1 //===----------------------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "fallback_malloc.h"
11 #include <__threading_support>
12 #ifndef _LIBCXXABI_HAS_NO_THREADS
13 #if defined(__ELF__) && defined(_LIBCXXABI_LINK_PTHREAD_LIB)
14 #pragma comment(lib, "pthread")
18 #include <__memory/aligned_alloc.h>
20 #include <stdlib.h> // for malloc, calloc, free
21 #include <string.h> // for memset
23 // A small, simple heap manager based (loosely) on
24 // the startup heap manager from FreeBSD, optimized for space.
26 // Manages a fixed-size memory pool, supports malloc and free only.
27 // No support for realloc.
29 // Allocates chunks in multiples of four bytes, with a four byte header
30 // for each chunk. The overhead of each chunk is kept low by keeping pointers
31 // as two byte offsets within the heap, rather than (4 or 8 byte) pointers.
35 // When POSIX threads are not available, make the mutex operations a nop
36 #ifndef _LIBCXXABI_HAS_NO_THREADS
37 static _LIBCPP_CONSTINIT
std::__libcpp_mutex_t heap_mutex
= _LIBCPP_MUTEX_INITIALIZER
;
39 static _LIBCPP_CONSTINIT
void* heap_mutex
= 0;
44 #ifndef _LIBCXXABI_HAS_NO_THREADS
45 mutexor(std::__libcpp_mutex_t
* m
) : mtx_(m
) {
46 std::__libcpp_mutex_lock(mtx_
);
48 ~mutexor() { std::__libcpp_mutex_unlock(mtx_
); }
54 mutexor(const mutexor
& rhs
);
55 mutexor
& operator=(const mutexor
& rhs
);
56 #ifndef _LIBCXXABI_HAS_NO_THREADS
57 std::__libcpp_mutex_t
* mtx_
;
61 static const size_t HEAP_SIZE
= 512;
62 char heap
[HEAP_SIZE
] __attribute__((aligned
));
64 typedef unsigned short heap_offset
;
65 typedef unsigned short heap_size
;
67 // On both 64 and 32 bit targets heap_node should have the following properties
71 heap_offset next_node
; // offset into heap
72 heap_size len
; // size in units of "sizeof(heap_node)"
75 // All pointers returned by fallback_malloc must be at least aligned
76 // as RequiredAligned. Note that RequiredAlignment can be greater than
77 // alignof(std::max_align_t) on 64 bit systems compiling 32 bit code.
78 struct FallbackMaxAlignType
{
79 } __attribute__((aligned
));
80 const size_t RequiredAlignment
= alignof(FallbackMaxAlignType
);
82 static_assert(alignof(FallbackMaxAlignType
) % sizeof(heap_node
) == 0,
83 "The required alignment must be evenly divisible by the sizeof(heap_node)");
85 // The number of heap_node's that can fit in a chunk of memory with the size
86 // of the RequiredAlignment. On 64 bit targets NodesPerAlignment should be 4.
87 const size_t NodesPerAlignment
= alignof(FallbackMaxAlignType
) / sizeof(heap_node
);
89 static const heap_node
* list_end
=
90 (heap_node
*)(&heap
[HEAP_SIZE
]); // one past the end of the heap
91 static heap_node
* freelist
= NULL
;
93 heap_node
* node_from_offset(const heap_offset offset
) {
94 return (heap_node
*)(heap
+ (offset
* sizeof(heap_node
)));
97 heap_offset
offset_from_node(const heap_node
* ptr
) {
98 return static_cast<heap_offset
>(
99 static_cast<size_t>(reinterpret_cast<const char*>(ptr
) - heap
) /
103 // Return a pointer to the first address, 'A', in `heap` that can actually be
104 // used to represent a heap_node. 'A' must be aligned so that
105 // '(A + sizeof(heap_node)) % RequiredAlignment == 0'. On 64 bit systems this
106 // address should be 12 bytes after the first 16 byte boundary.
107 heap_node
* getFirstAlignedNodeInHeap() {
108 heap_node
* node
= (heap_node
*)heap
;
109 const size_t alignNBytesAfterBoundary
= RequiredAlignment
- sizeof(heap_node
);
110 size_t boundaryOffset
= reinterpret_cast<size_t>(node
) % RequiredAlignment
;
111 size_t requiredOffset
= alignNBytesAfterBoundary
- boundaryOffset
;
112 size_t NElemOffset
= requiredOffset
/ sizeof(heap_node
);
113 return node
+ NElemOffset
;
117 freelist
= getFirstAlignedNodeInHeap();
118 freelist
->next_node
= offset_from_node(list_end
);
119 freelist
->len
= static_cast<heap_size
>(list_end
- freelist
);
122 // How big a chunk we allocate
123 size_t alloc_size(size_t len
) {
124 return (len
+ sizeof(heap_node
) - 1) / sizeof(heap_node
) + 1;
127 bool is_fallback_ptr(void* ptr
) {
128 return ptr
>= heap
&& ptr
< (heap
+ HEAP_SIZE
);
131 void* fallback_malloc(size_t len
) {
133 const size_t nelems
= alloc_size(len
);
134 mutexor
mtx(&heap_mutex
);
136 if (NULL
== freelist
)
139 // Walk the free list, looking for a "big enough" chunk
140 for (p
= freelist
, prev
= 0; p
&& p
!= list_end
;
141 prev
= p
, p
= node_from_offset(p
->next_node
)) {
143 // Check the invariant that all heap_nodes pointers 'p' are aligned
144 // so that 'p + 1' has an alignment of at least RequiredAlignment
145 assert(reinterpret_cast<size_t>(p
+ 1) % RequiredAlignment
== 0);
147 // Calculate the number of extra padding elements needed in order
148 // to split 'p' and create a properly aligned heap_node from the tail
149 // of 'p'. We calculate aligned_nelems such that 'p->len - aligned_nelems'
150 // will be a multiple of NodesPerAlignment.
151 size_t aligned_nelems
= nelems
;
152 if (p
->len
> nelems
) {
153 heap_size remaining_len
= static_cast<heap_size
>(p
->len
- nelems
);
154 aligned_nelems
+= remaining_len
% NodesPerAlignment
;
157 // chunk is larger and we can create a properly aligned heap_node
158 // from the tail. In this case we shorten 'p' and return the tail.
159 if (p
->len
> aligned_nelems
) {
161 p
->len
= static_cast<heap_size
>(p
->len
- aligned_nelems
);
164 q
->len
= static_cast<heap_size
>(aligned_nelems
);
166 assert(reinterpret_cast<size_t>(ptr
) % RequiredAlignment
== 0);
170 // The chunk is the exact size or the chunk is larger but not large
171 // enough to split due to alignment constraints.
172 if (p
->len
>= nelems
) {
174 freelist
= node_from_offset(p
->next_node
);
176 prev
->next_node
= p
->next_node
;
179 assert(reinterpret_cast<size_t>(ptr
) % RequiredAlignment
== 0);
183 return NULL
; // couldn't find a spot big enough
186 // Return the start of the next block
187 heap_node
* after(struct heap_node
* p
) { return p
+ p
->len
; }
189 void fallback_free(void* ptr
) {
190 struct heap_node
* cp
= ((struct heap_node
*)ptr
) - 1; // retrieve the chunk
191 struct heap_node
*p
, *prev
;
193 mutexor
mtx(&heap_mutex
);
195 #ifdef DEBUG_FALLBACK_MALLOC
196 std::printf("Freeing item at %d of size %d\n", offset_from_node(cp
), cp
->len
);
199 for (p
= freelist
, prev
= 0; p
&& p
!= list_end
;
200 prev
= p
, p
= node_from_offset(p
->next_node
)) {
201 #ifdef DEBUG_FALLBACK_MALLOC
202 std::printf(" p=%d, cp=%d, after(p)=%d, after(cp)=%d\n",
203 offset_from_node(p
), offset_from_node(cp
),
204 offset_from_node(after(p
)), offset_from_node(after(cp
)));
206 if (after(p
) == cp
) {
207 #ifdef DEBUG_FALLBACK_MALLOC
208 std::printf(" Appending onto chunk at %d\n", offset_from_node(p
));
210 p
->len
= static_cast<heap_size
>(
211 p
->len
+ cp
->len
); // make the free heap_node larger
213 } else if (after(cp
) == p
) { // there's a free heap_node right after
214 #ifdef DEBUG_FALLBACK_MALLOC
215 std::printf(" Appending free chunk at %d\n", offset_from_node(p
));
217 cp
->len
= static_cast<heap_size
>(cp
->len
+ p
->len
);
220 cp
->next_node
= p
->next_node
;
222 prev
->next_node
= offset_from_node(cp
);
226 // Nothing to merge with, add it to the start of the free list
227 #ifdef DEBUG_FALLBACK_MALLOC
228 std::printf(" Making new free list entry %d\n", offset_from_node(cp
));
230 cp
->next_node
= offset_from_node(freelist
);
234 #ifdef INSTRUMENT_FALLBACK_MALLOC
235 size_t print_free_list() {
236 struct heap_node
*p
, *prev
;
237 heap_size total_free
= 0;
238 if (NULL
== freelist
)
241 for (p
= freelist
, prev
= 0; p
&& p
!= list_end
;
242 prev
= p
, p
= node_from_offset(p
->next_node
)) {
243 std::printf("%sOffset: %d\tsize: %d Next: %d\n",
244 (prev
== 0 ? "" : " "), offset_from_node(p
), p
->len
, p
->next_node
);
245 total_free
+= p
->len
;
247 std::printf("Total Free space: %d\n", total_free
);
251 } // end unnamed namespace
253 namespace __cxxabiv1
{
255 struct __attribute__((aligned
)) __aligned_type
{};
257 void* __aligned_malloc_with_fallback(size_t size
) {
259 if (void* dest
= std::__libcpp_aligned_alloc(alignof(__aligned_type
), size
))
261 #elif defined(_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION)
262 if (void* dest
= ::malloc(size
))
267 if (void* dest
= std::__libcpp_aligned_alloc(__alignof(__aligned_type
), size
))
270 return fallback_malloc(size
);
273 void* __calloc_with_fallback(size_t count
, size_t size
) {
274 void* ptr
= ::calloc(count
, size
);
277 // if calloc fails, fall back to emergency stash
278 ptr
= fallback_malloc(size
* count
);
280 ::memset(ptr
, 0, size
* count
);
284 void __aligned_free_with_fallback(void* ptr
) {
285 if (is_fallback_ptr(ptr
))
288 #if defined(_LIBCPP_HAS_NO_LIBRARY_ALIGNED_ALLOCATION)
291 std::__libcpp_aligned_free(ptr
);
296 void __free_with_fallback(void* ptr
) {
297 if (is_fallback_ptr(ptr
))
303 } // namespace __cxxabiv1