fprintf function"/8:
430 // "Let P equal [...] 6 if the precision is omitted [...].
431 // Then, if a conversion with style E would have an exponent of X:
432 // - if P > X >= -4, the conversion is with style f [...].
433 // - otherwise, the conversion is with style e [...]."
434 {1e-6f, chars_format::general, "1e-06"},
435 {1e-5f, chars_format::general, "1e-05"},
436 {1e-4f, chars_format::general, "0.0001"},
437 {1e-3f, chars_format::general, "0.001"},
438 {1e-2f, chars_format::general, "0.01"},
439 {1e-1f, chars_format::general, "0.1"},
440 {1e0f, chars_format::general, "1"},
441 {1e1f, chars_format::general, "10"},
442 {1e2f, chars_format::general, "100"},
443 {1e3f, chars_format::general, "1000"},
444 {1e4f, chars_format::general, "10000"},
445 {1e5f, chars_format::general, "100000"},
446 {1e6f, chars_format::general, "1e+06"},
447 {1e7f, chars_format::general, "1e+07"},
448 {1.234e-6f, chars_format::general, "1.234e-06"},
449 {1.234e-5f, chars_format::general, "1.234e-05"},
450 {1.234e-4f, chars_format::general, "0.0001234"},
451 {1.234e-3f, chars_format::general, "0.001234"},
452 {1.234e-2f, chars_format::general, "0.01234"},
453 {1.234e-1f, chars_format::general, "0.1234"},
454 {1.234e0f, chars_format::general, "1.234"},
455 {1.234e1f, chars_format::general, "12.34"},
456 {1.234e2f, chars_format::general, "123.4"},
457 {1.234e3f, chars_format::general, "1234"},
458 {1.234e4f, chars_format::general, "12340"},
459 {1.234e5f, chars_format::general, "123400"},
460 {1.234e6f, chars_format::general, "1.234e+06"},
461 {1.234e7f, chars_format::general, "1.234e+07"},
462 {1.234e8f, chars_format::general, "1.234e+08"},
463 {1.234e9f, chars_format::general, "1.234e+09"},
464 {1.234e10f, chars_format::general, "1.234e+10"},
466 // Test the switching logic of the plain overload.
467 // N4762 19.19.2 [charconv.to.chars]/8:
468 // "The conversion specifier is f or e, chosen according to the requirement
469 // for a shortest representation (see above); a tie is resolved in favor of f."
470 {1e-6f, chars_format{}, "1e-06"},
471 {1e-5f, chars_format{}, "1e-05"},
472 {1e-4f, chars_format{}, "1e-04"},
473 {1e-3f, chars_format{}, "0.001"},
474 {1e-2f, chars_format{}, "0.01"},
475 {1e-1f, chars_format{}, "0.1"},
476 {1e0f, chars_format{}, "1"},
477 {1e1f, chars_format{}, "10"},
478 {1e2f, chars_format{}, "100"},
479 {1e3f, chars_format{}, "1000"},
480 {1e4f, chars_format{}, "10000"},
481 {1e5f, chars_format{}, "1e+05"},
482 {1e6f, chars_format{}, "1e+06"},
483 {1e7f, chars_format{}, "1e+07"},
484 {1.234e-6f, chars_format{}, "1.234e-06"},
485 {1.234e-5f, chars_format{}, "1.234e-05"},
486 {1.234e-4f, chars_format{}, "0.0001234"},
487 {1.234e-3f, chars_format{}, "0.001234"},
488 {1.234e-2f, chars_format{}, "0.01234"},
489 {1.234e-1f, chars_format{}, "0.1234"},
490 {1.234e0f, chars_format{}, "1.234"},
491 {1.234e1f, chars_format{}, "12.34"},
492 {1.234e2f, chars_format{}, "123.4"},
493 {1.234e3f, chars_format{}, "1234"},
494 {1.234e4f, chars_format{}, "12340"},
495 {1.234e5f, chars_format{}, "123400"},
496 {1.234e6f, chars_format{}, "1234000"},
497 {1.234e7f, chars_format{}, "12340000"},
498 {1.234e8f, chars_format{}, "123400000"},
499 {1.234e9f, chars_format{}, "1.234e+09"},
500 {1.234e10f, chars_format{}, "1.234e+10"},
502 // Test hexfloat corner cases.
503 {0x1.728p+0f, chars_format::hex, "1.728p+0"}, // instead of "2.e5p-1"
504 {0x0.000002p-126f, chars_format::hex, "0.000002p-126"}, // instead of "1p-149", min subnormal
505 {0x0.fffffep-126f, chars_format::hex, "0.fffffep-126"}, // max subnormal
506 {0x1p-126f, chars_format::hex, "1p-126"}, // min normal
507 {0x1.fffffep+127f, chars_format::hex, "1.fffffep+127"}, // max normal
509 // Test hexfloat exponents.
510 {0x1p-109f, chars_format::hex, "1p-109"},
511 {0x1p-99f, chars_format::hex, "1p-99"},
512 {0x1p-9f, chars_format::hex, "1p-9"},
513 {0x1p+0f, chars_format::hex, "1p+0"},
514 {0x1p+9f, chars_format::hex, "1p+9"},
515 {0x1p+99f, chars_format::hex, "1p+99"},
516 {0x1p+109f, chars_format::hex, "1p+109"},
518 // Test hexfloat hexits.
519 {0x1.0123p+0f, chars_format::hex, "1.0123p+0"},
520 {0x1.4567p+0f, chars_format::hex, "1.4567p+0"},
521 {0x1.89abp+0f, chars_format::hex, "1.89abp+0"},
522 {0x1.cdefp+0f, chars_format::hex, "1.cdefp+0"},
524 // Test hexfloat trimming.
525 {0x1.00000ap+0f, chars_format::hex, "1.00000ap+0"},
526 {0x1.0000ap+0f, chars_format::hex, "1.0000ap+0"},
527 {0x1.000ap+0f, chars_format::hex, "1.000ap+0"},
528 {0x1.00ap+0f, chars_format::hex, "1.00ap+0"},
529 {0x1.0ap+0f, chars_format::hex, "1.0ap+0"},
530 {0x1.ap+0f, chars_format::hex, "1.ap+0"},
531 {0x1p+0f, chars_format::hex, "1p+0"},
533 // https://www.exploringbinary.com/the-shortest-decimal-string-that-round-trips-may-not-be-the-nearest/
534 // This is an exhaustive list of anomalous values.
535 // (See double_to_chars_test_cases.hpp for more details.)
536 {0x1p90f, chars_format::scientific, "1.2379401e+27"},
537 {0x1p87f, chars_format::scientific, "1.5474251e+26"},
538 {0x1p-96f, chars_format::scientific, "1.2621775e-29"},
541 #endif // FLOAT_TO_CHARS_TEST_CASES_HPP