1 //===- Writer.cpp ---------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 #include "COFFLinkerContext.h"
11 #include "CallGraphSort.h"
14 #include "InputFiles.h"
15 #include "LLDMapFile.h"
18 #include "SymbolTable.h"
20 #include "lld/Common/ErrorHandler.h"
21 #include "lld/Common/Memory.h"
22 #include "lld/Common/Timer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/Support/BinaryStreamReader.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/FileOutputBuffer.h"
31 #include "llvm/Support/Parallel.h"
32 #include "llvm/Support/Path.h"
33 #include "llvm/Support/RandomNumberGenerator.h"
34 #include "llvm/Support/TimeProfiler.h"
35 #include "llvm/Support/xxhash.h"
43 using namespace llvm::COFF
;
44 using namespace llvm::object
;
45 using namespace llvm::support
;
46 using namespace llvm::support::endian
;
48 using namespace lld::coff
;
50 /* To re-generate DOSProgram:
51 $ cat > /tmp/DOSProgram.asm
56 ; Point ds:dx at the $-terminated string.
58 ; Int 21/AH=09h: Write string to standard output.
61 ; Int 21/AH=4Ch: Exit with return code (in AL).
65 db 'This program cannot be run in DOS mode.$'
67 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
68 $ xxd -i /tmp/DOSProgram.bin
70 static unsigned char dosProgram
[] = {
71 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
72 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
73 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
74 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
75 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
77 static_assert(sizeof(dosProgram
) % 8 == 0,
78 "DOSProgram size must be multiple of 8");
80 static const int dosStubSize
= sizeof(dos_header
) + sizeof(dosProgram
);
81 static_assert(dosStubSize
% 8 == 0, "DOSStub size must be multiple of 8");
83 static const int numberOfDataDirectory
= 16;
87 class DebugDirectoryChunk
: public NonSectionChunk
{
89 DebugDirectoryChunk(const COFFLinkerContext
&c
,
90 const std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> &r
,
92 : records(r
), writeRepro(writeRepro
), ctx(c
) {}
94 size_t getSize() const override
{
95 return (records
.size() + int(writeRepro
)) * sizeof(debug_directory
);
98 void writeTo(uint8_t *b
) const override
{
99 auto *d
= reinterpret_cast<debug_directory
*>(b
);
101 for (const std::pair
<COFF::DebugType
, Chunk
*>& record
: records
) {
102 Chunk
*c
= record
.second
;
103 const OutputSection
*os
= ctx
.getOutputSection(c
);
104 uint64_t offs
= os
->getFileOff() + (c
->getRVA() - os
->getRVA());
105 fillEntry(d
, record
.first
, c
->getSize(), c
->getRVA(), offs
);
110 // FIXME: The COFF spec allows either a 0-sized entry to just say
111 // "the timestamp field is really a hash", or a 4-byte size field
112 // followed by that many bytes containing a longer hash (with the
113 // lowest 4 bytes usually being the timestamp in little-endian order).
114 // Consider storing the full 8 bytes computed by xxh3_64bits here.
115 fillEntry(d
, COFF::IMAGE_DEBUG_TYPE_REPRO
, 0, 0, 0);
119 void setTimeDateStamp(uint32_t timeDateStamp
) {
120 for (support::ulittle32_t
*tds
: timeDateStamps
)
121 *tds
= timeDateStamp
;
125 void fillEntry(debug_directory
*d
, COFF::DebugType debugType
, size_t size
,
126 uint64_t rva
, uint64_t offs
) const {
127 d
->Characteristics
= 0;
128 d
->TimeDateStamp
= 0;
132 d
->SizeOfData
= size
;
133 d
->AddressOfRawData
= rva
;
134 d
->PointerToRawData
= offs
;
136 timeDateStamps
.push_back(&d
->TimeDateStamp
);
139 mutable std::vector
<support::ulittle32_t
*> timeDateStamps
;
140 const std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> &records
;
142 const COFFLinkerContext
&ctx
;
145 class CVDebugRecordChunk
: public NonSectionChunk
{
147 CVDebugRecordChunk(const COFFLinkerContext
&c
) : ctx(c
) {}
149 size_t getSize() const override
{
150 return sizeof(codeview::DebugInfo
) + ctx
.config
.pdbAltPath
.size() + 1;
153 void writeTo(uint8_t *b
) const override
{
154 // Save off the DebugInfo entry to backfill the file signature (build id)
155 // in Writer::writeBuildId
156 buildId
= reinterpret_cast<codeview::DebugInfo
*>(b
);
158 // variable sized field (PDB Path)
159 char *p
= reinterpret_cast<char *>(b
+ sizeof(*buildId
));
160 if (!ctx
.config
.pdbAltPath
.empty())
161 memcpy(p
, ctx
.config
.pdbAltPath
.data(), ctx
.config
.pdbAltPath
.size());
162 p
[ctx
.config
.pdbAltPath
.size()] = '\0';
165 mutable codeview::DebugInfo
*buildId
= nullptr;
168 const COFFLinkerContext
&ctx
;
171 class ExtendedDllCharacteristicsChunk
: public NonSectionChunk
{
173 ExtendedDllCharacteristicsChunk(uint32_t c
) : characteristics(c
) {}
175 size_t getSize() const override
{ return 4; }
177 void writeTo(uint8_t *buf
) const override
{ write32le(buf
, characteristics
); }
179 uint32_t characteristics
= 0;
182 // PartialSection represents a group of chunks that contribute to an
183 // OutputSection. Collating a collection of PartialSections of same name and
184 // characteristics constitutes the OutputSection.
185 class PartialSectionKey
{
188 unsigned characteristics
;
190 bool operator<(const PartialSectionKey
&other
) const {
191 int c
= name
.compare(other
.name
);
195 return characteristics
< other
.characteristics
;
200 // The writer writes a SymbolTable result to a file.
203 Writer(COFFLinkerContext
&c
)
204 : buffer(errorHandler().outputBuffer
), delayIdata(c
), edata(c
), ctx(c
) {}
208 void createSections();
209 void createMiscChunks();
210 void createImportTables();
211 void appendImportThunks();
212 void locateImportTables();
213 void createExportTable();
214 void mergeSections();
216 void removeUnusedSections();
217 void assignAddresses();
218 bool isInRange(uint16_t relType
, uint64_t s
, uint64_t p
, int margin
);
219 std::pair
<Defined
*, bool> getThunk(DenseMap
<uint64_t, Defined
*> &lastThunks
,
220 Defined
*target
, uint64_t p
,
221 uint16_t type
, int margin
);
222 bool createThunks(OutputSection
*os
, int margin
);
223 bool verifyRanges(const std::vector
<Chunk
*> chunks
);
224 void finalizeAddresses();
225 void removeEmptySections();
226 void assignOutputSectionIndices();
227 void createSymbolAndStringTable();
228 void openFile(StringRef outputPath
);
229 template <typename PEHeaderTy
> void writeHeader();
230 void createSEHTable();
231 void createRuntimePseudoRelocs();
232 void insertCtorDtorSymbols();
233 void markSymbolsWithRelocations(ObjFile
*file
, SymbolRVASet
&usedSymbols
);
234 void createGuardCFTables();
235 void markSymbolsForRVATable(ObjFile
*file
,
236 ArrayRef
<SectionChunk
*> symIdxChunks
,
237 SymbolRVASet
&tableSymbols
);
238 void getSymbolsFromSections(ObjFile
*file
,
239 ArrayRef
<SectionChunk
*> symIdxChunks
,
240 std::vector
<Symbol
*> &symbols
);
241 void maybeAddRVATable(SymbolRVASet tableSymbols
, StringRef tableSym
,
242 StringRef countSym
, bool hasFlag
=false);
243 void setSectionPermissions();
244 void writeSections();
246 void writePEChecksum();
248 void sortExceptionTable();
249 void sortCRTSectionChunks(std::vector
<Chunk
*> &chunks
);
250 void addSyntheticIdata();
251 void sortBySectionOrder(std::vector
<Chunk
*> &chunks
);
252 void fixPartialSectionChars(StringRef name
, uint32_t chars
);
253 bool fixGnuImportChunks();
254 void fixTlsAlignment();
255 PartialSection
*createPartialSection(StringRef name
, uint32_t outChars
);
256 PartialSection
*findPartialSection(StringRef name
, uint32_t outChars
);
258 std::optional
<coff_symbol16
> createSymbol(Defined
*d
);
259 size_t addEntryToStringTable(StringRef str
);
261 OutputSection
*findSection(StringRef name
);
263 void addBaserelBlocks(std::vector
<Baserel
> &v
);
265 uint32_t getSizeOfInitializedData();
267 void checkLoadConfig();
268 template <typename T
> void checkLoadConfigGuardData(const T
*loadConfig
);
270 std::unique_ptr
<FileOutputBuffer
> &buffer
;
271 std::map
<PartialSectionKey
, PartialSection
*> partialSections
;
272 std::vector
<char> strtab
;
273 std::vector
<llvm::object::coff_symbol16
> outputSymtab
;
275 Chunk
*importTableStart
= nullptr;
276 uint64_t importTableSize
= 0;
277 Chunk
*edataStart
= nullptr;
278 Chunk
*edataEnd
= nullptr;
279 Chunk
*iatStart
= nullptr;
280 uint64_t iatSize
= 0;
281 DelayLoadContents delayIdata
;
283 bool setNoSEHCharacteristic
= false;
284 uint32_t tlsAlignment
= 0;
286 DebugDirectoryChunk
*debugDirectory
= nullptr;
287 std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> debugRecords
;
288 CVDebugRecordChunk
*buildId
= nullptr;
289 ArrayRef
<uint8_t> sectionTable
;
292 uint32_t pointerToSymbolTable
= 0;
293 uint64_t sizeOfImage
;
294 uint64_t sizeOfHeaders
;
296 OutputSection
*textSec
;
297 OutputSection
*rdataSec
;
298 OutputSection
*buildidSec
;
299 OutputSection
*dataSec
;
300 OutputSection
*pdataSec
;
301 OutputSection
*idataSec
;
302 OutputSection
*edataSec
;
303 OutputSection
*didatSec
;
304 OutputSection
*rsrcSec
;
305 OutputSection
*relocSec
;
306 OutputSection
*ctorsSec
;
307 OutputSection
*dtorsSec
;
309 // The first and last .pdata sections in the output file.
311 // We need to keep track of the location of .pdata in whichever section it
312 // gets merged into so that we can sort its contents and emit a correct data
313 // directory entry for the exception table. This is also the case for some
314 // other sections (such as .edata) but because the contents of those sections
315 // are entirely linker-generated we can keep track of their locations using
316 // the chunks that the linker creates. All .pdata chunks come from input
317 // files, so we need to keep track of them separately.
318 Chunk
*firstPdata
= nullptr;
321 COFFLinkerContext
&ctx
;
323 } // anonymous namespace
325 void lld::coff::writeResult(COFFLinkerContext
&ctx
) {
326 llvm::TimeTraceScope
timeScope("Write output(s)");
330 void OutputSection::addChunk(Chunk
*c
) {
334 void OutputSection::insertChunkAtStart(Chunk
*c
) {
335 chunks
.insert(chunks
.begin(), c
);
338 void OutputSection::setPermissions(uint32_t c
) {
339 header
.Characteristics
&= ~permMask
;
340 header
.Characteristics
|= c
;
343 void OutputSection::merge(OutputSection
*other
) {
344 chunks
.insert(chunks
.end(), other
->chunks
.begin(), other
->chunks
.end());
345 other
->chunks
.clear();
346 contribSections
.insert(contribSections
.end(), other
->contribSections
.begin(),
347 other
->contribSections
.end());
348 other
->contribSections
.clear();
351 // Write the section header to a given buffer.
352 void OutputSection::writeHeaderTo(uint8_t *buf
, bool isDebug
) {
353 auto *hdr
= reinterpret_cast<coff_section
*>(buf
);
355 if (stringTableOff
) {
356 // If name is too long, write offset into the string table as a name.
357 encodeSectionName(hdr
->Name
, stringTableOff
);
359 assert(!isDebug
|| name
.size() <= COFF::NameSize
||
360 (hdr
->Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
) == 0);
361 strncpy(hdr
->Name
, name
.data(),
362 std::min(name
.size(), (size_t)COFF::NameSize
));
366 void OutputSection::addContributingPartialSection(PartialSection
*sec
) {
367 contribSections
.push_back(sec
);
370 // Check whether the target address S is in range from a relocation
371 // of type relType at address P.
372 bool Writer::isInRange(uint16_t relType
, uint64_t s
, uint64_t p
, int margin
) {
373 if (ctx
.config
.machine
== ARMNT
) {
374 int64_t diff
= AbsoluteDifference(s
, p
+ 4) + margin
;
376 case IMAGE_REL_ARM_BRANCH20T
:
377 return isInt
<21>(diff
);
378 case IMAGE_REL_ARM_BRANCH24T
:
379 case IMAGE_REL_ARM_BLX23T
:
380 return isInt
<25>(diff
);
384 } else if (ctx
.config
.machine
== ARM64
) {
385 int64_t diff
= AbsoluteDifference(s
, p
) + margin
;
387 case IMAGE_REL_ARM64_BRANCH26
:
388 return isInt
<28>(diff
);
389 case IMAGE_REL_ARM64_BRANCH19
:
390 return isInt
<21>(diff
);
391 case IMAGE_REL_ARM64_BRANCH14
:
392 return isInt
<16>(diff
);
397 llvm_unreachable("Unexpected architecture");
401 // Return the last thunk for the given target if it is in range,
402 // or create a new one.
403 std::pair
<Defined
*, bool>
404 Writer::getThunk(DenseMap
<uint64_t, Defined
*> &lastThunks
, Defined
*target
,
405 uint64_t p
, uint16_t type
, int margin
) {
406 Defined
*&lastThunk
= lastThunks
[target
->getRVA()];
407 if (lastThunk
&& isInRange(type
, lastThunk
->getRVA(), p
, margin
))
408 return {lastThunk
, false};
410 switch (ctx
.config
.machine
) {
412 c
= make
<RangeExtensionThunkARM
>(ctx
, target
);
415 c
= make
<RangeExtensionThunkARM64
>(ctx
, target
);
418 llvm_unreachable("Unexpected architecture");
420 Defined
*d
= make
<DefinedSynthetic
>("range_extension_thunk", c
);
425 // This checks all relocations, and for any relocation which isn't in range
426 // it adds a thunk after the section chunk that contains the relocation.
427 // If the latest thunk for the specific target is in range, that is used
428 // instead of creating a new thunk. All range checks are done with the
429 // specified margin, to make sure that relocations that originally are in
430 // range, but only barely, also get thunks - in case other added thunks makes
431 // the target go out of range.
433 // After adding thunks, we verify that all relocations are in range (with
434 // no extra margin requirements). If this failed, we restart (throwing away
435 // the previously created thunks) and retry with a wider margin.
436 bool Writer::createThunks(OutputSection
*os
, int margin
) {
437 bool addressesChanged
= false;
438 DenseMap
<uint64_t, Defined
*> lastThunks
;
439 DenseMap
<std::pair
<ObjFile
*, Defined
*>, uint32_t> thunkSymtabIndices
;
440 size_t thunksSize
= 0;
441 // Recheck Chunks.size() each iteration, since we can insert more
443 for (size_t i
= 0; i
!= os
->chunks
.size(); ++i
) {
444 SectionChunk
*sc
= dyn_cast_or_null
<SectionChunk
>(os
->chunks
[i
]);
447 size_t thunkInsertionSpot
= i
+ 1;
449 // Try to get a good enough estimate of where new thunks will be placed.
450 // Offset this by the size of the new thunks added so far, to make the
451 // estimate slightly better.
452 size_t thunkInsertionRVA
= sc
->getRVA() + sc
->getSize() + thunksSize
;
453 ObjFile
*file
= sc
->file
;
454 std::vector
<std::pair
<uint32_t, uint32_t>> relocReplacements
;
455 ArrayRef
<coff_relocation
> originalRelocs
=
456 file
->getCOFFObj()->getRelocations(sc
->header
);
457 for (size_t j
= 0, e
= originalRelocs
.size(); j
< e
; ++j
) {
458 const coff_relocation
&rel
= originalRelocs
[j
];
459 Symbol
*relocTarget
= file
->getSymbol(rel
.SymbolTableIndex
);
461 // The estimate of the source address P should be pretty accurate,
462 // but we don't know whether the target Symbol address should be
463 // offset by thunksSize or not (or by some of thunksSize but not all of
464 // it), giving us some uncertainty once we have added one thunk.
465 uint64_t p
= sc
->getRVA() + rel
.VirtualAddress
+ thunksSize
;
467 Defined
*sym
= dyn_cast_or_null
<Defined
>(relocTarget
);
471 uint64_t s
= sym
->getRVA();
473 if (isInRange(rel
.Type
, s
, p
, margin
))
476 // If the target isn't in range, hook it up to an existing or new thunk.
477 auto [thunk
, wasNew
] = getThunk(lastThunks
, sym
, p
, rel
.Type
, margin
);
479 Chunk
*thunkChunk
= thunk
->getChunk();
481 thunkInsertionRVA
); // Estimate of where it will be located.
482 os
->chunks
.insert(os
->chunks
.begin() + thunkInsertionSpot
, thunkChunk
);
483 thunkInsertionSpot
++;
484 thunksSize
+= thunkChunk
->getSize();
485 thunkInsertionRVA
+= thunkChunk
->getSize();
486 addressesChanged
= true;
489 // To redirect the relocation, add a symbol to the parent object file's
490 // symbol table, and replace the relocation symbol table index with the
492 auto insertion
= thunkSymtabIndices
.insert({{file
, thunk
}, ~0U});
493 uint32_t &thunkSymbolIndex
= insertion
.first
->second
;
494 if (insertion
.second
)
495 thunkSymbolIndex
= file
->addRangeThunkSymbol(thunk
);
496 relocReplacements
.emplace_back(j
, thunkSymbolIndex
);
499 // Get a writable copy of this section's relocations so they can be
500 // modified. If the relocations point into the object file, allocate new
501 // memory. Otherwise, this must be previously allocated memory that can be
502 // modified in place.
503 ArrayRef
<coff_relocation
> curRelocs
= sc
->getRelocs();
504 MutableArrayRef
<coff_relocation
> newRelocs
;
505 if (originalRelocs
.data() == curRelocs
.data()) {
506 newRelocs
= MutableArrayRef(
507 bAlloc().Allocate
<coff_relocation
>(originalRelocs
.size()),
508 originalRelocs
.size());
510 newRelocs
= MutableArrayRef(
511 const_cast<coff_relocation
*>(curRelocs
.data()), curRelocs
.size());
514 // Copy each relocation, but replace the symbol table indices which need
516 auto nextReplacement
= relocReplacements
.begin();
517 auto endReplacement
= relocReplacements
.end();
518 for (size_t i
= 0, e
= originalRelocs
.size(); i
!= e
; ++i
) {
519 newRelocs
[i
] = originalRelocs
[i
];
520 if (nextReplacement
!= endReplacement
&& nextReplacement
->first
== i
) {
521 newRelocs
[i
].SymbolTableIndex
= nextReplacement
->second
;
526 sc
->setRelocs(newRelocs
);
528 return addressesChanged
;
531 // Verify that all relocations are in range, with no extra margin requirements.
532 bool Writer::verifyRanges(const std::vector
<Chunk
*> chunks
) {
533 for (Chunk
*c
: chunks
) {
534 SectionChunk
*sc
= dyn_cast_or_null
<SectionChunk
>(c
);
538 ArrayRef
<coff_relocation
> relocs
= sc
->getRelocs();
539 for (const coff_relocation
&rel
: relocs
) {
540 Symbol
*relocTarget
= sc
->file
->getSymbol(rel
.SymbolTableIndex
);
542 Defined
*sym
= dyn_cast_or_null
<Defined
>(relocTarget
);
546 uint64_t p
= sc
->getRVA() + rel
.VirtualAddress
;
547 uint64_t s
= sym
->getRVA();
549 if (!isInRange(rel
.Type
, s
, p
, 0))
556 // Assign addresses and add thunks if necessary.
557 void Writer::finalizeAddresses() {
559 if (ctx
.config
.machine
!= ARMNT
&& ctx
.config
.machine
!= ARM64
)
562 size_t origNumChunks
= 0;
563 for (OutputSection
*sec
: ctx
.outputSections
) {
564 sec
->origChunks
= sec
->chunks
;
565 origNumChunks
+= sec
->chunks
.size();
569 int margin
= 1024 * 100;
571 llvm::TimeTraceScope
timeScope2("Add thunks pass");
573 // First check whether we need thunks at all, or if the previous pass of
574 // adding them turned out ok.
575 bool rangesOk
= true;
576 size_t numChunks
= 0;
578 llvm::TimeTraceScope
timeScope3("Verify ranges");
579 for (OutputSection
*sec
: ctx
.outputSections
) {
580 if (!verifyRanges(sec
->chunks
)) {
584 numChunks
+= sec
->chunks
.size();
589 log("Added " + Twine(numChunks
- origNumChunks
) + " thunks with " +
590 "margin " + Twine(margin
) + " in " + Twine(pass
) + " passes");
595 fatal("adding thunks hasn't converged after " + Twine(pass
) + " passes");
598 // If the previous pass didn't work out, reset everything back to the
599 // original conditions before retrying with a wider margin. This should
600 // ideally never happen under real circumstances.
601 for (OutputSection
*sec
: ctx
.outputSections
)
602 sec
->chunks
= sec
->origChunks
;
606 // Try adding thunks everywhere where it is needed, with a margin
607 // to avoid things going out of range due to the added thunks.
608 bool addressesChanged
= false;
610 llvm::TimeTraceScope
timeScope3("Create thunks");
611 for (OutputSection
*sec
: ctx
.outputSections
)
612 addressesChanged
|= createThunks(sec
, margin
);
614 // If the verification above thought we needed thunks, we should have
616 assert(addressesChanged
);
617 (void)addressesChanged
;
619 // Recalculate the layout for the whole image (and verify the ranges at
620 // the start of the next round).
627 void Writer::writePEChecksum() {
628 if (!ctx
.config
.writeCheckSum
) {
632 llvm::TimeTraceScope
timeScope("PE checksum");
634 // https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#checksum
635 uint32_t *buf
= (uint32_t *)buffer
->getBufferStart();
636 uint32_t size
= (uint32_t)(buffer
->getBufferSize());
638 coff_file_header
*coffHeader
=
639 (coff_file_header
*)((uint8_t *)buf
+ dosStubSize
+ sizeof(PEMagic
));
640 pe32_header
*peHeader
=
641 (pe32_header
*)((uint8_t *)coffHeader
+ sizeof(coff_file_header
));
644 uint32_t count
= size
;
645 ulittle16_t
*addr
= (ulittle16_t
*)buf
;
647 // The PE checksum algorithm, implemented as suggested in RFC1071
653 // Add left-over byte, if any
655 sum
+= *(unsigned char *)addr
;
657 // Fold 32-bit sum to 16 bits
659 sum
= (sum
& 0xffff) + (sum
>> 16);
663 peHeader
->CheckSum
= sum
;
666 // The main function of the writer.
669 llvm::TimeTraceScope
timeScope("Write PE");
670 ScopedTimer
t1(ctx
.codeLayoutTimer
);
672 createImportTables();
674 appendImportThunks();
675 // Import thunks must be added before the Control Flow Guard tables are
681 removeUnusedSections();
683 removeEmptySections();
684 assignOutputSectionIndices();
685 setSectionPermissions();
686 createSymbolAndStringTable();
688 if (fileSize
> UINT32_MAX
)
689 fatal("image size (" + Twine(fileSize
) + ") " +
690 "exceeds maximum allowable size (" + Twine(UINT32_MAX
) + ")");
692 openFile(ctx
.config
.outputFile
);
693 if (ctx
.config
.is64()) {
694 writeHeader
<pe32plus_header
>();
696 writeHeader
<pe32_header
>();
700 sortExceptionTable();
702 // Fix up the alignment in the TLS Directory's characteristic field,
703 // if a specific alignment value is needed
708 if (!ctx
.config
.pdbPath
.empty() && ctx
.config
.debug
) {
710 createPDB(ctx
, sectionTable
, buildId
->buildId
);
714 writeLLDMapFile(ctx
);
722 llvm::TimeTraceScope
timeScope("Commit PE to disk");
723 ScopedTimer
t2(ctx
.outputCommitTimer
);
724 if (auto e
= buffer
->commit())
725 fatal("failed to write output '" + buffer
->getPath() +
726 "': " + toString(std::move(e
)));
729 static StringRef
getOutputSectionName(StringRef name
) {
730 StringRef s
= name
.split('$').first
;
732 // Treat a later period as a separator for MinGW, for sections like
734 return s
.substr(0, s
.find('.', 1));
738 void Writer::sortBySectionOrder(std::vector
<Chunk
*> &chunks
) {
739 auto getPriority
= [&ctx
= ctx
](const Chunk
*c
) {
740 if (auto *sec
= dyn_cast
<SectionChunk
>(c
))
742 return ctx
.config
.order
.lookup(sec
->sym
->getName());
746 llvm::stable_sort(chunks
, [=](const Chunk
*a
, const Chunk
*b
) {
747 return getPriority(a
) < getPriority(b
);
751 // Change the characteristics of existing PartialSections that belong to the
752 // section Name to Chars.
753 void Writer::fixPartialSectionChars(StringRef name
, uint32_t chars
) {
754 for (auto it
: partialSections
) {
755 PartialSection
*pSec
= it
.second
;
756 StringRef curName
= pSec
->name
;
757 if (!curName
.consume_front(name
) ||
758 (!curName
.empty() && !curName
.starts_with("$")))
760 if (pSec
->characteristics
== chars
)
762 PartialSection
*destSec
= createPartialSection(pSec
->name
, chars
);
763 destSec
->chunks
.insert(destSec
->chunks
.end(), pSec
->chunks
.begin(),
765 pSec
->chunks
.clear();
769 // Sort concrete section chunks from GNU import libraries.
771 // GNU binutils doesn't use short import files, but instead produces import
772 // libraries that consist of object files, with section chunks for the .idata$*
773 // sections. These are linked just as regular static libraries. Each import
774 // library consists of one header object, one object file for every imported
775 // symbol, and one trailer object. In order for the .idata tables/lists to
776 // be formed correctly, the section chunks within each .idata$* section need
777 // to be grouped by library, and sorted alphabetically within each library
778 // (which makes sure the header comes first and the trailer last).
779 bool Writer::fixGnuImportChunks() {
780 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
782 // Make sure all .idata$* section chunks are mapped as RDATA in order to
783 // be sorted into the same sections as our own synthesized .idata chunks.
784 fixPartialSectionChars(".idata", rdata
);
786 bool hasIdata
= false;
787 // Sort all .idata$* chunks, grouping chunks from the same library,
788 // with alphabetical ordering of the object files within a library.
789 for (auto it
: partialSections
) {
790 PartialSection
*pSec
= it
.second
;
791 if (!pSec
->name
.starts_with(".idata"))
794 if (!pSec
->chunks
.empty())
796 llvm::stable_sort(pSec
->chunks
, [&](Chunk
*s
, Chunk
*t
) {
797 SectionChunk
*sc1
= dyn_cast_or_null
<SectionChunk
>(s
);
798 SectionChunk
*sc2
= dyn_cast_or_null
<SectionChunk
>(t
);
800 // if SC1, order them ascending. If SC2 or both null,
801 // S is not less than T.
802 return sc1
!= nullptr;
804 // Make a string with "libraryname/objectfile" for sorting, achieving
805 // both grouping by library and sorting of objects within a library,
808 (sc1
->file
->parentName
+ "/" + sc1
->file
->getName()).str();
810 (sc2
->file
->parentName
+ "/" + sc2
->file
->getName()).str();
817 // Add generated idata chunks, for imported symbols and DLLs, and a
818 // terminator in .idata$2.
819 void Writer::addSyntheticIdata() {
820 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
823 // Add the .idata content in the right section groups, to allow
824 // chunks from other linked in object files to be grouped together.
825 // See Microsoft PE/COFF spec 5.4 for details.
826 auto add
= [&](StringRef n
, std::vector
<Chunk
*> &v
) {
827 PartialSection
*pSec
= createPartialSection(n
, rdata
);
828 pSec
->chunks
.insert(pSec
->chunks
.end(), v
.begin(), v
.end());
831 // The loader assumes a specific order of data.
832 // Add each type in the correct order.
833 add(".idata$2", idata
.dirs
);
834 add(".idata$4", idata
.lookups
);
835 add(".idata$5", idata
.addresses
);
836 if (!idata
.hints
.empty())
837 add(".idata$6", idata
.hints
);
838 add(".idata$7", idata
.dllNames
);
841 // Locate the first Chunk and size of the import directory list and the
843 void Writer::locateImportTables() {
844 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
846 if (PartialSection
*importDirs
= findPartialSection(".idata$2", rdata
)) {
847 if (!importDirs
->chunks
.empty())
848 importTableStart
= importDirs
->chunks
.front();
849 for (Chunk
*c
: importDirs
->chunks
)
850 importTableSize
+= c
->getSize();
853 if (PartialSection
*importAddresses
= findPartialSection(".idata$5", rdata
)) {
854 if (!importAddresses
->chunks
.empty())
855 iatStart
= importAddresses
->chunks
.front();
856 for (Chunk
*c
: importAddresses
->chunks
)
857 iatSize
+= c
->getSize();
861 // Return whether a SectionChunk's suffix (the dollar and any trailing
862 // suffix) should be removed and sorted into the main suffixless
864 static bool shouldStripSectionSuffix(SectionChunk
*sc
, StringRef name
,
866 // On MinGW, comdat groups are formed by putting the comdat group name
867 // after the '$' in the section name. For .eh_frame$<symbol>, that must
868 // still be sorted before the .eh_frame trailer from crtend.o, thus just
869 // strip the section name trailer. For other sections, such as
870 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
871 // ".tls$"), they must be strictly sorted after .tls. And for the
872 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
873 // suffix for sorting. Thus, to play it safe, only strip the suffix for
874 // the standard sections.
877 if (!sc
|| !sc
->isCOMDAT())
879 return name
.starts_with(".text$") || name
.starts_with(".data$") ||
880 name
.starts_with(".rdata$") || name
.starts_with(".pdata$") ||
881 name
.starts_with(".xdata$") || name
.starts_with(".eh_frame$");
884 void Writer::sortSections() {
885 if (!ctx
.config
.callGraphProfile
.empty()) {
886 DenseMap
<const SectionChunk
*, int> order
=
887 computeCallGraphProfileOrder(ctx
);
888 for (auto it
: order
) {
889 if (DefinedRegular
*sym
= it
.first
->sym
)
890 ctx
.config
.order
[sym
->getName()] = it
.second
;
893 if (!ctx
.config
.order
.empty())
894 for (auto it
: partialSections
)
895 sortBySectionOrder(it
.second
->chunks
);
898 // Create output section objects and add them to OutputSections.
899 void Writer::createSections() {
900 llvm::TimeTraceScope
timeScope("Output sections");
901 // First, create the builtin sections.
902 const uint32_t data
= IMAGE_SCN_CNT_INITIALIZED_DATA
;
903 const uint32_t bss
= IMAGE_SCN_CNT_UNINITIALIZED_DATA
;
904 const uint32_t code
= IMAGE_SCN_CNT_CODE
;
905 const uint32_t discardable
= IMAGE_SCN_MEM_DISCARDABLE
;
906 const uint32_t r
= IMAGE_SCN_MEM_READ
;
907 const uint32_t w
= IMAGE_SCN_MEM_WRITE
;
908 const uint32_t x
= IMAGE_SCN_MEM_EXECUTE
;
910 SmallDenseMap
<std::pair
<StringRef
, uint32_t>, OutputSection
*> sections
;
911 auto createSection
= [&](StringRef name
, uint32_t outChars
) {
912 OutputSection
*&sec
= sections
[{name
, outChars
}];
914 sec
= make
<OutputSection
>(name
, outChars
);
915 ctx
.outputSections
.push_back(sec
);
920 // Try to match the section order used by link.exe.
921 textSec
= createSection(".text", code
| r
| x
);
922 createSection(".bss", bss
| r
| w
);
923 rdataSec
= createSection(".rdata", data
| r
);
924 buildidSec
= createSection(".buildid", data
| r
);
925 dataSec
= createSection(".data", data
| r
| w
);
926 pdataSec
= createSection(".pdata", data
| r
);
927 idataSec
= createSection(".idata", data
| r
);
928 edataSec
= createSection(".edata", data
| r
);
929 didatSec
= createSection(".didat", data
| r
);
930 rsrcSec
= createSection(".rsrc", data
| r
);
931 relocSec
= createSection(".reloc", data
| discardable
| r
);
932 ctorsSec
= createSection(".ctors", data
| r
| w
);
933 dtorsSec
= createSection(".dtors", data
| r
| w
);
935 // Then bin chunks by name and output characteristics.
936 for (Chunk
*c
: ctx
.symtab
.getChunks()) {
937 auto *sc
= dyn_cast
<SectionChunk
>(c
);
938 if (sc
&& !sc
->live
) {
939 if (ctx
.config
.verbose
)
940 sc
->printDiscardedMessage();
943 StringRef name
= c
->getSectionName();
944 if (shouldStripSectionSuffix(sc
, name
, ctx
.config
.mingw
))
945 name
= name
.split('$').first
;
947 if (name
.starts_with(".tls"))
948 tlsAlignment
= std::max(tlsAlignment
, c
->getAlignment());
950 PartialSection
*pSec
= createPartialSection(name
,
951 c
->getOutputCharacteristics());
952 pSec
->chunks
.push_back(c
);
955 fixPartialSectionChars(".rsrc", data
| r
);
956 fixPartialSectionChars(".edata", data
| r
);
957 // Even in non MinGW cases, we might need to link against GNU import
959 bool hasIdata
= fixGnuImportChunks();
969 locateImportTables();
971 // Then create an OutputSection for each section.
972 // '$' and all following characters in input section names are
973 // discarded when determining output section. So, .text$foo
974 // contributes to .text, for example. See PE/COFF spec 3.2.
975 for (auto it
: partialSections
) {
976 PartialSection
*pSec
= it
.second
;
977 StringRef name
= getOutputSectionName(pSec
->name
);
978 uint32_t outChars
= pSec
->characteristics
;
980 if (name
== ".CRT") {
981 // In link.exe, there is a special case for the I386 target where .CRT
982 // sections are treated as if they have output characteristics DATA | R if
983 // their characteristics are DATA | R | W. This implements the same
984 // special case for all architectures.
987 log("Processing section " + pSec
->name
+ " -> " + name
);
989 sortCRTSectionChunks(pSec
->chunks
);
992 OutputSection
*sec
= createSection(name
, outChars
);
993 for (Chunk
*c
: pSec
->chunks
)
996 sec
->addContributingPartialSection(pSec
);
999 // Finally, move some output sections to the end.
1000 auto sectionOrder
= [&](const OutputSection
*s
) {
1001 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
1002 // because the loader cannot handle holes. Stripping can remove other
1003 // discardable ones than .reloc, which is first of them (created early).
1004 if (s
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
) {
1005 // Move discardable sections named .debug_ to the end, after other
1006 // discardable sections. Stripping only removes the sections named
1007 // .debug_* - thus try to avoid leaving holes after stripping.
1008 if (s
->name
.starts_with(".debug_"))
1012 // .rsrc should come at the end of the non-discardable sections because its
1013 // size may change by the Win32 UpdateResources() function, causing
1014 // subsequent sections to move (see https://crbug.com/827082).
1019 llvm::stable_sort(ctx
.outputSections
,
1020 [&](const OutputSection
*s
, const OutputSection
*t
) {
1021 return sectionOrder(s
) < sectionOrder(t
);
1025 void Writer::createMiscChunks() {
1026 llvm::TimeTraceScope
timeScope("Misc chunks");
1027 Configuration
*config
= &ctx
.config
;
1029 for (MergeChunk
*p
: ctx
.mergeChunkInstances
) {
1031 p
->finalizeContents();
1032 rdataSec
->addChunk(p
);
1036 // Create thunks for locally-dllimported symbols.
1037 if (!ctx
.symtab
.localImportChunks
.empty()) {
1038 for (Chunk
*c
: ctx
.symtab
.localImportChunks
)
1039 rdataSec
->addChunk(c
);
1042 // Create Debug Information Chunks
1043 OutputSection
*debugInfoSec
= config
->mingw
? buildidSec
: rdataSec
;
1044 if (config
->debug
|| config
->repro
|| config
->cetCompat
) {
1046 make
<DebugDirectoryChunk
>(ctx
, debugRecords
, config
->repro
);
1047 debugDirectory
->setAlignment(4);
1048 debugInfoSec
->addChunk(debugDirectory
);
1051 if (config
->debug
) {
1052 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
1053 // output a PDB no matter what, and this chunk provides the only means of
1054 // allowing a debugger to match a PDB and an executable. So we need it even
1055 // if we're ultimately not going to write CodeView data to the PDB.
1056 buildId
= make
<CVDebugRecordChunk
>(ctx
);
1057 debugRecords
.emplace_back(COFF::IMAGE_DEBUG_TYPE_CODEVIEW
, buildId
);
1060 if (config
->cetCompat
) {
1061 debugRecords
.emplace_back(COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS
,
1062 make
<ExtendedDllCharacteristicsChunk
>(
1063 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT
));
1066 // Align and add each chunk referenced by the debug data directory.
1067 for (std::pair
<COFF::DebugType
, Chunk
*> r
: debugRecords
) {
1068 r
.second
->setAlignment(4);
1069 debugInfoSec
->addChunk(r
.second
);
1072 // Create SEH table. x86-only.
1073 if (config
->safeSEH
)
1076 // Create /guard:cf tables if requested.
1077 if (config
->guardCF
!= GuardCFLevel::Off
)
1078 createGuardCFTables();
1080 if (config
->autoImport
)
1081 createRuntimePseudoRelocs();
1084 insertCtorDtorSymbols();
1087 // Create .idata section for the DLL-imported symbol table.
1088 // The format of this section is inherently Windows-specific.
1089 // IdataContents class abstracted away the details for us,
1090 // so we just let it create chunks and add them to the section.
1091 void Writer::createImportTables() {
1092 llvm::TimeTraceScope
timeScope("Import tables");
1093 // Initialize DLLOrder so that import entries are ordered in
1094 // the same order as in the command line. (That affects DLL
1095 // initialization order, and this ordering is MSVC-compatible.)
1096 for (ImportFile
*file
: ctx
.importFileInstances
) {
1100 std::string dll
= StringRef(file
->dllName
).lower();
1101 if (ctx
.config
.dllOrder
.count(dll
) == 0)
1102 ctx
.config
.dllOrder
[dll
] = ctx
.config
.dllOrder
.size();
1104 if (file
->impSym
&& !isa
<DefinedImportData
>(file
->impSym
))
1105 fatal(toString(ctx
, *file
->impSym
) + " was replaced");
1106 DefinedImportData
*impSym
= cast_or_null
<DefinedImportData
>(file
->impSym
);
1107 if (ctx
.config
.delayLoads
.count(StringRef(file
->dllName
).lower())) {
1108 if (!file
->thunkSym
)
1109 fatal("cannot delay-load " + toString(file
) +
1110 " due to import of data: " + toString(ctx
, *impSym
));
1111 delayIdata
.add(impSym
);
1118 void Writer::appendImportThunks() {
1119 if (ctx
.importFileInstances
.empty())
1122 llvm::TimeTraceScope
timeScope("Import thunks");
1123 for (ImportFile
*file
: ctx
.importFileInstances
) {
1127 if (!file
->thunkSym
)
1130 if (!isa
<DefinedImportThunk
>(file
->thunkSym
))
1131 fatal(toString(ctx
, *file
->thunkSym
) + " was replaced");
1132 DefinedImportThunk
*thunk
= cast
<DefinedImportThunk
>(file
->thunkSym
);
1133 if (file
->thunkLive
)
1134 textSec
->addChunk(thunk
->getChunk());
1137 if (!delayIdata
.empty()) {
1138 Defined
*helper
= cast
<Defined
>(ctx
.config
.delayLoadHelper
);
1139 delayIdata
.create(helper
);
1140 for (Chunk
*c
: delayIdata
.getChunks())
1141 didatSec
->addChunk(c
);
1142 for (Chunk
*c
: delayIdata
.getDataChunks())
1143 dataSec
->addChunk(c
);
1144 for (Chunk
*c
: delayIdata
.getCodeChunks())
1145 textSec
->addChunk(c
);
1146 for (Chunk
*c
: delayIdata
.getCodePData())
1147 pdataSec
->addChunk(c
);
1148 for (Chunk
*c
: delayIdata
.getCodeUnwindInfo())
1149 rdataSec
->addChunk(c
);
1153 void Writer::createExportTable() {
1154 llvm::TimeTraceScope
timeScope("Export table");
1155 if (!edataSec
->chunks
.empty()) {
1156 // Allow using a custom built export table from input object files, instead
1157 // of having the linker synthesize the tables.
1158 if (ctx
.config
.hadExplicitExports
)
1159 warn("literal .edata sections override exports");
1160 } else if (!ctx
.config
.exports
.empty()) {
1161 for (Chunk
*c
: edata
.chunks
)
1162 edataSec
->addChunk(c
);
1164 if (!edataSec
->chunks
.empty()) {
1165 edataStart
= edataSec
->chunks
.front();
1166 edataEnd
= edataSec
->chunks
.back();
1168 // Warn on exported deleting destructor.
1169 for (auto e
: ctx
.config
.exports
)
1170 if (e
.sym
&& e
.sym
->getName().starts_with("??_G"))
1171 warn("export of deleting dtor: " + toString(ctx
, *e
.sym
));
1174 void Writer::removeUnusedSections() {
1175 llvm::TimeTraceScope
timeScope("Remove unused sections");
1176 // Remove sections that we can be sure won't get content, to avoid
1177 // allocating space for their section headers.
1178 auto isUnused
= [this](OutputSection
*s
) {
1180 return false; // This section is populated later.
1181 // MergeChunks have zero size at this point, as their size is finalized
1182 // later. Only remove sections that have no Chunks at all.
1183 return s
->chunks
.empty();
1185 llvm::erase_if(ctx
.outputSections
, isUnused
);
1188 // The Windows loader doesn't seem to like empty sections,
1189 // so we remove them if any.
1190 void Writer::removeEmptySections() {
1191 llvm::TimeTraceScope
timeScope("Remove empty sections");
1192 auto isEmpty
= [](OutputSection
*s
) { return s
->getVirtualSize() == 0; };
1193 llvm::erase_if(ctx
.outputSections
, isEmpty
);
1196 void Writer::assignOutputSectionIndices() {
1197 llvm::TimeTraceScope
timeScope("Output sections indices");
1198 // Assign final output section indices, and assign each chunk to its output
1201 for (OutputSection
*os
: ctx
.outputSections
) {
1202 os
->sectionIndex
= idx
;
1203 for (Chunk
*c
: os
->chunks
)
1204 c
->setOutputSectionIdx(idx
);
1208 // Merge chunks are containers of chunks, so assign those an output section
1210 for (MergeChunk
*mc
: ctx
.mergeChunkInstances
)
1212 for (SectionChunk
*sc
: mc
->sections
)
1214 sc
->setOutputSectionIdx(mc
->getOutputSectionIdx());
1217 size_t Writer::addEntryToStringTable(StringRef str
) {
1218 assert(str
.size() > COFF::NameSize
);
1219 size_t offsetOfEntry
= strtab
.size() + 4; // +4 for the size field
1220 strtab
.insert(strtab
.end(), str
.begin(), str
.end());
1221 strtab
.push_back('\0');
1222 return offsetOfEntry
;
1225 std::optional
<coff_symbol16
> Writer::createSymbol(Defined
*def
) {
1227 switch (def
->kind()) {
1228 case Symbol::DefinedAbsoluteKind
: {
1229 auto *da
= dyn_cast
<DefinedAbsolute
>(def
);
1230 // Note: COFF symbol can only store 32-bit values, so 64-bit absolute
1231 // values will be truncated.
1232 sym
.Value
= da
->getVA();
1233 sym
.SectionNumber
= IMAGE_SYM_ABSOLUTE
;
1237 // Don't write symbols that won't be written to the output to the symbol
1239 // We also try to write DefinedSynthetic as a normal symbol. Some of these
1240 // symbols do point to an actual chunk, like __safe_se_handler_table. Others
1241 // like __ImageBase are outside of sections and thus cannot be represented.
1242 Chunk
*c
= def
->getChunk();
1244 return std::nullopt
;
1245 OutputSection
*os
= ctx
.getOutputSection(c
);
1247 return std::nullopt
;
1249 sym
.Value
= def
->getRVA() - os
->getRVA();
1250 sym
.SectionNumber
= os
->sectionIndex
;
1255 // Symbols that are runtime pseudo relocations don't point to the actual
1256 // symbol data itself (as they are imported), but points to the IAT entry
1257 // instead. Avoid emitting them to the symbol table, as they can confuse
1259 if (def
->isRuntimePseudoReloc
)
1260 return std::nullopt
;
1262 StringRef name
= def
->getName();
1263 if (name
.size() > COFF::NameSize
) {
1264 sym
.Name
.Offset
.Zeroes
= 0;
1265 sym
.Name
.Offset
.Offset
= addEntryToStringTable(name
);
1267 memset(sym
.Name
.ShortName
, 0, COFF::NameSize
);
1268 memcpy(sym
.Name
.ShortName
, name
.data(), name
.size());
1271 if (auto *d
= dyn_cast
<DefinedCOFF
>(def
)) {
1272 COFFSymbolRef ref
= d
->getCOFFSymbol();
1273 sym
.Type
= ref
.getType();
1274 sym
.StorageClass
= ref
.getStorageClass();
1275 } else if (def
->kind() == Symbol::DefinedImportThunkKind
) {
1276 sym
.Type
= (IMAGE_SYM_DTYPE_FUNCTION
<< SCT_COMPLEX_TYPE_SHIFT
) |
1277 IMAGE_SYM_TYPE_NULL
;
1278 sym
.StorageClass
= IMAGE_SYM_CLASS_EXTERNAL
;
1280 sym
.Type
= IMAGE_SYM_TYPE_NULL
;
1281 sym
.StorageClass
= IMAGE_SYM_CLASS_EXTERNAL
;
1283 sym
.NumberOfAuxSymbols
= 0;
1287 void Writer::createSymbolAndStringTable() {
1288 llvm::TimeTraceScope
timeScope("Symbol and string table");
1289 // PE/COFF images are limited to 8 byte section names. Longer names can be
1290 // supported by writing a non-standard string table, but this string table is
1291 // not mapped at runtime and the long names will therefore be inaccessible.
1292 // link.exe always truncates section names to 8 bytes, whereas binutils always
1293 // preserves long section names via the string table. LLD adopts a hybrid
1294 // solution where discardable sections have long names preserved and
1295 // non-discardable sections have their names truncated, to ensure that any
1296 // section which is mapped at runtime also has its name mapped at runtime.
1297 for (OutputSection
*sec
: ctx
.outputSections
) {
1298 if (sec
->name
.size() <= COFF::NameSize
)
1300 if ((sec
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
) == 0)
1302 if (ctx
.config
.warnLongSectionNames
) {
1303 warn("section name " + sec
->name
+
1304 " is longer than 8 characters and will use a non-standard string "
1307 sec
->setStringTableOff(addEntryToStringTable(sec
->name
));
1310 if (ctx
.config
.debugDwarf
|| ctx
.config
.debugSymtab
) {
1311 for (ObjFile
*file
: ctx
.objFileInstances
) {
1312 for (Symbol
*b
: file
->getSymbols()) {
1313 auto *d
= dyn_cast_or_null
<Defined
>(b
);
1314 if (!d
|| d
->writtenToSymtab
)
1316 d
->writtenToSymtab
= true;
1317 if (auto *dc
= dyn_cast_or_null
<DefinedCOFF
>(d
)) {
1318 COFFSymbolRef symRef
= dc
->getCOFFSymbol();
1319 if (symRef
.isSectionDefinition() ||
1320 symRef
.getStorageClass() == COFF::IMAGE_SYM_CLASS_LABEL
)
1324 if (std::optional
<coff_symbol16
> sym
= createSymbol(d
))
1325 outputSymtab
.push_back(*sym
);
1327 if (auto *dthunk
= dyn_cast
<DefinedImportThunk
>(d
)) {
1328 if (!dthunk
->wrappedSym
->writtenToSymtab
) {
1329 dthunk
->wrappedSym
->writtenToSymtab
= true;
1330 if (std::optional
<coff_symbol16
> sym
=
1331 createSymbol(dthunk
->wrappedSym
))
1332 outputSymtab
.push_back(*sym
);
1339 if (outputSymtab
.empty() && strtab
.empty())
1342 // We position the symbol table to be adjacent to the end of the last section.
1343 uint64_t fileOff
= fileSize
;
1344 pointerToSymbolTable
= fileOff
;
1345 fileOff
+= outputSymtab
.size() * sizeof(coff_symbol16
);
1346 fileOff
+= 4 + strtab
.size();
1347 fileSize
= alignTo(fileOff
, ctx
.config
.fileAlign
);
1350 void Writer::mergeSections() {
1351 llvm::TimeTraceScope
timeScope("Merge sections");
1352 if (!pdataSec
->chunks
.empty()) {
1353 firstPdata
= pdataSec
->chunks
.front();
1354 lastPdata
= pdataSec
->chunks
.back();
1357 for (auto &p
: ctx
.config
.merge
) {
1358 StringRef toName
= p
.second
;
1359 if (p
.first
== toName
)
1363 if (!names
.insert(toName
).second
)
1364 fatal("/merge: cycle found for section '" + p
.first
+ "'");
1365 auto i
= ctx
.config
.merge
.find(toName
);
1366 if (i
== ctx
.config
.merge
.end())
1370 OutputSection
*from
= findSection(p
.first
);
1371 OutputSection
*to
= findSection(toName
);
1375 from
->name
= toName
;
1382 // EC targets may have chunks of various architectures mixed together at this
1383 // point. Group code chunks of the same architecture together by sorting chunks
1384 // by their EC range type.
1385 void Writer::sortECChunks() {
1386 if (!isArm64EC(ctx
.config
.machine
))
1389 for (OutputSection
*sec
: ctx
.outputSections
) {
1390 if (sec
->isCodeSection())
1391 llvm::stable_sort(sec
->chunks
, [=](const Chunk
*a
, const Chunk
*b
) {
1392 std::optional
<chpe_range_type
> aType
= a
->getArm64ECRangeType(),
1393 bType
= b
->getArm64ECRangeType();
1394 return !aType
|| (bType
&& *aType
< *bType
);
1399 // Visits all sections to assign incremental, non-overlapping RVAs and
1401 void Writer::assignAddresses() {
1402 llvm::TimeTraceScope
timeScope("Assign addresses");
1403 Configuration
*config
= &ctx
.config
;
1405 sizeOfHeaders
= dosStubSize
+ sizeof(PEMagic
) + sizeof(coff_file_header
) +
1406 sizeof(data_directory
) * numberOfDataDirectory
+
1407 sizeof(coff_section
) * ctx
.outputSections
.size();
1409 config
->is64() ? sizeof(pe32plus_header
) : sizeof(pe32_header
);
1410 sizeOfHeaders
= alignTo(sizeOfHeaders
, config
->fileAlign
);
1411 fileSize
= sizeOfHeaders
;
1413 // The first page is kept unmapped.
1414 uint64_t rva
= alignTo(sizeOfHeaders
, config
->align
);
1416 for (OutputSection
*sec
: ctx
.outputSections
) {
1417 llvm::TimeTraceScope
timeScope("Section: ", sec
->name
);
1418 if (sec
== relocSec
)
1420 uint64_t rawSize
= 0, virtualSize
= 0;
1421 sec
->header
.VirtualAddress
= rva
;
1423 // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1424 // hotpatchable image.
1425 uint32_t padding
= sec
->isCodeSection() ? config
->functionPadMin
: 0;
1427 for (Chunk
*c
: sec
->chunks
) {
1428 if (padding
&& c
->isHotPatchable())
1429 virtualSize
+= padding
;
1430 virtualSize
= alignTo(virtualSize
, c
->getAlignment());
1431 c
->setRVA(rva
+ virtualSize
);
1432 virtualSize
+= c
->getSize();
1434 rawSize
= alignTo(virtualSize
, config
->fileAlign
);
1436 if (virtualSize
> UINT32_MAX
)
1437 error("section larger than 4 GiB: " + sec
->name
);
1438 sec
->header
.VirtualSize
= virtualSize
;
1439 sec
->header
.SizeOfRawData
= rawSize
;
1441 sec
->header
.PointerToRawData
= fileSize
;
1442 rva
+= alignTo(virtualSize
, config
->align
);
1443 fileSize
+= alignTo(rawSize
, config
->fileAlign
);
1445 sizeOfImage
= alignTo(rva
, config
->align
);
1447 // Assign addresses to sections in MergeChunks.
1448 for (MergeChunk
*mc
: ctx
.mergeChunkInstances
)
1450 mc
->assignSubsectionRVAs();
1453 template <typename PEHeaderTy
> void Writer::writeHeader() {
1454 // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1455 // executable consists of an MS-DOS MZ executable. If the executable is run
1456 // under DOS, that program gets run (usually to just print an error message).
1457 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1458 // the PE header instead.
1459 Configuration
*config
= &ctx
.config
;
1460 uint8_t *buf
= buffer
->getBufferStart();
1461 auto *dos
= reinterpret_cast<dos_header
*>(buf
);
1462 buf
+= sizeof(dos_header
);
1463 dos
->Magic
[0] = 'M';
1464 dos
->Magic
[1] = 'Z';
1465 dos
->UsedBytesInTheLastPage
= dosStubSize
% 512;
1466 dos
->FileSizeInPages
= divideCeil(dosStubSize
, 512);
1467 dos
->HeaderSizeInParagraphs
= sizeof(dos_header
) / 16;
1469 dos
->AddressOfRelocationTable
= sizeof(dos_header
);
1470 dos
->AddressOfNewExeHeader
= dosStubSize
;
1472 // Write DOS program.
1473 memcpy(buf
, dosProgram
, sizeof(dosProgram
));
1474 buf
+= sizeof(dosProgram
);
1477 memcpy(buf
, PEMagic
, sizeof(PEMagic
));
1478 buf
+= sizeof(PEMagic
);
1480 // Write COFF header
1481 auto *coff
= reinterpret_cast<coff_file_header
*>(buf
);
1482 buf
+= sizeof(*coff
);
1483 switch (config
->machine
) {
1485 coff
->Machine
= AMD64
;
1488 coff
->Machine
= ARM64
;
1491 coff
->Machine
= config
->machine
;
1493 coff
->NumberOfSections
= ctx
.outputSections
.size();
1494 coff
->Characteristics
= IMAGE_FILE_EXECUTABLE_IMAGE
;
1495 if (config
->largeAddressAware
)
1496 coff
->Characteristics
|= IMAGE_FILE_LARGE_ADDRESS_AWARE
;
1497 if (!config
->is64())
1498 coff
->Characteristics
|= IMAGE_FILE_32BIT_MACHINE
;
1500 coff
->Characteristics
|= IMAGE_FILE_DLL
;
1501 if (config
->driverUponly
)
1502 coff
->Characteristics
|= IMAGE_FILE_UP_SYSTEM_ONLY
;
1503 if (!config
->relocatable
)
1504 coff
->Characteristics
|= IMAGE_FILE_RELOCS_STRIPPED
;
1505 if (config
->swaprunCD
)
1506 coff
->Characteristics
|= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP
;
1507 if (config
->swaprunNet
)
1508 coff
->Characteristics
|= IMAGE_FILE_NET_RUN_FROM_SWAP
;
1509 coff
->SizeOfOptionalHeader
=
1510 sizeof(PEHeaderTy
) + sizeof(data_directory
) * numberOfDataDirectory
;
1513 auto *pe
= reinterpret_cast<PEHeaderTy
*>(buf
);
1515 pe
->Magic
= config
->is64() ? PE32Header::PE32_PLUS
: PE32Header::PE32
;
1517 // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1518 // reason signing the resulting PE file with Authenticode produces a
1519 // signature that fails to validate on Windows 7 (but is OK on 10).
1520 // Set it to 14.0, which is what VS2015 outputs, and which avoids
1522 pe
->MajorLinkerVersion
= 14;
1523 pe
->MinorLinkerVersion
= 0;
1525 pe
->ImageBase
= config
->imageBase
;
1526 pe
->SectionAlignment
= config
->align
;
1527 pe
->FileAlignment
= config
->fileAlign
;
1528 pe
->MajorImageVersion
= config
->majorImageVersion
;
1529 pe
->MinorImageVersion
= config
->minorImageVersion
;
1530 pe
->MajorOperatingSystemVersion
= config
->majorOSVersion
;
1531 pe
->MinorOperatingSystemVersion
= config
->minorOSVersion
;
1532 pe
->MajorSubsystemVersion
= config
->majorSubsystemVersion
;
1533 pe
->MinorSubsystemVersion
= config
->minorSubsystemVersion
;
1534 pe
->Subsystem
= config
->subsystem
;
1535 pe
->SizeOfImage
= sizeOfImage
;
1536 pe
->SizeOfHeaders
= sizeOfHeaders
;
1537 if (!config
->noEntry
) {
1538 Defined
*entry
= cast
<Defined
>(config
->entry
);
1539 pe
->AddressOfEntryPoint
= entry
->getRVA();
1540 // Pointer to thumb code must have the LSB set, so adjust it.
1541 if (config
->machine
== ARMNT
)
1542 pe
->AddressOfEntryPoint
|= 1;
1544 pe
->SizeOfStackReserve
= config
->stackReserve
;
1545 pe
->SizeOfStackCommit
= config
->stackCommit
;
1546 pe
->SizeOfHeapReserve
= config
->heapReserve
;
1547 pe
->SizeOfHeapCommit
= config
->heapCommit
;
1548 if (config
->appContainer
)
1549 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER
;
1550 if (config
->driverWdm
)
1551 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER
;
1552 if (config
->dynamicBase
)
1553 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE
;
1554 if (config
->highEntropyVA
)
1555 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA
;
1556 if (!config
->allowBind
)
1557 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_BIND
;
1558 if (config
->nxCompat
)
1559 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT
;
1560 if (!config
->allowIsolation
)
1561 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION
;
1562 if (config
->guardCF
!= GuardCFLevel::Off
)
1563 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_GUARD_CF
;
1564 if (config
->integrityCheck
)
1565 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY
;
1566 if (setNoSEHCharacteristic
|| config
->noSEH
)
1567 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_SEH
;
1568 if (config
->terminalServerAware
)
1569 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE
;
1570 pe
->NumberOfRvaAndSize
= numberOfDataDirectory
;
1571 if (textSec
->getVirtualSize()) {
1572 pe
->BaseOfCode
= textSec
->getRVA();
1573 pe
->SizeOfCode
= textSec
->getRawSize();
1575 pe
->SizeOfInitializedData
= getSizeOfInitializedData();
1577 // Write data directory
1578 auto *dir
= reinterpret_cast<data_directory
*>(buf
);
1579 buf
+= sizeof(*dir
) * numberOfDataDirectory
;
1581 dir
[EXPORT_TABLE
].RelativeVirtualAddress
= edataStart
->getRVA();
1582 dir
[EXPORT_TABLE
].Size
=
1583 edataEnd
->getRVA() + edataEnd
->getSize() - edataStart
->getRVA();
1585 if (importTableStart
) {
1586 dir
[IMPORT_TABLE
].RelativeVirtualAddress
= importTableStart
->getRVA();
1587 dir
[IMPORT_TABLE
].Size
= importTableSize
;
1590 dir
[IAT
].RelativeVirtualAddress
= iatStart
->getRVA();
1591 dir
[IAT
].Size
= iatSize
;
1593 if (rsrcSec
->getVirtualSize()) {
1594 dir
[RESOURCE_TABLE
].RelativeVirtualAddress
= rsrcSec
->getRVA();
1595 dir
[RESOURCE_TABLE
].Size
= rsrcSec
->getVirtualSize();
1598 dir
[EXCEPTION_TABLE
].RelativeVirtualAddress
= firstPdata
->getRVA();
1599 dir
[EXCEPTION_TABLE
].Size
=
1600 lastPdata
->getRVA() + lastPdata
->getSize() - firstPdata
->getRVA();
1602 if (relocSec
->getVirtualSize()) {
1603 dir
[BASE_RELOCATION_TABLE
].RelativeVirtualAddress
= relocSec
->getRVA();
1604 dir
[BASE_RELOCATION_TABLE
].Size
= relocSec
->getVirtualSize();
1606 if (Symbol
*sym
= ctx
.symtab
.findUnderscore("_tls_used")) {
1607 if (Defined
*b
= dyn_cast
<Defined
>(sym
)) {
1608 dir
[TLS_TABLE
].RelativeVirtualAddress
= b
->getRVA();
1609 dir
[TLS_TABLE
].Size
= config
->is64()
1610 ? sizeof(object::coff_tls_directory64
)
1611 : sizeof(object::coff_tls_directory32
);
1614 if (debugDirectory
) {
1615 dir
[DEBUG_DIRECTORY
].RelativeVirtualAddress
= debugDirectory
->getRVA();
1616 dir
[DEBUG_DIRECTORY
].Size
= debugDirectory
->getSize();
1618 if (Symbol
*sym
= ctx
.symtab
.findUnderscore("_load_config_used")) {
1619 if (auto *b
= dyn_cast
<DefinedRegular
>(sym
)) {
1620 SectionChunk
*sc
= b
->getChunk();
1621 assert(b
->getRVA() >= sc
->getRVA());
1622 uint64_t offsetInChunk
= b
->getRVA() - sc
->getRVA();
1623 if (!sc
->hasData
|| offsetInChunk
+ 4 > sc
->getSize())
1624 fatal("_load_config_used is malformed");
1626 ArrayRef
<uint8_t> secContents
= sc
->getContents();
1627 uint32_t loadConfigSize
=
1628 *reinterpret_cast<const ulittle32_t
*>(&secContents
[offsetInChunk
]);
1629 if (offsetInChunk
+ loadConfigSize
> sc
->getSize())
1630 fatal("_load_config_used is too large");
1631 dir
[LOAD_CONFIG_TABLE
].RelativeVirtualAddress
= b
->getRVA();
1632 dir
[LOAD_CONFIG_TABLE
].Size
= loadConfigSize
;
1635 if (!delayIdata
.empty()) {
1636 dir
[DELAY_IMPORT_DESCRIPTOR
].RelativeVirtualAddress
=
1637 delayIdata
.getDirRVA();
1638 dir
[DELAY_IMPORT_DESCRIPTOR
].Size
= delayIdata
.getDirSize();
1641 // Write section table
1642 for (OutputSection
*sec
: ctx
.outputSections
) {
1643 sec
->writeHeaderTo(buf
, config
->debug
);
1644 buf
+= sizeof(coff_section
);
1646 sectionTable
= ArrayRef
<uint8_t>(
1647 buf
- ctx
.outputSections
.size() * sizeof(coff_section
), buf
);
1649 if (outputSymtab
.empty() && strtab
.empty())
1652 coff
->PointerToSymbolTable
= pointerToSymbolTable
;
1653 uint32_t numberOfSymbols
= outputSymtab
.size();
1654 coff
->NumberOfSymbols
= numberOfSymbols
;
1655 auto *symbolTable
= reinterpret_cast<coff_symbol16
*>(
1656 buffer
->getBufferStart() + coff
->PointerToSymbolTable
);
1657 for (size_t i
= 0; i
!= numberOfSymbols
; ++i
)
1658 symbolTable
[i
] = outputSymtab
[i
];
1659 // Create the string table, it follows immediately after the symbol table.
1660 // The first 4 bytes is length including itself.
1661 buf
= reinterpret_cast<uint8_t *>(&symbolTable
[numberOfSymbols
]);
1662 write32le(buf
, strtab
.size() + 4);
1663 if (!strtab
.empty())
1664 memcpy(buf
+ 4, strtab
.data(), strtab
.size());
1667 void Writer::openFile(StringRef path
) {
1669 FileOutputBuffer::create(path
, fileSize
, FileOutputBuffer::F_executable
),
1670 "failed to open " + path
);
1673 void Writer::createSEHTable() {
1674 SymbolRVASet handlers
;
1675 for (ObjFile
*file
: ctx
.objFileInstances
) {
1676 if (!file
->hasSafeSEH())
1677 error("/safeseh: " + file
->getName() + " is not compatible with SEH");
1678 markSymbolsForRVATable(file
, file
->getSXDataChunks(), handlers
);
1681 // Set the "no SEH" characteristic if there really were no handlers, or if
1682 // there is no load config object to point to the table of handlers.
1683 setNoSEHCharacteristic
=
1684 handlers
.empty() || !ctx
.symtab
.findUnderscore("_load_config_used");
1686 maybeAddRVATable(std::move(handlers
), "__safe_se_handler_table",
1687 "__safe_se_handler_count");
1690 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1691 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1692 // symbol's offset into that Chunk.
1693 static void addSymbolToRVASet(SymbolRVASet
&rvaSet
, Defined
*s
) {
1694 Chunk
*c
= s
->getChunk();
1695 if (auto *sc
= dyn_cast
<SectionChunk
>(c
))
1696 c
= sc
->repl
; // Look through ICF replacement.
1697 uint32_t off
= s
->getRVA() - (c
? c
->getRVA() : 0);
1698 rvaSet
.insert({c
, off
});
1701 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1702 // symbol in an executable section.
1703 static void maybeAddAddressTakenFunction(SymbolRVASet
&addressTakenSyms
,
1708 switch (s
->kind()) {
1709 case Symbol::DefinedLocalImportKind
:
1710 case Symbol::DefinedImportDataKind
:
1711 // Defines an __imp_ pointer, so it is data, so it is ignored.
1713 case Symbol::DefinedCommonKind
:
1714 // Common is always data, so it is ignored.
1716 case Symbol::DefinedAbsoluteKind
:
1717 case Symbol::DefinedSyntheticKind
:
1718 // Absolute is never code, synthetic generally isn't and usually isn't
1721 case Symbol::LazyArchiveKind
:
1722 case Symbol::LazyObjectKind
:
1723 case Symbol::LazyDLLSymbolKind
:
1724 case Symbol::UndefinedKind
:
1725 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1726 // symbols shouldn't have relocations.
1729 case Symbol::DefinedImportThunkKind
:
1730 // Thunks are always code, include them.
1731 addSymbolToRVASet(addressTakenSyms
, cast
<Defined
>(s
));
1734 case Symbol::DefinedRegularKind
: {
1735 // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1736 // address taken if the symbol type is function and it's in an executable
1738 auto *d
= cast
<DefinedRegular
>(s
);
1739 if (d
->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION
) {
1740 SectionChunk
*sc
= dyn_cast
<SectionChunk
>(d
->getChunk());
1741 if (sc
&& sc
->live
&&
1742 sc
->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE
)
1743 addSymbolToRVASet(addressTakenSyms
, d
);
1750 // Visit all relocations from all section contributions of this object file and
1751 // mark the relocation target as address-taken.
1752 void Writer::markSymbolsWithRelocations(ObjFile
*file
,
1753 SymbolRVASet
&usedSymbols
) {
1754 for (Chunk
*c
: file
->getChunks()) {
1755 // We only care about live section chunks. Common chunks and other chunks
1756 // don't generally contain relocations.
1757 SectionChunk
*sc
= dyn_cast
<SectionChunk
>(c
);
1758 if (!sc
|| !sc
->live
)
1761 for (const coff_relocation
&reloc
: sc
->getRelocs()) {
1762 if (ctx
.config
.machine
== I386
&&
1763 reloc
.Type
== COFF::IMAGE_REL_I386_REL32
)
1764 // Ignore relative relocations on x86. On x86_64 they can't be ignored
1765 // since they're also used to compute absolute addresses.
1768 Symbol
*ref
= sc
->file
->getSymbol(reloc
.SymbolTableIndex
);
1769 maybeAddAddressTakenFunction(usedSymbols
, ref
);
1774 // Create the guard function id table. This is a table of RVAs of all
1775 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1777 void Writer::createGuardCFTables() {
1778 Configuration
*config
= &ctx
.config
;
1780 SymbolRVASet addressTakenSyms
;
1781 SymbolRVASet giatsRVASet
;
1782 std::vector
<Symbol
*> giatsSymbols
;
1783 SymbolRVASet longJmpTargets
;
1784 SymbolRVASet ehContTargets
;
1785 for (ObjFile
*file
: ctx
.objFileInstances
) {
1786 // If the object was compiled with /guard:cf, the address taken symbols
1787 // are in .gfids$y sections, and the longjmp targets are in .gljmp$y
1788 // sections. If the object was not compiled with /guard:cf, we assume there
1789 // were no setjmp targets, and that all code symbols with relocations are
1790 // possibly address-taken.
1791 if (file
->hasGuardCF()) {
1792 markSymbolsForRVATable(file
, file
->getGuardFidChunks(), addressTakenSyms
);
1793 markSymbolsForRVATable(file
, file
->getGuardIATChunks(), giatsRVASet
);
1794 getSymbolsFromSections(file
, file
->getGuardIATChunks(), giatsSymbols
);
1795 markSymbolsForRVATable(file
, file
->getGuardLJmpChunks(), longJmpTargets
);
1797 markSymbolsWithRelocations(file
, addressTakenSyms
);
1799 // If the object was compiled with /guard:ehcont, the ehcont targets are in
1800 // .gehcont$y sections.
1801 if (file
->hasGuardEHCont())
1802 markSymbolsForRVATable(file
, file
->getGuardEHContChunks(), ehContTargets
);
1805 // Mark the image entry as address-taken.
1807 maybeAddAddressTakenFunction(addressTakenSyms
, config
->entry
);
1809 // Mark exported symbols in executable sections as address-taken.
1810 for (Export
&e
: config
->exports
)
1811 maybeAddAddressTakenFunction(addressTakenSyms
, e
.sym
);
1813 // For each entry in the .giats table, check if it has a corresponding load
1814 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1815 // so, add the load thunk to the address taken (.gfids) table.
1816 for (Symbol
*s
: giatsSymbols
) {
1817 if (auto *di
= dyn_cast
<DefinedImportData
>(s
)) {
1818 if (di
->loadThunkSym
)
1819 addSymbolToRVASet(addressTakenSyms
, di
->loadThunkSym
);
1823 // Ensure sections referenced in the gfid table are 16-byte aligned.
1824 for (const ChunkAndOffset
&c
: addressTakenSyms
)
1825 if (c
.inputChunk
->getAlignment() < 16)
1826 c
.inputChunk
->setAlignment(16);
1828 maybeAddRVATable(std::move(addressTakenSyms
), "__guard_fids_table",
1829 "__guard_fids_count");
1831 // Add the Guard Address Taken IAT Entry Table (.giats).
1832 maybeAddRVATable(std::move(giatsRVASet
), "__guard_iat_table",
1833 "__guard_iat_count");
1835 // Add the longjmp target table unless the user told us not to.
1836 if (config
->guardCF
& GuardCFLevel::LongJmp
)
1837 maybeAddRVATable(std::move(longJmpTargets
), "__guard_longjmp_table",
1838 "__guard_longjmp_count");
1840 // Add the ehcont target table unless the user told us not to.
1841 if (config
->guardCF
& GuardCFLevel::EHCont
)
1842 maybeAddRVATable(std::move(ehContTargets
), "__guard_eh_cont_table",
1843 "__guard_eh_cont_count");
1845 // Set __guard_flags, which will be used in the load config to indicate that
1846 // /guard:cf was enabled.
1847 uint32_t guardFlags
= uint32_t(GuardFlags::CF_INSTRUMENTED
) |
1848 uint32_t(GuardFlags::CF_FUNCTION_TABLE_PRESENT
);
1849 if (config
->guardCF
& GuardCFLevel::LongJmp
)
1850 guardFlags
|= uint32_t(GuardFlags::CF_LONGJUMP_TABLE_PRESENT
);
1851 if (config
->guardCF
& GuardCFLevel::EHCont
)
1852 guardFlags
|= uint32_t(GuardFlags::EH_CONTINUATION_TABLE_PRESENT
);
1853 Symbol
*flagSym
= ctx
.symtab
.findUnderscore("__guard_flags");
1854 cast
<DefinedAbsolute
>(flagSym
)->setVA(guardFlags
);
1857 // Take a list of input sections containing symbol table indices and add those
1858 // symbols to a vector. The challenge is that symbol RVAs are not known and
1859 // depend on the table size, so we can't directly build a set of integers.
1860 void Writer::getSymbolsFromSections(ObjFile
*file
,
1861 ArrayRef
<SectionChunk
*> symIdxChunks
,
1862 std::vector
<Symbol
*> &symbols
) {
1863 for (SectionChunk
*c
: symIdxChunks
) {
1864 // Skip sections discarded by linker GC. This comes up when a .gfids section
1865 // is associated with something like a vtable and the vtable is discarded.
1866 // In this case, the associated gfids section is discarded, and we don't
1867 // mark the virtual member functions as address-taken by the vtable.
1871 // Validate that the contents look like symbol table indices.
1872 ArrayRef
<uint8_t> data
= c
->getContents();
1873 if (data
.size() % 4 != 0) {
1874 warn("ignoring " + c
->getSectionName() +
1875 " symbol table index section in object " + toString(file
));
1879 // Read each symbol table index and check if that symbol was included in the
1880 // final link. If so, add it to the vector of symbols.
1881 ArrayRef
<ulittle32_t
> symIndices(
1882 reinterpret_cast<const ulittle32_t
*>(data
.data()), data
.size() / 4);
1883 ArrayRef
<Symbol
*> objSymbols
= file
->getSymbols();
1884 for (uint32_t symIndex
: symIndices
) {
1885 if (symIndex
>= objSymbols
.size()) {
1886 warn("ignoring invalid symbol table index in section " +
1887 c
->getSectionName() + " in object " + toString(file
));
1890 if (Symbol
*s
= objSymbols
[symIndex
]) {
1892 symbols
.push_back(cast
<Symbol
>(s
));
1898 // Take a list of input sections containing symbol table indices and add those
1899 // symbols to an RVA table.
1900 void Writer::markSymbolsForRVATable(ObjFile
*file
,
1901 ArrayRef
<SectionChunk
*> symIdxChunks
,
1902 SymbolRVASet
&tableSymbols
) {
1903 std::vector
<Symbol
*> syms
;
1904 getSymbolsFromSections(file
, symIdxChunks
, syms
);
1906 for (Symbol
*s
: syms
)
1907 addSymbolToRVASet(tableSymbols
, cast
<Defined
>(s
));
1910 // Replace the absolute table symbol with a synthetic symbol pointing to
1911 // tableChunk so that we can emit base relocations for it and resolve section
1912 // relative relocations.
1913 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols
, StringRef tableSym
,
1914 StringRef countSym
, bool hasFlag
) {
1915 if (tableSymbols
.empty())
1918 NonSectionChunk
*tableChunk
;
1920 tableChunk
= make
<RVAFlagTableChunk
>(std::move(tableSymbols
));
1922 tableChunk
= make
<RVATableChunk
>(std::move(tableSymbols
));
1923 rdataSec
->addChunk(tableChunk
);
1925 Symbol
*t
= ctx
.symtab
.findUnderscore(tableSym
);
1926 Symbol
*c
= ctx
.symtab
.findUnderscore(countSym
);
1927 replaceSymbol
<DefinedSynthetic
>(t
, t
->getName(), tableChunk
);
1928 cast
<DefinedAbsolute
>(c
)->setVA(tableChunk
->getSize() / (hasFlag
? 5 : 4));
1931 // MinGW specific. Gather all relocations that are imported from a DLL even
1932 // though the code didn't expect it to, produce the table that the runtime
1933 // uses for fixing them up, and provide the synthetic symbols that the
1934 // runtime uses for finding the table.
1935 void Writer::createRuntimePseudoRelocs() {
1936 std::vector
<RuntimePseudoReloc
> rels
;
1938 for (Chunk
*c
: ctx
.symtab
.getChunks()) {
1939 auto *sc
= dyn_cast
<SectionChunk
>(c
);
1940 if (!sc
|| !sc
->live
)
1942 sc
->getRuntimePseudoRelocs(rels
);
1945 if (!ctx
.config
.pseudoRelocs
) {
1946 // Not writing any pseudo relocs; if some were needed, error out and
1947 // indicate what required them.
1948 for (const RuntimePseudoReloc
&rpr
: rels
)
1949 error("automatic dllimport of " + rpr
.sym
->getName() + " in " +
1950 toString(rpr
.target
->file
) + " requires pseudo relocations");
1955 log("Writing " + Twine(rels
.size()) + " runtime pseudo relocations");
1956 PseudoRelocTableChunk
*table
= make
<PseudoRelocTableChunk
>(rels
);
1957 rdataSec
->addChunk(table
);
1958 EmptyChunk
*endOfList
= make
<EmptyChunk
>();
1959 rdataSec
->addChunk(endOfList
);
1961 Symbol
*headSym
= ctx
.symtab
.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1963 ctx
.symtab
.findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1964 replaceSymbol
<DefinedSynthetic
>(headSym
, headSym
->getName(), table
);
1965 replaceSymbol
<DefinedSynthetic
>(endSym
, endSym
->getName(), endOfList
);
1969 // The MinGW .ctors and .dtors lists have sentinels at each end;
1970 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1971 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1972 // and __DTOR_LIST__ respectively.
1973 void Writer::insertCtorDtorSymbols() {
1974 AbsolutePointerChunk
*ctorListHead
= make
<AbsolutePointerChunk
>(ctx
, -1);
1975 AbsolutePointerChunk
*ctorListEnd
= make
<AbsolutePointerChunk
>(ctx
, 0);
1976 AbsolutePointerChunk
*dtorListHead
= make
<AbsolutePointerChunk
>(ctx
, -1);
1977 AbsolutePointerChunk
*dtorListEnd
= make
<AbsolutePointerChunk
>(ctx
, 0);
1978 ctorsSec
->insertChunkAtStart(ctorListHead
);
1979 ctorsSec
->addChunk(ctorListEnd
);
1980 dtorsSec
->insertChunkAtStart(dtorListHead
);
1981 dtorsSec
->addChunk(dtorListEnd
);
1983 Symbol
*ctorListSym
= ctx
.symtab
.findUnderscore("__CTOR_LIST__");
1984 Symbol
*dtorListSym
= ctx
.symtab
.findUnderscore("__DTOR_LIST__");
1985 replaceSymbol
<DefinedSynthetic
>(ctorListSym
, ctorListSym
->getName(),
1987 replaceSymbol
<DefinedSynthetic
>(dtorListSym
, dtorListSym
->getName(),
1991 // Handles /section options to allow users to overwrite
1992 // section attributes.
1993 void Writer::setSectionPermissions() {
1994 llvm::TimeTraceScope
timeScope("Sections permissions");
1995 for (auto &p
: ctx
.config
.section
) {
1996 StringRef name
= p
.first
;
1997 uint32_t perm
= p
.second
;
1998 for (OutputSection
*sec
: ctx
.outputSections
)
1999 if (sec
->name
== name
)
2000 sec
->setPermissions(perm
);
2004 // Write section contents to a mmap'ed file.
2005 void Writer::writeSections() {
2006 llvm::TimeTraceScope
timeScope("Write sections");
2007 uint8_t *buf
= buffer
->getBufferStart();
2008 for (OutputSection
*sec
: ctx
.outputSections
) {
2009 uint8_t *secBuf
= buf
+ sec
->getFileOff();
2010 // Fill gaps between functions in .text with INT3 instructions
2011 // instead of leaving as NUL bytes (which can be interpreted as
2012 // ADD instructions).
2013 if ((sec
->header
.Characteristics
& IMAGE_SCN_CNT_CODE
) &&
2014 (ctx
.config
.machine
== AMD64
|| ctx
.config
.machine
== I386
))
2015 memset(secBuf
, 0xCC, sec
->getRawSize());
2016 parallelForEach(sec
->chunks
, [&](Chunk
*c
) {
2017 c
->writeTo(secBuf
+ c
->getRVA() - sec
->getRVA());
2022 void Writer::writeBuildId() {
2023 llvm::TimeTraceScope
timeScope("Write build ID");
2025 // There are two important parts to the build ID.
2026 // 1) If building with debug info, the COFF debug directory contains a
2027 // timestamp as well as a Guid and Age of the PDB.
2028 // 2) In all cases, the PE COFF file header also contains a timestamp.
2029 // For reproducibility, instead of a timestamp we want to use a hash of the
2031 Configuration
*config
= &ctx
.config
;
2033 if (config
->debug
) {
2034 assert(buildId
&& "BuildId is not set!");
2035 // BuildId->BuildId was filled in when the PDB was written.
2038 // At this point the only fields in the COFF file which remain unset are the
2039 // "timestamp" in the COFF file header, and the ones in the coff debug
2040 // directory. Now we can hash the file and write that hash to the various
2041 // timestamp fields in the file.
2042 StringRef
outputFileData(
2043 reinterpret_cast<const char *>(buffer
->getBufferStart()),
2044 buffer
->getBufferSize());
2046 uint32_t timestamp
= config
->timestamp
;
2048 bool generateSyntheticBuildId
=
2049 config
->mingw
&& config
->debug
&& config
->pdbPath
.empty();
2051 if (config
->repro
|| generateSyntheticBuildId
)
2052 hash
= xxh3_64bits(outputFileData
);
2055 timestamp
= static_cast<uint32_t>(hash
);
2057 if (generateSyntheticBuildId
) {
2058 // For MinGW builds without a PDB file, we still generate a build id
2059 // to allow associating a crash dump to the executable.
2060 buildId
->buildId
->PDB70
.CVSignature
= OMF::Signature::PDB70
;
2061 buildId
->buildId
->PDB70
.Age
= 1;
2062 memcpy(buildId
->buildId
->PDB70
.Signature
, &hash
, 8);
2063 // xxhash only gives us 8 bytes, so put some fixed data in the other half.
2064 memcpy(&buildId
->buildId
->PDB70
.Signature
[8], "LLD PDB.", 8);
2068 debugDirectory
->setTimeDateStamp(timestamp
);
2070 uint8_t *buf
= buffer
->getBufferStart();
2071 buf
+= dosStubSize
+ sizeof(PEMagic
);
2072 object::coff_file_header
*coffHeader
=
2073 reinterpret_cast<coff_file_header
*>(buf
);
2074 coffHeader
->TimeDateStamp
= timestamp
;
2077 // Sort .pdata section contents according to PE/COFF spec 5.5.
2078 void Writer::sortExceptionTable() {
2081 llvm::TimeTraceScope
timeScope("Sort exception table");
2082 // We assume .pdata contains function table entries only.
2083 auto bufAddr
= [&](Chunk
*c
) {
2084 OutputSection
*os
= ctx
.getOutputSection(c
);
2085 return buffer
->getBufferStart() + os
->getFileOff() + c
->getRVA() -
2088 uint8_t *begin
= bufAddr(firstPdata
);
2089 uint8_t *end
= bufAddr(lastPdata
) + lastPdata
->getSize();
2090 if (ctx
.config
.machine
== AMD64
) {
2091 struct Entry
{ ulittle32_t begin
, end
, unwind
; };
2092 if ((end
- begin
) % sizeof(Entry
) != 0) {
2093 fatal("unexpected .pdata size: " + Twine(end
- begin
) +
2094 " is not a multiple of " + Twine(sizeof(Entry
)));
2097 MutableArrayRef
<Entry
>((Entry
*)begin
, (Entry
*)end
),
2098 [](const Entry
&a
, const Entry
&b
) { return a
.begin
< b
.begin
; });
2101 if (ctx
.config
.machine
== ARMNT
|| ctx
.config
.machine
== ARM64
) {
2102 struct Entry
{ ulittle32_t begin
, unwind
; };
2103 if ((end
- begin
) % sizeof(Entry
) != 0) {
2104 fatal("unexpected .pdata size: " + Twine(end
- begin
) +
2105 " is not a multiple of " + Twine(sizeof(Entry
)));
2108 MutableArrayRef
<Entry
>((Entry
*)begin
, (Entry
*)end
),
2109 [](const Entry
&a
, const Entry
&b
) { return a
.begin
< b
.begin
; });
2112 lld::errs() << "warning: don't know how to handle .pdata.\n";
2115 // The CRT section contains, among other things, the array of function
2116 // pointers that initialize every global variable that is not trivially
2117 // constructed. The CRT calls them one after the other prior to invoking
2120 // As per C++ spec, 3.6.2/2.3,
2121 // "Variables with ordered initialization defined within a single
2122 // translation unit shall be initialized in the order of their definitions
2123 // in the translation unit"
2125 // It is therefore critical to sort the chunks containing the function
2126 // pointers in the order that they are listed in the object file (top to
2127 // bottom), otherwise global objects might not be initialized in the
2129 void Writer::sortCRTSectionChunks(std::vector
<Chunk
*> &chunks
) {
2130 auto sectionChunkOrder
= [](const Chunk
*a
, const Chunk
*b
) {
2131 auto sa
= dyn_cast
<SectionChunk
>(a
);
2132 auto sb
= dyn_cast
<SectionChunk
>(b
);
2133 assert(sa
&& sb
&& "Non-section chunks in CRT section!");
2135 StringRef sAObj
= sa
->file
->mb
.getBufferIdentifier();
2136 StringRef sBObj
= sb
->file
->mb
.getBufferIdentifier();
2138 return sAObj
== sBObj
&& sa
->getSectionNumber() < sb
->getSectionNumber();
2140 llvm::stable_sort(chunks
, sectionChunkOrder
);
2142 if (ctx
.config
.verbose
) {
2143 for (auto &c
: chunks
) {
2144 auto sc
= dyn_cast
<SectionChunk
>(c
);
2145 log(" " + sc
->file
->mb
.getBufferIdentifier().str() +
2146 ", SectionID: " + Twine(sc
->getSectionNumber()));
2151 OutputSection
*Writer::findSection(StringRef name
) {
2152 for (OutputSection
*sec
: ctx
.outputSections
)
2153 if (sec
->name
== name
)
2158 uint32_t Writer::getSizeOfInitializedData() {
2160 for (OutputSection
*s
: ctx
.outputSections
)
2161 if (s
->header
.Characteristics
& IMAGE_SCN_CNT_INITIALIZED_DATA
)
2162 res
+= s
->getRawSize();
2166 // Add base relocations to .reloc section.
2167 void Writer::addBaserels() {
2168 if (!ctx
.config
.relocatable
)
2170 relocSec
->chunks
.clear();
2171 std::vector
<Baserel
> v
;
2172 for (OutputSection
*sec
: ctx
.outputSections
) {
2173 if (sec
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
)
2175 llvm::TimeTraceScope
timeScope("Base relocations: ", sec
->name
);
2176 // Collect all locations for base relocations.
2177 for (Chunk
*c
: sec
->chunks
)
2179 // Add the addresses to .reloc section.
2181 addBaserelBlocks(v
);
2186 // Add addresses to .reloc section. Note that addresses are grouped by page.
2187 void Writer::addBaserelBlocks(std::vector
<Baserel
> &v
) {
2188 const uint32_t mask
= ~uint32_t(pageSize
- 1);
2189 uint32_t page
= v
[0].rva
& mask
;
2190 size_t i
= 0, j
= 1;
2191 for (size_t e
= v
.size(); j
< e
; ++j
) {
2192 uint32_t p
= v
[j
].rva
& mask
;
2195 relocSec
->addChunk(make
<BaserelChunk
>(page
, &v
[i
], &v
[0] + j
));
2201 relocSec
->addChunk(make
<BaserelChunk
>(page
, &v
[i
], &v
[0] + j
));
2204 PartialSection
*Writer::createPartialSection(StringRef name
,
2205 uint32_t outChars
) {
2206 PartialSection
*&pSec
= partialSections
[{name
, outChars
}];
2209 pSec
= make
<PartialSection
>(name
, outChars
);
2213 PartialSection
*Writer::findPartialSection(StringRef name
, uint32_t outChars
) {
2214 auto it
= partialSections
.find({name
, outChars
});
2215 if (it
!= partialSections
.end())
2220 void Writer::fixTlsAlignment() {
2222 dyn_cast_or_null
<Defined
>(ctx
.symtab
.findUnderscore("_tls_used"));
2226 OutputSection
*sec
= ctx
.getOutputSection(tlsSym
->getChunk());
2227 assert(sec
&& tlsSym
->getRVA() >= sec
->getRVA() &&
2228 "no output section for _tls_used");
2230 uint8_t *secBuf
= buffer
->getBufferStart() + sec
->getFileOff();
2231 uint64_t tlsOffset
= tlsSym
->getRVA() - sec
->getRVA();
2232 uint64_t directorySize
= ctx
.config
.is64()
2233 ? sizeof(object::coff_tls_directory64
)
2234 : sizeof(object::coff_tls_directory32
);
2236 if (tlsOffset
+ directorySize
> sec
->getRawSize())
2237 fatal("_tls_used sym is malformed");
2239 if (ctx
.config
.is64()) {
2240 object::coff_tls_directory64
*tlsDir
=
2241 reinterpret_cast<object::coff_tls_directory64
*>(&secBuf
[tlsOffset
]);
2242 tlsDir
->setAlignment(tlsAlignment
);
2244 object::coff_tls_directory32
*tlsDir
=
2245 reinterpret_cast<object::coff_tls_directory32
*>(&secBuf
[tlsOffset
]);
2246 tlsDir
->setAlignment(tlsAlignment
);
2250 void Writer::checkLoadConfig() {
2251 Symbol
*sym
= ctx
.symtab
.findUnderscore("_load_config_used");
2252 auto *b
= cast_if_present
<DefinedRegular
>(sym
);
2254 if (ctx
.config
.guardCF
!= GuardCFLevel::Off
)
2255 warn("Control Flow Guard is enabled but '_load_config_used' is missing");
2259 OutputSection
*sec
= ctx
.getOutputSection(b
->getChunk());
2260 uint8_t *buf
= buffer
->getBufferStart();
2261 uint8_t *secBuf
= buf
+ sec
->getFileOff();
2262 uint8_t *symBuf
= secBuf
+ (b
->getRVA() - sec
->getRVA());
2263 uint32_t expectedAlign
= ctx
.config
.is64() ? 8 : 4;
2264 if (b
->getChunk()->getAlignment() < expectedAlign
)
2265 warn("'_load_config_used' is misaligned (expected alignment to be " +
2266 Twine(expectedAlign
) + " bytes, got " +
2267 Twine(b
->getChunk()->getAlignment()) + " instead)");
2268 else if (!isAligned(Align(expectedAlign
), b
->getRVA()))
2269 warn("'_load_config_used' is misaligned (RVA is 0x" +
2270 Twine::utohexstr(b
->getRVA()) + " not aligned to " +
2271 Twine(expectedAlign
) + " bytes)");
2273 if (ctx
.config
.is64())
2274 checkLoadConfigGuardData(
2275 reinterpret_cast<const coff_load_configuration64
*>(symBuf
));
2277 checkLoadConfigGuardData(
2278 reinterpret_cast<const coff_load_configuration32
*>(symBuf
));
2281 template <typename T
>
2282 void Writer::checkLoadConfigGuardData(const T
*loadConfig
) {
2283 size_t loadConfigSize
= loadConfig
->Size
;
2285 #define RETURN_IF_NOT_CONTAINS(field) \
2286 if (loadConfigSize < offsetof(T, field) + sizeof(T::field)) { \
2287 warn("'_load_config_used' structure too small to include " #field); \
2291 #define IF_CONTAINS(field) \
2292 if (loadConfigSize >= offsetof(T, field) + sizeof(T::field))
2294 #define CHECK_VA(field, sym) \
2295 if (auto *s = dyn_cast<DefinedSynthetic>(ctx.symtab.findUnderscore(sym))) \
2296 if (loadConfig->field != ctx.config.imageBase + s->getRVA()) \
2297 warn(#field " not set correctly in '_load_config_used'");
2299 #define CHECK_ABSOLUTE(field, sym) \
2300 if (auto *s = dyn_cast<DefinedAbsolute>(ctx.symtab.findUnderscore(sym))) \
2301 if (loadConfig->field != s->getVA()) \
2302 warn(#field " not set correctly in '_load_config_used'");
2304 if (ctx
.config
.guardCF
== GuardCFLevel::Off
)
2306 RETURN_IF_NOT_CONTAINS(GuardFlags
)
2307 CHECK_VA(GuardCFFunctionTable
, "__guard_fids_table")
2308 CHECK_ABSOLUTE(GuardCFFunctionCount
, "__guard_fids_count")
2309 CHECK_ABSOLUTE(GuardFlags
, "__guard_flags")
2310 IF_CONTAINS(GuardAddressTakenIatEntryCount
) {
2311 CHECK_VA(GuardAddressTakenIatEntryTable
, "__guard_iat_table")
2312 CHECK_ABSOLUTE(GuardAddressTakenIatEntryCount
, "__guard_iat_count")
2315 if (!(ctx
.config
.guardCF
& GuardCFLevel::LongJmp
))
2317 RETURN_IF_NOT_CONTAINS(GuardLongJumpTargetCount
)
2318 CHECK_VA(GuardLongJumpTargetTable
, "__guard_longjmp_table")
2319 CHECK_ABSOLUTE(GuardLongJumpTargetCount
, "__guard_longjmp_count")
2321 if (!(ctx
.config
.guardCF
& GuardCFLevel::EHCont
))
2323 RETURN_IF_NOT_CONTAINS(GuardEHContinuationCount
)
2324 CHECK_VA(GuardEHContinuationTable
, "__guard_eh_cont_table")
2325 CHECK_ABSOLUTE(GuardEHContinuationCount
, "__guard_eh_cont_count")
2327 #undef RETURN_IF_NOT_CONTAINS
2330 #undef CHECK_ABSOLUTE