1 //===- Chunks.cpp ---------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 #include "COFFLinkerContext.h"
11 #include "InputFiles.h"
12 #include "SymbolTable.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/BinaryFormat/COFF.h"
19 #include "llvm/Object/COFF.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm::object
;
28 using namespace llvm::support::endian
;
29 using namespace llvm::COFF
;
30 using llvm::support::ulittle32_t
;
34 SectionChunk::SectionChunk(ObjFile
*f
, const coff_section
*h
)
35 : Chunk(SectionKind
), file(f
), header(h
), repl(this) {
38 setRelocs(file
->getCOFFObj()->getRelocations(header
));
40 // Initialize sectionName.
41 StringRef sectionName
;
43 if (Expected
<StringRef
> e
= file
->getCOFFObj()->getSectionName(header
))
46 sectionNameData
= sectionName
.data();
47 sectionNameSize
= sectionName
.size();
49 setAlignment(header
->getAlignment());
51 hasData
= !(header
->Characteristics
& IMAGE_SCN_CNT_UNINITIALIZED_DATA
);
53 // If linker GC is disabled, every chunk starts out alive. If linker GC is
54 // enabled, treat non-comdat sections as roots. Generally optimized object
55 // files will be built with -ffunction-sections or /Gy, so most things worth
56 // stripping will be in a comdat.
58 live
= !file
->ctx
.config
.doGC
|| !isCOMDAT();
63 // SectionChunk is one of the most frequently allocated classes, so it is
64 // important to keep it as compact as possible. As of this writing, the number
65 // below is the size of this class on x64 platforms.
66 static_assert(sizeof(SectionChunk
) <= 88, "SectionChunk grew unexpectedly");
68 static void add16(uint8_t *p
, int16_t v
) { write16le(p
, read16le(p
) + v
); }
69 static void add32(uint8_t *p
, int32_t v
) { write32le(p
, read32le(p
) + v
); }
70 static void add64(uint8_t *p
, int64_t v
) { write64le(p
, read64le(p
) + v
); }
71 static void or16(uint8_t *p
, uint16_t v
) { write16le(p
, read16le(p
) | v
); }
72 static void or32(uint8_t *p
, uint32_t v
) { write32le(p
, read32le(p
) | v
); }
74 // Verify that given sections are appropriate targets for SECREL
75 // relocations. This check is relaxed because unfortunately debug
76 // sections have section-relative relocations against absolute symbols.
77 static bool checkSecRel(const SectionChunk
*sec
, OutputSection
*os
) {
80 if (sec
->isCodeView())
82 error("SECREL relocation cannot be applied to absolute symbols");
86 static void applySecRel(const SectionChunk
*sec
, uint8_t *off
,
87 OutputSection
*os
, uint64_t s
) {
88 if (!checkSecRel(sec
, os
))
90 uint64_t secRel
= s
- os
->getRVA();
91 if (secRel
> UINT32_MAX
) {
92 error("overflow in SECREL relocation in section: " + sec
->getSectionName());
98 static void applySecIdx(uint8_t *off
, OutputSection
*os
,
99 unsigned numOutputSections
) {
100 // numOutputSections is the largest valid section index. Make sure that
101 // it fits in 16 bits.
102 assert(numOutputSections
<= 0xffff && "size of outputSections is too big");
104 // Absolute symbol doesn't have section index, but section index relocation
105 // against absolute symbol should be resolved to one plus the last output
106 // section index. This is required for compatibility with MSVC.
108 add16(off
, os
->sectionIndex
);
110 add16(off
, numOutputSections
+ 1);
113 void SectionChunk::applyRelX64(uint8_t *off
, uint16_t type
, OutputSection
*os
,
114 uint64_t s
, uint64_t p
,
115 uint64_t imageBase
) const {
117 case IMAGE_REL_AMD64_ADDR32
:
118 add32(off
, s
+ imageBase
);
120 case IMAGE_REL_AMD64_ADDR64
:
121 add64(off
, s
+ imageBase
);
123 case IMAGE_REL_AMD64_ADDR32NB
: add32(off
, s
); break;
124 case IMAGE_REL_AMD64_REL32
: add32(off
, s
- p
- 4); break;
125 case IMAGE_REL_AMD64_REL32_1
: add32(off
, s
- p
- 5); break;
126 case IMAGE_REL_AMD64_REL32_2
: add32(off
, s
- p
- 6); break;
127 case IMAGE_REL_AMD64_REL32_3
: add32(off
, s
- p
- 7); break;
128 case IMAGE_REL_AMD64_REL32_4
: add32(off
, s
- p
- 8); break;
129 case IMAGE_REL_AMD64_REL32_5
: add32(off
, s
- p
- 9); break;
130 case IMAGE_REL_AMD64_SECTION
:
131 applySecIdx(off
, os
, file
->ctx
.outputSections
.size());
133 case IMAGE_REL_AMD64_SECREL
: applySecRel(this, off
, os
, s
); break;
135 error("unsupported relocation type 0x" + Twine::utohexstr(type
) + " in " +
140 void SectionChunk::applyRelX86(uint8_t *off
, uint16_t type
, OutputSection
*os
,
141 uint64_t s
, uint64_t p
,
142 uint64_t imageBase
) const {
144 case IMAGE_REL_I386_ABSOLUTE
: break;
145 case IMAGE_REL_I386_DIR32
:
146 add32(off
, s
+ imageBase
);
148 case IMAGE_REL_I386_DIR32NB
: add32(off
, s
); break;
149 case IMAGE_REL_I386_REL32
: add32(off
, s
- p
- 4); break;
150 case IMAGE_REL_I386_SECTION
:
151 applySecIdx(off
, os
, file
->ctx
.outputSections
.size());
153 case IMAGE_REL_I386_SECREL
: applySecRel(this, off
, os
, s
); break;
155 error("unsupported relocation type 0x" + Twine::utohexstr(type
) + " in " +
160 static void applyMOV(uint8_t *off
, uint16_t v
) {
161 write16le(off
, (read16le(off
) & 0xfbf0) | ((v
& 0x800) >> 1) | ((v
>> 12) & 0xf));
162 write16le(off
+ 2, (read16le(off
+ 2) & 0x8f00) | ((v
& 0x700) << 4) | (v
& 0xff));
165 static uint16_t readMOV(uint8_t *off
, bool movt
) {
166 uint16_t op1
= read16le(off
);
167 if ((op1
& 0xfbf0) != (movt
? 0xf2c0 : 0xf240))
168 error("unexpected instruction in " + Twine(movt
? "MOVT" : "MOVW") +
169 " instruction in MOV32T relocation");
170 uint16_t op2
= read16le(off
+ 2);
171 if ((op2
& 0x8000) != 0)
172 error("unexpected instruction in " + Twine(movt
? "MOVT" : "MOVW") +
173 " instruction in MOV32T relocation");
174 return (op2
& 0x00ff) | ((op2
>> 4) & 0x0700) | ((op1
<< 1) & 0x0800) |
175 ((op1
& 0x000f) << 12);
178 void applyMOV32T(uint8_t *off
, uint32_t v
) {
179 uint16_t immW
= readMOV(off
, false); // read MOVW operand
180 uint16_t immT
= readMOV(off
+ 4, true); // read MOVT operand
181 uint32_t imm
= immW
| (immT
<< 16);
182 v
+= imm
; // add the immediate offset
183 applyMOV(off
, v
); // set MOVW operand
184 applyMOV(off
+ 4, v
>> 16); // set MOVT operand
187 static void applyBranch20T(uint8_t *off
, int32_t v
) {
189 error("relocation out of range");
190 uint32_t s
= v
< 0 ? 1 : 0;
191 uint32_t j1
= (v
>> 19) & 1;
192 uint32_t j2
= (v
>> 18) & 1;
193 or16(off
, (s
<< 10) | ((v
>> 12) & 0x3f));
194 or16(off
+ 2, (j1
<< 13) | (j2
<< 11) | ((v
>> 1) & 0x7ff));
197 void applyBranch24T(uint8_t *off
, int32_t v
) {
199 error("relocation out of range");
200 uint32_t s
= v
< 0 ? 1 : 0;
201 uint32_t j1
= ((~v
>> 23) & 1) ^ s
;
202 uint32_t j2
= ((~v
>> 22) & 1) ^ s
;
203 or16(off
, (s
<< 10) | ((v
>> 12) & 0x3ff));
204 // Clear out the J1 and J2 bits which may be set.
205 write16le(off
+ 2, (read16le(off
+ 2) & 0xd000) | (j1
<< 13) | (j2
<< 11) | ((v
>> 1) & 0x7ff));
208 void SectionChunk::applyRelARM(uint8_t *off
, uint16_t type
, OutputSection
*os
,
209 uint64_t s
, uint64_t p
,
210 uint64_t imageBase
) const {
211 // Pointer to thumb code must have the LSB set.
213 if (os
&& (os
->header
.Characteristics
& IMAGE_SCN_MEM_EXECUTE
))
216 case IMAGE_REL_ARM_ADDR32
:
217 add32(off
, sx
+ imageBase
);
219 case IMAGE_REL_ARM_ADDR32NB
: add32(off
, sx
); break;
220 case IMAGE_REL_ARM_MOV32T
:
221 applyMOV32T(off
, sx
+ imageBase
);
223 case IMAGE_REL_ARM_BRANCH20T
: applyBranch20T(off
, sx
- p
- 4); break;
224 case IMAGE_REL_ARM_BRANCH24T
: applyBranch24T(off
, sx
- p
- 4); break;
225 case IMAGE_REL_ARM_BLX23T
: applyBranch24T(off
, sx
- p
- 4); break;
226 case IMAGE_REL_ARM_SECTION
:
227 applySecIdx(off
, os
, file
->ctx
.outputSections
.size());
229 case IMAGE_REL_ARM_SECREL
: applySecRel(this, off
, os
, s
); break;
230 case IMAGE_REL_ARM_REL32
: add32(off
, sx
- p
- 4); break;
232 error("unsupported relocation type 0x" + Twine::utohexstr(type
) + " in " +
237 // Interpret the existing immediate value as a byte offset to the
238 // target symbol, then update the instruction with the immediate as
239 // the page offset from the current instruction to the target.
240 void applyArm64Addr(uint8_t *off
, uint64_t s
, uint64_t p
, int shift
) {
241 uint32_t orig
= read32le(off
);
243 SignExtend64
<21>(((orig
>> 29) & 0x3) | ((orig
>> 3) & 0x1FFFFC));
245 imm
= (s
>> shift
) - (p
>> shift
);
246 uint32_t immLo
= (imm
& 0x3) << 29;
247 uint32_t immHi
= (imm
& 0x1FFFFC) << 3;
248 uint64_t mask
= (0x3 << 29) | (0x1FFFFC << 3);
249 write32le(off
, (orig
& ~mask
) | immLo
| immHi
);
252 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
253 // Optionally limit the range of the written immediate by one or more bits
255 void applyArm64Imm(uint8_t *off
, uint64_t imm
, uint32_t rangeLimit
) {
256 uint32_t orig
= read32le(off
);
257 imm
+= (orig
>> 10) & 0xFFF;
258 orig
&= ~(0xFFF << 10);
259 write32le(off
, orig
| ((imm
& (0xFFF >> rangeLimit
)) << 10));
262 // Add the 12 bit page offset to the existing immediate.
263 // Ldr/str instructions store the opcode immediate scaled
264 // by the load/store size (giving a larger range for larger
265 // loads/stores). The immediate is always (both before and after
266 // fixing up the relocation) stored scaled similarly.
267 // Even if larger loads/stores have a larger range, limit the
268 // effective offset to 12 bit, since it is intended to be a
270 static void applyArm64Ldr(uint8_t *off
, uint64_t imm
) {
271 uint32_t orig
= read32le(off
);
272 uint32_t size
= orig
>> 30;
273 // 0x04000000 indicates SIMD/FP registers
274 // 0x00800000 indicates 128 bit
275 if ((orig
& 0x4800000) == 0x4800000)
277 if ((imm
& ((1 << size
) - 1)) != 0)
278 error("misaligned ldr/str offset");
279 applyArm64Imm(off
, imm
>> size
, size
);
282 static void applySecRelLow12A(const SectionChunk
*sec
, uint8_t *off
,
283 OutputSection
*os
, uint64_t s
) {
284 if (checkSecRel(sec
, os
))
285 applyArm64Imm(off
, (s
- os
->getRVA()) & 0xfff, 0);
288 static void applySecRelHigh12A(const SectionChunk
*sec
, uint8_t *off
,
289 OutputSection
*os
, uint64_t s
) {
290 if (!checkSecRel(sec
, os
))
292 uint64_t secRel
= (s
- os
->getRVA()) >> 12;
293 if (0xfff < secRel
) {
294 error("overflow in SECREL_HIGH12A relocation in section: " +
295 sec
->getSectionName());
298 applyArm64Imm(off
, secRel
& 0xfff, 0);
301 static void applySecRelLdr(const SectionChunk
*sec
, uint8_t *off
,
302 OutputSection
*os
, uint64_t s
) {
303 if (checkSecRel(sec
, os
))
304 applyArm64Ldr(off
, (s
- os
->getRVA()) & 0xfff);
307 void applyArm64Branch26(uint8_t *off
, int64_t v
) {
309 error("relocation out of range");
310 or32(off
, (v
& 0x0FFFFFFC) >> 2);
313 static void applyArm64Branch19(uint8_t *off
, int64_t v
) {
315 error("relocation out of range");
316 or32(off
, (v
& 0x001FFFFC) << 3);
319 static void applyArm64Branch14(uint8_t *off
, int64_t v
) {
321 error("relocation out of range");
322 or32(off
, (v
& 0x0000FFFC) << 3);
325 void SectionChunk::applyRelARM64(uint8_t *off
, uint16_t type
, OutputSection
*os
,
326 uint64_t s
, uint64_t p
,
327 uint64_t imageBase
) const {
329 case IMAGE_REL_ARM64_PAGEBASE_REL21
: applyArm64Addr(off
, s
, p
, 12); break;
330 case IMAGE_REL_ARM64_REL21
: applyArm64Addr(off
, s
, p
, 0); break;
331 case IMAGE_REL_ARM64_PAGEOFFSET_12A
: applyArm64Imm(off
, s
& 0xfff, 0); break;
332 case IMAGE_REL_ARM64_PAGEOFFSET_12L
: applyArm64Ldr(off
, s
& 0xfff); break;
333 case IMAGE_REL_ARM64_BRANCH26
: applyArm64Branch26(off
, s
- p
); break;
334 case IMAGE_REL_ARM64_BRANCH19
: applyArm64Branch19(off
, s
- p
); break;
335 case IMAGE_REL_ARM64_BRANCH14
: applyArm64Branch14(off
, s
- p
); break;
336 case IMAGE_REL_ARM64_ADDR32
:
337 add32(off
, s
+ imageBase
);
339 case IMAGE_REL_ARM64_ADDR32NB
: add32(off
, s
); break;
340 case IMAGE_REL_ARM64_ADDR64
:
341 add64(off
, s
+ imageBase
);
343 case IMAGE_REL_ARM64_SECREL
: applySecRel(this, off
, os
, s
); break;
344 case IMAGE_REL_ARM64_SECREL_LOW12A
: applySecRelLow12A(this, off
, os
, s
); break;
345 case IMAGE_REL_ARM64_SECREL_HIGH12A
: applySecRelHigh12A(this, off
, os
, s
); break;
346 case IMAGE_REL_ARM64_SECREL_LOW12L
: applySecRelLdr(this, off
, os
, s
); break;
347 case IMAGE_REL_ARM64_SECTION
:
348 applySecIdx(off
, os
, file
->ctx
.outputSections
.size());
350 case IMAGE_REL_ARM64_REL32
: add32(off
, s
- p
- 4); break;
352 error("unsupported relocation type 0x" + Twine::utohexstr(type
) + " in " +
357 static void maybeReportRelocationToDiscarded(const SectionChunk
*fromChunk
,
359 const coff_relocation
&rel
,
361 // Don't report these errors when the relocation comes from a debug info
362 // section or in mingw mode. MinGW mode object files (built by GCC) can
363 // have leftover sections with relocations against discarded comdat
364 // sections. Such sections are left as is, with relocations untouched.
365 if (fromChunk
->isCodeView() || fromChunk
->isDWARF() || isMinGW
)
368 // Get the name of the symbol. If it's null, it was discarded early, so we
369 // have to go back to the object file.
370 ObjFile
*file
= fromChunk
->file
;
373 name
= sym
->getName();
375 COFFSymbolRef coffSym
=
376 check(file
->getCOFFObj()->getSymbol(rel
.SymbolTableIndex
));
377 name
= check(file
->getCOFFObj()->getSymbolName(coffSym
));
380 std::vector
<std::string
> symbolLocations
=
381 getSymbolLocations(file
, rel
.SymbolTableIndex
);
384 llvm::raw_string_ostream
os(out
);
385 os
<< "relocation against symbol in discarded section: " + name
;
386 for (const std::string
&s
: symbolLocations
)
391 void SectionChunk::writeTo(uint8_t *buf
) const {
394 // Copy section contents from source object file to output file.
395 ArrayRef
<uint8_t> a
= getContents();
397 memcpy(buf
, a
.data(), a
.size());
399 // Apply relocations.
400 size_t inputSize
= getSize();
401 for (const coff_relocation
&rel
: getRelocs()) {
402 // Check for an invalid relocation offset. This check isn't perfect, because
403 // we don't have the relocation size, which is only known after checking the
404 // machine and relocation type. As a result, a relocation may overwrite the
405 // beginning of the following input section.
406 if (rel
.VirtualAddress
>= inputSize
) {
407 error("relocation points beyond the end of its parent section");
411 applyRelocation(buf
+ rel
.VirtualAddress
, rel
);
415 void SectionChunk::applyRelocation(uint8_t *off
,
416 const coff_relocation
&rel
) const {
417 auto *sym
= dyn_cast_or_null
<Defined
>(file
->getSymbol(rel
.SymbolTableIndex
));
419 // Get the output section of the symbol for this relocation. The output
420 // section is needed to compute SECREL and SECTION relocations used in debug
422 Chunk
*c
= sym
? sym
->getChunk() : nullptr;
423 OutputSection
*os
= c
? file
->ctx
.getOutputSection(c
) : nullptr;
425 // Skip the relocation if it refers to a discarded section, and diagnose it
426 // as an error if appropriate. If a symbol was discarded early, it may be
427 // null. If it was discarded late, the output section will be null, unless
428 // it was an absolute or synthetic symbol.
430 (!os
&& !isa
<DefinedAbsolute
>(sym
) && !isa
<DefinedSynthetic
>(sym
))) {
431 maybeReportRelocationToDiscarded(this, sym
, rel
, file
->ctx
.config
.mingw
);
435 uint64_t s
= sym
->getRVA();
437 // Compute the RVA of the relocation for relative relocations.
438 uint64_t p
= rva
+ rel
.VirtualAddress
;
439 uint64_t imageBase
= file
->ctx
.config
.imageBase
;
440 switch (getMachine()) {
442 applyRelX64(off
, rel
.Type
, os
, s
, p
, imageBase
);
445 applyRelX86(off
, rel
.Type
, os
, s
, p
, imageBase
);
448 applyRelARM(off
, rel
.Type
, os
, s
, p
, imageBase
);
453 applyRelARM64(off
, rel
.Type
, os
, s
, p
, imageBase
);
456 llvm_unreachable("unknown machine type");
460 // Defend against unsorted relocations. This may be overly conservative.
461 void SectionChunk::sortRelocations() {
462 auto cmpByVa
= [](const coff_relocation
&l
, const coff_relocation
&r
) {
463 return l
.VirtualAddress
< r
.VirtualAddress
;
465 if (llvm::is_sorted(getRelocs(), cmpByVa
))
467 warn("some relocations in " + file
->getName() + " are not sorted");
468 MutableArrayRef
<coff_relocation
> newRelocs(
469 bAlloc().Allocate
<coff_relocation
>(relocsSize
), relocsSize
);
470 memcpy(newRelocs
.data(), relocsData
, relocsSize
* sizeof(coff_relocation
));
471 llvm::sort(newRelocs
, cmpByVa
);
472 setRelocs(newRelocs
);
475 // Similar to writeTo, but suitable for relocating a subsection of the overall
477 void SectionChunk::writeAndRelocateSubsection(ArrayRef
<uint8_t> sec
,
478 ArrayRef
<uint8_t> subsec
,
479 uint32_t &nextRelocIndex
,
480 uint8_t *buf
) const {
481 assert(!subsec
.empty() && !sec
.empty());
482 assert(sec
.begin() <= subsec
.begin() && subsec
.end() <= sec
.end() &&
483 "subsection is not part of this section");
484 size_t vaBegin
= std::distance(sec
.begin(), subsec
.begin());
485 size_t vaEnd
= std::distance(sec
.begin(), subsec
.end());
486 memcpy(buf
, subsec
.data(), subsec
.size());
487 for (; nextRelocIndex
< relocsSize
; ++nextRelocIndex
) {
488 const coff_relocation
&rel
= relocsData
[nextRelocIndex
];
489 // Only apply relocations that apply to this subsection. These checks
490 // assume that all subsections completely contain their relocations.
491 // Relocations must not straddle the beginning or end of a subsection.
492 if (rel
.VirtualAddress
< vaBegin
)
494 if (rel
.VirtualAddress
+ 1 >= vaEnd
)
496 applyRelocation(&buf
[rel
.VirtualAddress
- vaBegin
], rel
);
500 void SectionChunk::addAssociative(SectionChunk
*child
) {
501 // Insert the child section into the list of associated children. Keep the
502 // list ordered by section name so that ICF does not depend on section order.
503 assert(child
->assocChildren
== nullptr &&
504 "associated sections cannot have their own associated children");
505 SectionChunk
*prev
= this;
506 SectionChunk
*next
= assocChildren
;
507 for (; next
!= nullptr; prev
= next
, next
= next
->assocChildren
) {
508 if (next
->getSectionName() <= child
->getSectionName())
512 // Insert child between prev and next.
513 assert(prev
->assocChildren
== next
);
514 prev
->assocChildren
= child
;
515 child
->assocChildren
= next
;
518 static uint8_t getBaserelType(const coff_relocation
&rel
,
519 llvm::COFF::MachineTypes machine
) {
522 if (rel
.Type
== IMAGE_REL_AMD64_ADDR64
)
523 return IMAGE_REL_BASED_DIR64
;
524 if (rel
.Type
== IMAGE_REL_AMD64_ADDR32
)
525 return IMAGE_REL_BASED_HIGHLOW
;
526 return IMAGE_REL_BASED_ABSOLUTE
;
528 if (rel
.Type
== IMAGE_REL_I386_DIR32
)
529 return IMAGE_REL_BASED_HIGHLOW
;
530 return IMAGE_REL_BASED_ABSOLUTE
;
532 if (rel
.Type
== IMAGE_REL_ARM_ADDR32
)
533 return IMAGE_REL_BASED_HIGHLOW
;
534 if (rel
.Type
== IMAGE_REL_ARM_MOV32T
)
535 return IMAGE_REL_BASED_ARM_MOV32T
;
536 return IMAGE_REL_BASED_ABSOLUTE
;
540 if (rel
.Type
== IMAGE_REL_ARM64_ADDR64
)
541 return IMAGE_REL_BASED_DIR64
;
542 return IMAGE_REL_BASED_ABSOLUTE
;
544 llvm_unreachable("unknown machine type");
549 // Collect all locations that contain absolute addresses, which need to be
550 // fixed by the loader if load-time relocation is needed.
551 // Only called when base relocation is enabled.
552 void SectionChunk::getBaserels(std::vector
<Baserel
> *res
) {
553 for (const coff_relocation
&rel
: getRelocs()) {
554 uint8_t ty
= getBaserelType(rel
, getMachine());
555 if (ty
== IMAGE_REL_BASED_ABSOLUTE
)
557 Symbol
*target
= file
->getSymbol(rel
.SymbolTableIndex
);
558 if (!target
|| isa
<DefinedAbsolute
>(target
))
560 res
->emplace_back(rva
+ rel
.VirtualAddress
, ty
);
565 // Check whether a static relocation of type Type can be deferred and
566 // handled at runtime as a pseudo relocation (for references to a module
567 // local variable, which turned out to actually need to be imported from
568 // another DLL) This returns the size the relocation is supposed to update,
569 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo
571 static int getRuntimePseudoRelocSize(uint16_t type
,
572 llvm::COFF::MachineTypes machine
) {
573 // Relocations that either contain an absolute address, or a plain
574 // relative offset, since the runtime pseudo reloc implementation
575 // adds 8/16/32/64 bit values to a memory address.
577 // Given a pseudo relocation entry,
583 // } runtime_pseudo_reloc_item_v2;
585 // the runtime relocation performs this adjustment:
586 // *(base + .target) += *(base + .sym) - (base + .sym)
588 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64,
589 // IMAGE_REL_I386_DIR32, where the memory location initially contains
590 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32),
591 // where the memory location originally contains the relative offset to the
594 // This requires the target address to be writable, either directly out of
595 // the image, or temporarily changed at runtime with VirtualProtect.
596 // Since this only operates on direct address values, it doesn't work for
597 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations.
601 case IMAGE_REL_AMD64_ADDR64
:
603 case IMAGE_REL_AMD64_ADDR32
:
604 case IMAGE_REL_AMD64_REL32
:
605 case IMAGE_REL_AMD64_REL32_1
:
606 case IMAGE_REL_AMD64_REL32_2
:
607 case IMAGE_REL_AMD64_REL32_3
:
608 case IMAGE_REL_AMD64_REL32_4
:
609 case IMAGE_REL_AMD64_REL32_5
:
616 case IMAGE_REL_I386_DIR32
:
617 case IMAGE_REL_I386_REL32
:
624 case IMAGE_REL_ARM_ADDR32
:
631 case IMAGE_REL_ARM64_ADDR64
:
633 case IMAGE_REL_ARM64_ADDR32
:
639 llvm_unreachable("unknown machine type");
644 // Append information to the provided vector about all relocations that
645 // need to be handled at runtime as runtime pseudo relocations (references
646 // to a module local variable, which turned out to actually need to be
647 // imported from another DLL).
648 void SectionChunk::getRuntimePseudoRelocs(
649 std::vector
<RuntimePseudoReloc
> &res
) {
650 for (const coff_relocation
&rel
: getRelocs()) {
652 dyn_cast_or_null
<Defined
>(file
->getSymbol(rel
.SymbolTableIndex
));
653 if (!target
|| !target
->isRuntimePseudoReloc
)
656 getRuntimePseudoRelocSize(rel
.Type
, file
->ctx
.config
.machine
);
657 if (sizeInBits
== 0) {
658 error("unable to automatically import from " + target
->getName() +
659 " with relocation type " +
660 file
->getCOFFObj()->getRelocationTypeName(rel
.Type
) + " in " +
664 int addressSizeInBits
= file
->ctx
.config
.is64() ? 64 : 32;
665 if (sizeInBits
< addressSizeInBits
) {
666 warn("runtime pseudo relocation in " + toString(file
) + " against " +
667 "symbol " + target
->getName() + " is too narrow (only " +
668 Twine(sizeInBits
) + " bits wide); this can fail at runtime " +
669 "depending on memory layout");
671 // sizeInBits is used to initialize the Flags field; currently no
672 // other flags are defined.
673 res
.emplace_back(target
, this, rel
.VirtualAddress
, sizeInBits
);
677 bool SectionChunk::isCOMDAT() const {
678 return header
->Characteristics
& IMAGE_SCN_LNK_COMDAT
;
681 void SectionChunk::printDiscardedMessage() const {
682 // Removed by dead-stripping. If it's removed by ICF, ICF already
683 // printed out the name, so don't repeat that here.
684 if (sym
&& this == repl
)
685 log("Discarded " + sym
->getName());
688 StringRef
SectionChunk::getDebugName() const {
690 return sym
->getName();
694 ArrayRef
<uint8_t> SectionChunk::getContents() const {
696 cantFail(file
->getCOFFObj()->getSectionContents(header
, a
));
700 ArrayRef
<uint8_t> SectionChunk::consumeDebugMagic() {
701 assert(isCodeView());
702 return consumeDebugMagic(getContents(), getSectionName());
705 ArrayRef
<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef
<uint8_t> data
,
706 StringRef sectionName
) {
710 // First 4 bytes are section magic.
712 fatal("the section is too short: " + sectionName
);
714 if (!sectionName
.starts_with(".debug$"))
715 fatal("invalid section: " + sectionName
);
717 uint32_t magic
= support::endian::read32le(data
.data());
718 uint32_t expectedMagic
= sectionName
== ".debug$H"
719 ? DEBUG_HASHES_SECTION_MAGIC
720 : DEBUG_SECTION_MAGIC
;
721 if (magic
!= expectedMagic
) {
722 warn("ignoring section " + sectionName
+ " with unrecognized magic 0x" +
726 return data
.slice(4);
729 SectionChunk
*SectionChunk::findByName(ArrayRef
<SectionChunk
*> sections
,
731 for (SectionChunk
*c
: sections
)
732 if (c
->getSectionName() == name
)
737 void SectionChunk::replace(SectionChunk
*other
) {
738 p2Align
= std::max(p2Align
, other
->p2Align
);
743 uint32_t SectionChunk::getSectionNumber() const {
745 r
.p
= reinterpret_cast<uintptr_t>(header
);
746 SectionRef
s(r
, file
->getCOFFObj());
747 return s
.getIndex() + 1;
750 CommonChunk::CommonChunk(const COFFSymbolRef s
) : sym(s
) {
751 // The value of a common symbol is its size. Align all common symbols smaller
752 // than 32 bytes naturally, i.e. round the size up to the next power of two.
753 // This is what MSVC link.exe does.
754 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym
.getValue()))));
758 uint32_t CommonChunk::getOutputCharacteristics() const {
759 return IMAGE_SCN_CNT_UNINITIALIZED_DATA
| IMAGE_SCN_MEM_READ
|
763 void StringChunk::writeTo(uint8_t *buf
) const {
764 memcpy(buf
, str
.data(), str
.size());
765 buf
[str
.size()] = '\0';
768 ImportThunkChunkX64::ImportThunkChunkX64(COFFLinkerContext
&ctx
, Defined
*s
)
769 : ImportThunkChunk(ctx
, s
) {
770 // Intel Optimization Manual says that all branch targets
771 // should be 16-byte aligned. MSVC linker does this too.
775 void ImportThunkChunkX64::writeTo(uint8_t *buf
) const {
776 memcpy(buf
, importThunkX86
, sizeof(importThunkX86
));
777 // The first two bytes is a JMP instruction. Fill its operand.
778 write32le(buf
+ 2, impSymbol
->getRVA() - rva
- getSize());
781 void ImportThunkChunkX86::getBaserels(std::vector
<Baserel
> *res
) {
782 res
->emplace_back(getRVA() + 2, ctx
.config
.machine
);
785 void ImportThunkChunkX86::writeTo(uint8_t *buf
) const {
786 memcpy(buf
, importThunkX86
, sizeof(importThunkX86
));
787 // The first two bytes is a JMP instruction. Fill its operand.
788 write32le(buf
+ 2, impSymbol
->getRVA() + ctx
.config
.imageBase
);
791 void ImportThunkChunkARM::getBaserels(std::vector
<Baserel
> *res
) {
792 res
->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T
);
795 void ImportThunkChunkARM::writeTo(uint8_t *buf
) const {
796 memcpy(buf
, importThunkARM
, sizeof(importThunkARM
));
797 // Fix mov.w and mov.t operands.
798 applyMOV32T(buf
, impSymbol
->getRVA() + ctx
.config
.imageBase
);
801 void ImportThunkChunkARM64::writeTo(uint8_t *buf
) const {
802 int64_t off
= impSymbol
->getRVA() & 0xfff;
803 memcpy(buf
, importThunkARM64
, sizeof(importThunkARM64
));
804 applyArm64Addr(buf
, impSymbol
->getRVA(), rva
, 12);
805 applyArm64Ldr(buf
+ 4, off
);
808 // A Thumb2, PIC, non-interworking range extension thunk.
809 const uint8_t armThunk
[] = {
810 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4)
811 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4)
812 0xe7, 0x44, // L1: add pc, ip
815 size_t RangeExtensionThunkARM::getSize() const {
816 assert(ctx
.config
.machine
== ARMNT
);
818 return sizeof(armThunk
);
821 void RangeExtensionThunkARM::writeTo(uint8_t *buf
) const {
822 assert(ctx
.config
.machine
== ARMNT
);
823 uint64_t offset
= target
->getRVA() - rva
- 12;
824 memcpy(buf
, armThunk
, sizeof(armThunk
));
825 applyMOV32T(buf
, uint32_t(offset
));
828 // A position independent ARM64 adrp+add thunk, with a maximum range of
829 // +/- 4 GB, which is enough for any PE-COFF.
830 const uint8_t arm64Thunk
[] = {
831 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest
832 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest
833 0x00, 0x02, 0x1f, 0xd6, // br x16
836 size_t RangeExtensionThunkARM64::getSize() const {
837 assert(ctx
.config
.machine
== ARM64
);
839 return sizeof(arm64Thunk
);
842 void RangeExtensionThunkARM64::writeTo(uint8_t *buf
) const {
843 assert(ctx
.config
.machine
== ARM64
);
844 memcpy(buf
, arm64Thunk
, sizeof(arm64Thunk
));
845 applyArm64Addr(buf
+ 0, target
->getRVA(), rva
, 12);
846 applyArm64Imm(buf
+ 4, target
->getRVA() & 0xfff, 0);
849 LocalImportChunk::LocalImportChunk(COFFLinkerContext
&c
, Defined
*s
)
851 setAlignment(ctx
.config
.wordsize
);
854 void LocalImportChunk::getBaserels(std::vector
<Baserel
> *res
) {
855 res
->emplace_back(getRVA(), ctx
.config
.machine
);
858 size_t LocalImportChunk::getSize() const { return ctx
.config
.wordsize
; }
860 void LocalImportChunk::writeTo(uint8_t *buf
) const {
861 if (ctx
.config
.is64()) {
862 write64le(buf
, sym
->getRVA() + ctx
.config
.imageBase
);
864 write32le(buf
, sym
->getRVA() + ctx
.config
.imageBase
);
868 void RVATableChunk::writeTo(uint8_t *buf
) const {
869 ulittle32_t
*begin
= reinterpret_cast<ulittle32_t
*>(buf
);
871 for (const ChunkAndOffset
&co
: syms
)
872 begin
[cnt
++] = co
.inputChunk
->getRVA() + co
.offset
;
873 llvm::sort(begin
, begin
+ cnt
);
874 assert(std::unique(begin
, begin
+ cnt
) == begin
+ cnt
&&
875 "RVA tables should be de-duplicated");
878 void RVAFlagTableChunk::writeTo(uint8_t *buf
) const {
884 MutableArrayRef(reinterpret_cast<RVAFlag
*>(buf
), syms
.size());
885 for (auto t
: zip(syms
, flags
)) {
886 const auto &sym
= std::get
<0>(t
);
887 auto &flag
= std::get
<1>(t
);
888 flag
.rva
= sym
.inputChunk
->getRVA() + sym
.offset
;
892 [](const RVAFlag
&a
, const RVAFlag
&b
) { return a
.rva
< b
.rva
; });
893 assert(llvm::unique(flags
, [](const RVAFlag
&a
,
894 const RVAFlag
&b
) { return a
.rva
== b
.rva
; }) ==
896 "RVA tables should be de-duplicated");
899 // MinGW specific, for the "automatic import of variables from DLLs" feature.
900 size_t PseudoRelocTableChunk::getSize() const {
903 return 12 + 12 * relocs
.size();
907 void PseudoRelocTableChunk::writeTo(uint8_t *buf
) const {
911 ulittle32_t
*table
= reinterpret_cast<ulittle32_t
*>(buf
);
912 // This is the list header, to signal the runtime pseudo relocation v2
919 for (const RuntimePseudoReloc
&rpr
: relocs
) {
920 table
[idx
+ 0] = rpr
.sym
->getRVA();
921 table
[idx
+ 1] = rpr
.target
->getRVA() + rpr
.targetOffset
;
922 table
[idx
+ 2] = rpr
.flags
;
927 // Windows-specific. This class represents a block in .reloc section.
928 // The format is described here.
930 // On Windows, each DLL is linked against a fixed base address and
931 // usually loaded to that address. However, if there's already another
932 // DLL that overlaps, the loader has to relocate it. To do that, DLLs
933 // contain .reloc sections which contain offsets that need to be fixed
934 // up at runtime. If the loader finds that a DLL cannot be loaded to its
935 // desired base address, it loads it to somewhere else, and add <actual
936 // base address> - <desired base address> to each offset that is
937 // specified by the .reloc section. In ELF terms, .reloc sections
938 // contain relative relocations in REL format (as opposed to RELA.)
940 // This already significantly reduces the size of relocations compared
941 // to ELF .rel.dyn, but Windows does more to reduce it (probably because
942 // it was invented for PCs in the late '80s or early '90s.) Offsets in
943 // .reloc are grouped by page where the page size is 12 bits, and
944 // offsets sharing the same page address are stored consecutively to
945 // represent them with less space. This is very similar to the page
946 // table which is grouped by (multiple stages of) pages.
948 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00,
949 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4
950 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they
951 // are represented like this:
953 // 0x00000 -- page address (4 bytes)
954 // 16 -- size of this block (4 bytes)
955 // 0xA030 -- entries (2 bytes each)
959 // 0x20000 -- page address (4 bytes)
960 // 12 -- size of this block (4 bytes)
961 // 0xA004 -- entries (2 bytes each)
964 // Usually we have a lot of relocations for each page, so the number of
965 // bytes for one .reloc entry is close to 2 bytes on average.
966 BaserelChunk::BaserelChunk(uint32_t page
, Baserel
*begin
, Baserel
*end
) {
967 // Block header consists of 4 byte page RVA and 4 byte block size.
968 // Each entry is 2 byte. Last entry may be padding.
969 data
.resize(alignTo((end
- begin
) * 2 + 8, 4));
970 uint8_t *p
= data
.data();
972 write32le(p
+ 4, data
.size());
974 for (Baserel
*i
= begin
; i
!= end
; ++i
) {
975 write16le(p
, (i
->type
<< 12) | (i
->rva
- page
));
980 void BaserelChunk::writeTo(uint8_t *buf
) const {
981 memcpy(buf
, data
.data(), data
.size());
984 uint8_t Baserel::getDefaultType(llvm::COFF::MachineTypes machine
) {
988 return IMAGE_REL_BASED_DIR64
;
991 return IMAGE_REL_BASED_HIGHLOW
;
993 llvm_unreachable("unknown machine type");
997 MergeChunk::MergeChunk(uint32_t alignment
)
998 : builder(StringTableBuilder::RAW
, llvm::Align(alignment
)) {
999 setAlignment(alignment
);
1002 void MergeChunk::addSection(COFFLinkerContext
&ctx
, SectionChunk
*c
) {
1003 assert(isPowerOf2_32(c
->getAlignment()));
1004 uint8_t p2Align
= llvm::Log2_32(c
->getAlignment());
1005 assert(p2Align
< std::size(ctx
.mergeChunkInstances
));
1006 auto *&mc
= ctx
.mergeChunkInstances
[p2Align
];
1008 mc
= make
<MergeChunk
>(c
->getAlignment());
1009 mc
->sections
.push_back(c
);
1012 void MergeChunk::finalizeContents() {
1013 assert(!finalized
&& "should only finalize once");
1014 for (SectionChunk
*c
: sections
)
1016 builder
.add(toStringRef(c
->getContents()));
1021 void MergeChunk::assignSubsectionRVAs() {
1022 for (SectionChunk
*c
: sections
) {
1025 size_t off
= builder
.getOffset(toStringRef(c
->getContents()));
1026 c
->setRVA(rva
+ off
);
1030 uint32_t MergeChunk::getOutputCharacteristics() const {
1031 return IMAGE_SCN_MEM_READ
| IMAGE_SCN_CNT_INITIALIZED_DATA
;
1034 size_t MergeChunk::getSize() const {
1035 return builder
.getSize();
1038 void MergeChunk::writeTo(uint8_t *buf
) const {
1043 size_t AbsolutePointerChunk::getSize() const { return ctx
.config
.wordsize
; }
1045 void AbsolutePointerChunk::writeTo(uint8_t *buf
) const {
1046 if (ctx
.config
.is64()) {
1047 write64le(buf
, value
);
1049 write32le(buf
, value
);
1053 } // namespace lld::coff