Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / libunwind / include / mach-o / compact_unwind_encoding.h
blob4c48e33c3c177d9cdf7e4805fc4797628ff54ac4
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //
8 // Darwin's alternative to DWARF based unwind encodings.
9 //
10 //===----------------------------------------------------------------------===//
13 #ifndef __COMPACT_UNWIND_ENCODING__
14 #define __COMPACT_UNWIND_ENCODING__
16 #include <stdint.h>
19 // Compilers can emit standard DWARF FDEs in the __TEXT,__eh_frame section
20 // of object files. Or compilers can emit compact unwind information in
21 // the __LD,__compact_unwind section.
23 // When the linker creates a final linked image, it will create a
24 // __TEXT,__unwind_info section. This section is a small and fast way for the
25 // runtime to access unwind info for any given function. If the compiler
26 // emitted compact unwind info for the function, that compact unwind info will
27 // be encoded in the __TEXT,__unwind_info section. If the compiler emitted
28 // DWARF unwind info, the __TEXT,__unwind_info section will contain the offset
29 // of the FDE in the __TEXT,__eh_frame section in the final linked image.
31 // Note: Previously, the linker would transform some DWARF unwind infos into
32 // compact unwind info. But that is fragile and no longer done.
36 // The compact unwind encoding is a 32-bit value which encoded in an
37 // architecture specific way, which registers to restore from where, and how
38 // to unwind out of the function.
40 typedef uint32_t compact_unwind_encoding_t;
43 // architecture independent bits
44 enum {
45 UNWIND_IS_NOT_FUNCTION_START = 0x80000000,
46 UNWIND_HAS_LSDA = 0x40000000,
47 UNWIND_PERSONALITY_MASK = 0x30000000,
54 // x86
56 // 1-bit: start
57 // 1-bit: has lsda
58 // 2-bit: personality index
60 // 4-bits: 0=old, 1=ebp based, 2=stack-imm, 3=stack-ind, 4=DWARF
61 // ebp based:
62 // 15-bits (5*3-bits per reg) register permutation
63 // 8-bits for stack offset
64 // frameless:
65 // 8-bits stack size
66 // 3-bits stack adjust
67 // 3-bits register count
68 // 10-bits register permutation
70 enum {
71 UNWIND_X86_MODE_MASK = 0x0F000000,
72 UNWIND_X86_MODE_EBP_FRAME = 0x01000000,
73 UNWIND_X86_MODE_STACK_IMMD = 0x02000000,
74 UNWIND_X86_MODE_STACK_IND = 0x03000000,
75 UNWIND_X86_MODE_DWARF = 0x04000000,
77 UNWIND_X86_EBP_FRAME_REGISTERS = 0x00007FFF,
78 UNWIND_X86_EBP_FRAME_OFFSET = 0x00FF0000,
80 UNWIND_X86_FRAMELESS_STACK_SIZE = 0x00FF0000,
81 UNWIND_X86_FRAMELESS_STACK_ADJUST = 0x0000E000,
82 UNWIND_X86_FRAMELESS_STACK_REG_COUNT = 0x00001C00,
83 UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF,
85 UNWIND_X86_DWARF_SECTION_OFFSET = 0x00FFFFFF,
88 enum {
89 UNWIND_X86_REG_NONE = 0,
90 UNWIND_X86_REG_EBX = 1,
91 UNWIND_X86_REG_ECX = 2,
92 UNWIND_X86_REG_EDX = 3,
93 UNWIND_X86_REG_EDI = 4,
94 UNWIND_X86_REG_ESI = 5,
95 UNWIND_X86_REG_EBP = 6,
99 // For x86 there are four modes for the compact unwind encoding:
100 // UNWIND_X86_MODE_EBP_FRAME:
101 // EBP based frame where EBP is push on stack immediately after return address,
102 // then ESP is moved to EBP. Thus, to unwind ESP is restored with the current
103 // EPB value, then EBP is restored by popping off the stack, and the return
104 // is done by popping the stack once more into the pc.
105 // All non-volatile registers that need to be restored must have been saved
106 // in a small range in the stack that starts EBP-4 to EBP-1020. The offset/4
107 // is encoded in the UNWIND_X86_EBP_FRAME_OFFSET bits. The registers saved
108 // are encoded in the UNWIND_X86_EBP_FRAME_REGISTERS bits as five 3-bit entries.
109 // Each entry contains which register to restore.
110 // UNWIND_X86_MODE_STACK_IMMD:
111 // A "frameless" (EBP not used as frame pointer) function with a small
112 // constant stack size. To return, a constant (encoded in the compact
113 // unwind encoding) is added to the ESP. Then the return is done by
114 // popping the stack into the pc.
115 // All non-volatile registers that need to be restored must have been saved
116 // on the stack immediately after the return address. The stack_size/4 is
117 // encoded in the UNWIND_X86_FRAMELESS_STACK_SIZE (max stack size is 1024).
118 // The number of registers saved is encoded in UNWIND_X86_FRAMELESS_STACK_REG_COUNT.
119 // UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION contains which registers were
120 // saved and their order.
121 // UNWIND_X86_MODE_STACK_IND:
122 // A "frameless" (EBP not used as frame pointer) function large constant
123 // stack size. This case is like the previous, except the stack size is too
124 // large to encode in the compact unwind encoding. Instead it requires that
125 // the function contains "subl $nnnnnnnn,ESP" in its prolog. The compact
126 // encoding contains the offset to the nnnnnnnn value in the function in
127 // UNWIND_X86_FRAMELESS_STACK_SIZE.
128 // UNWIND_X86_MODE_DWARF:
129 // No compact unwind encoding is available. Instead the low 24-bits of the
130 // compact encoding is the offset of the DWARF FDE in the __eh_frame section.
131 // This mode is never used in object files. It is only generated by the
132 // linker in final linked images which have only DWARF unwind info for a
133 // function.
135 // The permutation encoding is a Lehmer code sequence encoded into a
136 // single variable-base number so we can encode the ordering of up to
137 // six registers in a 10-bit space.
139 // The following is the algorithm used to create the permutation encoding used
140 // with frameless stacks. It is passed the number of registers to be saved and
141 // an array of the register numbers saved.
143 //uint32_t permute_encode(uint32_t registerCount, const uint32_t registers[6])
145 // uint32_t renumregs[6];
146 // for (int i=6-registerCount; i < 6; ++i) {
147 // int countless = 0;
148 // for (int j=6-registerCount; j < i; ++j) {
149 // if ( registers[j] < registers[i] )
150 // ++countless;
151 // }
152 // renumregs[i] = registers[i] - countless -1;
153 // }
154 // uint32_t permutationEncoding = 0;
155 // switch ( registerCount ) {
156 // case 6:
157 // permutationEncoding |= (120*renumregs[0] + 24*renumregs[1]
158 // + 6*renumregs[2] + 2*renumregs[3]
159 // + renumregs[4]);
160 // break;
161 // case 5:
162 // permutationEncoding |= (120*renumregs[1] + 24*renumregs[2]
163 // + 6*renumregs[3] + 2*renumregs[4]
164 // + renumregs[5]);
165 // break;
166 // case 4:
167 // permutationEncoding |= (60*renumregs[2] + 12*renumregs[3]
168 // + 3*renumregs[4] + renumregs[5]);
169 // break;
170 // case 3:
171 // permutationEncoding |= (20*renumregs[3] + 4*renumregs[4]
172 // + renumregs[5]);
173 // break;
174 // case 2:
175 // permutationEncoding |= (5*renumregs[4] + renumregs[5]);
176 // break;
177 // case 1:
178 // permutationEncoding |= (renumregs[5]);
179 // break;
180 // }
181 // return permutationEncoding;
189 // x86_64
191 // 1-bit: start
192 // 1-bit: has lsda
193 // 2-bit: personality index
195 // 4-bits: 0=old, 1=rbp based, 2=stack-imm, 3=stack-ind, 4=DWARF
196 // rbp based:
197 // 15-bits (5*3-bits per reg) register permutation
198 // 8-bits for stack offset
199 // frameless:
200 // 8-bits stack size
201 // 3-bits stack adjust
202 // 3-bits register count
203 // 10-bits register permutation
205 enum {
206 UNWIND_X86_64_MODE_MASK = 0x0F000000,
207 UNWIND_X86_64_MODE_RBP_FRAME = 0x01000000,
208 UNWIND_X86_64_MODE_STACK_IMMD = 0x02000000,
209 UNWIND_X86_64_MODE_STACK_IND = 0x03000000,
210 UNWIND_X86_64_MODE_DWARF = 0x04000000,
212 UNWIND_X86_64_RBP_FRAME_REGISTERS = 0x00007FFF,
213 UNWIND_X86_64_RBP_FRAME_OFFSET = 0x00FF0000,
215 UNWIND_X86_64_FRAMELESS_STACK_SIZE = 0x00FF0000,
216 UNWIND_X86_64_FRAMELESS_STACK_ADJUST = 0x0000E000,
217 UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT = 0x00001C00,
218 UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF,
220 UNWIND_X86_64_DWARF_SECTION_OFFSET = 0x00FFFFFF,
223 enum {
224 UNWIND_X86_64_REG_NONE = 0,
225 UNWIND_X86_64_REG_RBX = 1,
226 UNWIND_X86_64_REG_R12 = 2,
227 UNWIND_X86_64_REG_R13 = 3,
228 UNWIND_X86_64_REG_R14 = 4,
229 UNWIND_X86_64_REG_R15 = 5,
230 UNWIND_X86_64_REG_RBP = 6,
233 // For x86_64 there are four modes for the compact unwind encoding:
234 // UNWIND_X86_64_MODE_RBP_FRAME:
235 // RBP based frame where RBP is push on stack immediately after return address,
236 // then RSP is moved to RBP. Thus, to unwind RSP is restored with the current
237 // EPB value, then RBP is restored by popping off the stack, and the return
238 // is done by popping the stack once more into the pc.
239 // All non-volatile registers that need to be restored must have been saved
240 // in a small range in the stack that starts RBP-8 to RBP-2040. The offset/8
241 // is encoded in the UNWIND_X86_64_RBP_FRAME_OFFSET bits. The registers saved
242 // are encoded in the UNWIND_X86_64_RBP_FRAME_REGISTERS bits as five 3-bit entries.
243 // Each entry contains which register to restore.
244 // UNWIND_X86_64_MODE_STACK_IMMD:
245 // A "frameless" (RBP not used as frame pointer) function with a small
246 // constant stack size. To return, a constant (encoded in the compact
247 // unwind encoding) is added to the RSP. Then the return is done by
248 // popping the stack into the pc.
249 // All non-volatile registers that need to be restored must have been saved
250 // on the stack immediately after the return address. The stack_size/8 is
251 // encoded in the UNWIND_X86_64_FRAMELESS_STACK_SIZE (max stack size is 2048).
252 // The number of registers saved is encoded in UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT.
253 // UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION contains which registers were
254 // saved and their order.
255 // UNWIND_X86_64_MODE_STACK_IND:
256 // A "frameless" (RBP not used as frame pointer) function large constant
257 // stack size. This case is like the previous, except the stack size is too
258 // large to encode in the compact unwind encoding. Instead it requires that
259 // the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
260 // encoding contains the offset to the nnnnnnnn value in the function in
261 // UNWIND_X86_64_FRAMELESS_STACK_SIZE.
262 // UNWIND_X86_64_MODE_DWARF:
263 // No compact unwind encoding is available. Instead the low 24-bits of the
264 // compact encoding is the offset of the DWARF FDE in the __eh_frame section.
265 // This mode is never used in object files. It is only generated by the
266 // linker in final linked images which have only DWARF unwind info for a
267 // function.
271 // ARM64
273 // 1-bit: start
274 // 1-bit: has lsda
275 // 2-bit: personality index
277 // 4-bits: 4=frame-based, 3=DWARF, 2=frameless
278 // frameless:
279 // 12-bits of stack size
280 // frame-based:
281 // 4-bits D reg pairs saved
282 // 5-bits X reg pairs saved
283 // DWARF:
284 // 24-bits offset of DWARF FDE in __eh_frame section
286 enum {
287 UNWIND_ARM64_MODE_MASK = 0x0F000000,
288 UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
289 UNWIND_ARM64_MODE_DWARF = 0x03000000,
290 UNWIND_ARM64_MODE_FRAME = 0x04000000,
292 UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
293 UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
294 UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
295 UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
296 UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
297 UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
298 UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
299 UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
300 UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800,
302 UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK = 0x00FFF000,
303 UNWIND_ARM64_DWARF_SECTION_OFFSET = 0x00FFFFFF,
305 // For arm64 there are three modes for the compact unwind encoding:
306 // UNWIND_ARM64_MODE_FRAME:
307 // This is a standard arm64 prolog where FP/LR are immediately pushed on the
308 // stack, then SP is copied to FP. If there are any non-volatile registers
309 // saved, then are copied into the stack frame in pairs in a contiguous
310 // range right below the saved FP/LR pair. Any subset of the five X pairs
311 // and four D pairs can be saved, but the memory layout must be in register
312 // number order.
313 // UNWIND_ARM64_MODE_FRAMELESS:
314 // A "frameless" leaf function, where FP/LR are not saved. The return address
315 // remains in LR throughout the function. If any non-volatile registers
316 // are saved, they must be pushed onto the stack before any stack space is
317 // allocated for local variables. The stack sized (including any saved
318 // non-volatile registers) divided by 16 is encoded in the bits
319 // UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK.
320 // UNWIND_ARM64_MODE_DWARF:
321 // No compact unwind encoding is available. Instead the low 24-bits of the
322 // compact encoding is the offset of the DWARF FDE in the __eh_frame section.
323 // This mode is never used in object files. It is only generated by the
324 // linker in final linked images which have only DWARF unwind info for a
325 // function.
332 ////////////////////////////////////////////////////////////////////////////////
334 // Relocatable Object Files: __LD,__compact_unwind
336 ////////////////////////////////////////////////////////////////////////////////
339 // A compiler can generated compact unwind information for a function by adding
340 // a "row" to the __LD,__compact_unwind section. This section has the
341 // S_ATTR_DEBUG bit set, so the section will be ignored by older linkers.
342 // It is removed by the new linker, so never ends up in final executables.
343 // This section is a table, initially with one row per function (that needs
344 // unwind info). The table columns and some conceptual entries are:
346 // range-start pointer to start of function/range
347 // range-length
348 // compact-unwind-encoding 32-bit encoding
349 // personality-function or zero if no personality function
350 // lsda or zero if no LSDA data
352 // The length and encoding fields are 32-bits. The other are all pointer sized.
354 // In x86_64 assembly, these entry would look like:
356 // .section __LD,__compact_unwind,regular,debug
358 // #compact unwind for _foo
359 // .quad _foo
360 // .set L1,LfooEnd-_foo
361 // .long L1
362 // .long 0x01010001
363 // .quad 0
364 // .quad 0
366 // #compact unwind for _bar
367 // .quad _bar
368 // .set L2,LbarEnd-_bar
369 // .long L2
370 // .long 0x01020011
371 // .quad __gxx_personality
372 // .quad except_tab1
375 // Notes: There is no need for any labels in the __compact_unwind section.
376 // The use of the .set directive is to force the evaluation of the
377 // range-length at assembly time, instead of generating relocations.
379 // To support future compiler optimizations where which non-volatile registers
380 // are saved changes within a function (e.g. delay saving non-volatiles until
381 // necessary), there can by multiple lines in the __compact_unwind table for one
382 // function, each with a different (non-overlapping) range and each with
383 // different compact unwind encodings that correspond to the non-volatiles
384 // saved at that range of the function.
386 // If a particular function is so wacky that there is no compact unwind way
387 // to encode it, then the compiler can emit traditional DWARF unwind info.
388 // The runtime will use which ever is available.
390 // Runtime support for compact unwind encodings are only available on 10.6
391 // and later. So, the compiler should not generate it when targeting pre-10.6.
396 ////////////////////////////////////////////////////////////////////////////////
398 // Final Linked Images: __TEXT,__unwind_info
400 ////////////////////////////////////////////////////////////////////////////////
403 // The __TEXT,__unwind_info section is laid out for an efficient two level lookup.
404 // The header of the section contains a coarse index that maps function address
405 // to the page (4096 byte block) containing the unwind info for that function.
408 #define UNWIND_SECTION_VERSION 1
409 struct unwind_info_section_header
411 uint32_t version; // UNWIND_SECTION_VERSION
412 uint32_t commonEncodingsArraySectionOffset;
413 uint32_t commonEncodingsArrayCount;
414 uint32_t personalityArraySectionOffset;
415 uint32_t personalityArrayCount;
416 uint32_t indexSectionOffset;
417 uint32_t indexCount;
418 // compact_unwind_encoding_t[]
419 // uint32_t personalities[]
420 // unwind_info_section_header_index_entry[]
421 // unwind_info_section_header_lsda_index_entry[]
424 struct unwind_info_section_header_index_entry
426 uint32_t functionOffset;
427 uint32_t secondLevelPagesSectionOffset; // section offset to start of regular or compress page
428 uint32_t lsdaIndexArraySectionOffset; // section offset to start of lsda_index array for this range
431 struct unwind_info_section_header_lsda_index_entry
433 uint32_t functionOffset;
434 uint32_t lsdaOffset;
438 // There are two kinds of second level index pages: regular and compressed.
439 // A compressed page can hold up to 1021 entries, but it cannot be used
440 // if too many different encoding types are used. The regular page holds
441 // 511 entries.
444 struct unwind_info_regular_second_level_entry
446 uint32_t functionOffset;
447 compact_unwind_encoding_t encoding;
450 #define UNWIND_SECOND_LEVEL_REGULAR 2
451 struct unwind_info_regular_second_level_page_header
453 uint32_t kind; // UNWIND_SECOND_LEVEL_REGULAR
454 uint16_t entryPageOffset;
455 uint16_t entryCount;
456 // entry array
459 #define UNWIND_SECOND_LEVEL_COMPRESSED 3
460 struct unwind_info_compressed_second_level_page_header
462 uint32_t kind; // UNWIND_SECOND_LEVEL_COMPRESSED
463 uint16_t entryPageOffset;
464 uint16_t entryCount;
465 uint16_t encodingsPageOffset;
466 uint16_t encodingsCount;
467 // 32-bit entry array
468 // encodings array
471 #define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry) (entry & 0x00FFFFFF)
472 #define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry) ((entry >> 24) & 0xFF)
476 #endif