Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / ELF / Arch / ARM.cpp
blobc10ffebc166640424095950a4605598f49eea373
1 //===- ARM.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "SymbolTable.h"
12 #include "Symbols.h"
13 #include "SyntheticSections.h"
14 #include "Target.h"
15 #include "lld/Common/ErrorHandler.h"
16 #include "lld/Common/Filesystem.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/Support/Endian.h"
20 using namespace llvm;
21 using namespace llvm::support::endian;
22 using namespace llvm::support;
23 using namespace llvm::ELF;
24 using namespace lld;
25 using namespace lld::elf;
26 using namespace llvm::object;
28 namespace {
29 class ARM final : public TargetInfo {
30 public:
31 ARM();
32 uint32_t calcEFlags() const override;
33 RelExpr getRelExpr(RelType type, const Symbol &s,
34 const uint8_t *loc) const override;
35 RelType getDynRel(RelType type) const override;
36 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
37 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
38 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
39 void writePltHeader(uint8_t *buf) const override;
40 void writePlt(uint8_t *buf, const Symbol &sym,
41 uint64_t pltEntryAddr) const override;
42 void addPltSymbols(InputSection &isec, uint64_t off) const override;
43 void addPltHeaderSymbols(InputSection &isd) const override;
44 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
45 uint64_t branchAddr, const Symbol &s,
46 int64_t a) const override;
47 uint32_t getThunkSectionSpacing() const override;
48 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
49 void relocate(uint8_t *loc, const Relocation &rel,
50 uint64_t val) const override;
52 enum class CodeState { Data = 0, Thumb = 2, Arm = 4 };
53 } // namespace
55 static DenseMap<InputSection *, SmallVector<const Defined *, 0>> sectionMap{};
57 ARM::ARM() {
58 copyRel = R_ARM_COPY;
59 relativeRel = R_ARM_RELATIVE;
60 iRelativeRel = R_ARM_IRELATIVE;
61 gotRel = R_ARM_GLOB_DAT;
62 pltRel = R_ARM_JUMP_SLOT;
63 symbolicRel = R_ARM_ABS32;
64 tlsGotRel = R_ARM_TLS_TPOFF32;
65 tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
66 tlsOffsetRel = R_ARM_TLS_DTPOFF32;
67 pltHeaderSize = 32;
68 pltEntrySize = 16;
69 ipltEntrySize = 16;
70 trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
71 needsThunks = true;
72 defaultMaxPageSize = 65536;
75 uint32_t ARM::calcEFlags() const {
76 // The ABIFloatType is used by loaders to detect the floating point calling
77 // convention.
78 uint32_t abiFloatType = 0;
80 // Set the EF_ARM_BE8 flag in the ELF header, if ELF file is big-endian
81 // with BE-8 code.
82 uint32_t armBE8 = 0;
84 if (config->armVFPArgs == ARMVFPArgKind::Base ||
85 config->armVFPArgs == ARMVFPArgKind::Default)
86 abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
87 else if (config->armVFPArgs == ARMVFPArgKind::VFP)
88 abiFloatType = EF_ARM_ABI_FLOAT_HARD;
90 if (!config->isLE && config->armBe8)
91 armBE8 = EF_ARM_BE8;
93 // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
94 // but we don't have any firm guarantees of conformance. Linux AArch64
95 // kernels (as of 2016) require an EABI version to be set.
96 return EF_ARM_EABI_VER5 | abiFloatType | armBE8;
99 RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
100 const uint8_t *loc) const {
101 switch (type) {
102 case R_ARM_ABS32:
103 case R_ARM_MOVW_ABS_NC:
104 case R_ARM_MOVT_ABS:
105 case R_ARM_THM_MOVW_ABS_NC:
106 case R_ARM_THM_MOVT_ABS:
107 case R_ARM_THM_ALU_ABS_G0_NC:
108 case R_ARM_THM_ALU_ABS_G1_NC:
109 case R_ARM_THM_ALU_ABS_G2_NC:
110 case R_ARM_THM_ALU_ABS_G3:
111 return R_ABS;
112 case R_ARM_THM_JUMP8:
113 case R_ARM_THM_JUMP11:
114 return R_PC;
115 case R_ARM_CALL:
116 case R_ARM_JUMP24:
117 case R_ARM_PC24:
118 case R_ARM_PLT32:
119 case R_ARM_PREL31:
120 case R_ARM_THM_JUMP19:
121 case R_ARM_THM_JUMP24:
122 case R_ARM_THM_CALL:
123 return R_PLT_PC;
124 case R_ARM_GOTOFF32:
125 // (S + A) - GOT_ORG
126 return R_GOTREL;
127 case R_ARM_GOT_BREL:
128 // GOT(S) + A - GOT_ORG
129 return R_GOT_OFF;
130 case R_ARM_GOT_PREL:
131 case R_ARM_TLS_IE32:
132 // GOT(S) + A - P
133 return R_GOT_PC;
134 case R_ARM_SBREL32:
135 return R_ARM_SBREL;
136 case R_ARM_TARGET1:
137 return config->target1Rel ? R_PC : R_ABS;
138 case R_ARM_TARGET2:
139 if (config->target2 == Target2Policy::Rel)
140 return R_PC;
141 if (config->target2 == Target2Policy::Abs)
142 return R_ABS;
143 return R_GOT_PC;
144 case R_ARM_TLS_GD32:
145 return R_TLSGD_PC;
146 case R_ARM_TLS_LDM32:
147 return R_TLSLD_PC;
148 case R_ARM_TLS_LDO32:
149 return R_DTPREL;
150 case R_ARM_BASE_PREL:
151 // B(S) + A - P
152 // FIXME: currently B(S) assumed to be .got, this may not hold for all
153 // platforms.
154 return R_GOTONLY_PC;
155 case R_ARM_MOVW_PREL_NC:
156 case R_ARM_MOVT_PREL:
157 case R_ARM_REL32:
158 case R_ARM_THM_MOVW_PREL_NC:
159 case R_ARM_THM_MOVT_PREL:
160 return R_PC;
161 case R_ARM_ALU_PC_G0:
162 case R_ARM_ALU_PC_G0_NC:
163 case R_ARM_ALU_PC_G1:
164 case R_ARM_ALU_PC_G1_NC:
165 case R_ARM_ALU_PC_G2:
166 case R_ARM_LDR_PC_G0:
167 case R_ARM_LDR_PC_G1:
168 case R_ARM_LDR_PC_G2:
169 case R_ARM_LDRS_PC_G0:
170 case R_ARM_LDRS_PC_G1:
171 case R_ARM_LDRS_PC_G2:
172 case R_ARM_THM_ALU_PREL_11_0:
173 case R_ARM_THM_PC8:
174 case R_ARM_THM_PC12:
175 return R_ARM_PCA;
176 case R_ARM_MOVW_BREL_NC:
177 case R_ARM_MOVW_BREL:
178 case R_ARM_MOVT_BREL:
179 case R_ARM_THM_MOVW_BREL_NC:
180 case R_ARM_THM_MOVW_BREL:
181 case R_ARM_THM_MOVT_BREL:
182 return R_ARM_SBREL;
183 case R_ARM_NONE:
184 return R_NONE;
185 case R_ARM_TLS_LE32:
186 return R_TPREL;
187 case R_ARM_V4BX:
188 // V4BX is just a marker to indicate there's a "bx rN" instruction at the
189 // given address. It can be used to implement a special linker mode which
190 // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
191 // not ARMv4 output, we can just ignore it.
192 return R_NONE;
193 default:
194 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
195 ") against symbol " + toString(s));
196 return R_NONE;
200 RelType ARM::getDynRel(RelType type) const {
201 if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
202 return R_ARM_ABS32;
203 return R_ARM_NONE;
206 void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
207 write32(buf, in.plt->getVA());
210 void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
211 // An ARM entry is the address of the ifunc resolver function.
212 write32(buf, s.getVA());
215 // Long form PLT Header that does not have any restrictions on the displacement
216 // of the .plt from the .got.plt.
217 static void writePltHeaderLong(uint8_t *buf) {
218 write32(buf + 0, 0xe52de004); // str lr, [sp,#-4]!
219 write32(buf + 4, 0xe59fe004); // ldr lr, L2
220 write32(buf + 8, 0xe08fe00e); // L1: add lr, pc, lr
221 write32(buf + 12, 0xe5bef008); // ldr pc, [lr, #8]
222 write32(buf + 16, 0x00000000); // L2: .word &(.got.plt) - L1 - 8
223 write32(buf + 20, 0xd4d4d4d4); // Pad to 32-byte boundary
224 write32(buf + 24, 0xd4d4d4d4); // Pad to 32-byte boundary
225 write32(buf + 28, 0xd4d4d4d4);
226 uint64_t gotPlt = in.gotPlt->getVA();
227 uint64_t l1 = in.plt->getVA() + 8;
228 write32(buf + 16, gotPlt - l1 - 8);
231 // The default PLT header requires the .got.plt to be within 128 Mb of the
232 // .plt in the positive direction.
233 void ARM::writePltHeader(uint8_t *buf) const {
234 // Use a similar sequence to that in writePlt(), the difference is the calling
235 // conventions mean we use lr instead of ip. The PLT entry is responsible for
236 // saving lr on the stack, the dynamic loader is responsible for reloading
237 // it.
238 const uint32_t pltData[] = {
239 0xe52de004, // L1: str lr, [sp,#-4]!
240 0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
241 0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
242 0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
245 uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
246 if (!llvm::isUInt<27>(offset)) {
247 // We cannot encode the Offset, use the long form.
248 writePltHeaderLong(buf);
249 return;
251 write32(buf + 0, pltData[0]);
252 write32(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
253 write32(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
254 write32(buf + 12, pltData[3] | (offset & 0xfff));
255 memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
256 memcpy(buf + 20, trapInstr.data(), 4);
257 memcpy(buf + 24, trapInstr.data(), 4);
258 memcpy(buf + 28, trapInstr.data(), 4);
261 void ARM::addPltHeaderSymbols(InputSection &isec) const {
262 addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
263 addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
266 // Long form PLT entries that do not have any restrictions on the displacement
267 // of the .plt from the .got.plt.
268 static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
269 uint64_t pltEntryAddr) {
270 write32(buf + 0, 0xe59fc004); // ldr ip, L2
271 write32(buf + 4, 0xe08cc00f); // L1: add ip, ip, pc
272 write32(buf + 8, 0xe59cf000); // ldr pc, [ip]
273 write32(buf + 12, 0x00000000); // L2: .word Offset(&(.got.plt) - L1 - 8
274 uint64_t l1 = pltEntryAddr + 4;
275 write32(buf + 12, gotPltEntryAddr - l1 - 8);
278 // The default PLT entries require the .got.plt to be within 128 Mb of the
279 // .plt in the positive direction.
280 void ARM::writePlt(uint8_t *buf, const Symbol &sym,
281 uint64_t pltEntryAddr) const {
282 // The PLT entry is similar to the example given in Appendix A of ELF for
283 // the Arm Architecture. Instead of using the Group Relocations to find the
284 // optimal rotation for the 8-bit immediate used in the add instructions we
285 // hard code the most compact rotations for simplicity. This saves a load
286 // instruction over the long plt sequences.
287 const uint32_t pltData[] = {
288 0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.got.plt) - L1 - 8
289 0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.got.plt) - L1 - 8
290 0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8
293 uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
294 if (!llvm::isUInt<27>(offset)) {
295 // We cannot encode the Offset, use the long form.
296 writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
297 return;
299 write32(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
300 write32(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
301 write32(buf + 8, pltData[2] | (offset & 0xfff));
302 memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
305 void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
306 addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
307 addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
310 bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
311 uint64_t branchAddr, const Symbol &s,
312 int64_t a) const {
313 // If s is an undefined weak symbol and does not have a PLT entry then it will
314 // be resolved as a branch to the next instruction. If it is hidden, its
315 // binding has been converted to local, so we just check isUndefined() here. A
316 // undefined non-weak symbol will have been errored.
317 if (s.isUndefined() && !s.isInPlt())
318 return false;
319 // A state change from ARM to Thumb and vice versa must go through an
320 // interworking thunk if the relocation type is not R_ARM_CALL or
321 // R_ARM_THM_CALL.
322 switch (type) {
323 case R_ARM_PC24:
324 case R_ARM_PLT32:
325 case R_ARM_JUMP24:
326 // Source is ARM, all PLT entries are ARM so no interworking required.
327 // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
328 if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
329 return true;
330 [[fallthrough]];
331 case R_ARM_CALL: {
332 uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
333 return !inBranchRange(type, branchAddr, dst + a) ||
334 (!config->armHasBlx && (s.getVA() & 1));
336 case R_ARM_THM_JUMP19:
337 case R_ARM_THM_JUMP24:
338 // Source is Thumb, all PLT entries are ARM so interworking is required.
339 // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
340 if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
341 return true;
342 [[fallthrough]];
343 case R_ARM_THM_CALL: {
344 uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
345 return !inBranchRange(type, branchAddr, dst + a) ||
346 (!config->armHasBlx && (s.getVA() & 1) == 0);;
349 return false;
352 uint32_t ARM::getThunkSectionSpacing() const {
353 // The placing of pre-created ThunkSections is controlled by the value
354 // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
355 // place the ThunkSection such that all branches from the InputSections
356 // prior to the ThunkSection can reach a Thunk placed at the end of the
357 // ThunkSection. Graphically:
358 // | up to thunkSectionSpacing .text input sections |
359 // | ThunkSection |
360 // | up to thunkSectionSpacing .text input sections |
361 // | ThunkSection |
363 // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
364 // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
365 // B.W:
366 // ARM B, BL, BLX range +/- 32MiB
367 // Thumb B.W, BL, BLX range +/- 16MiB
368 // Thumb B<cc>.W range +/- 1MiB
369 // If a branch cannot reach a pre-created ThunkSection a new one will be
370 // created so we can handle the rare cases of a Thumb 2 conditional branch.
371 // We intentionally use a lower size for thunkSectionSpacing than the maximum
372 // branch range so the end of the ThunkSection is more likely to be within
373 // range of the branch instruction that is furthest away. The value we shorten
374 // thunkSectionSpacing by is set conservatively to allow us to create 16,384
375 // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
376 // one of the Thunks going out of range.
378 // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
379 // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
380 // ARMv6T2) the range is +/- 4MiB.
382 return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
383 : 0x400000 - 0x7500;
386 bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
387 if ((dst & 0x1) == 0)
388 // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
389 // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
390 // destination will be 4 byte aligned.
391 src &= ~0x3;
392 else
393 // Bit 0 == 1 denotes Thumb state, it is not part of the range.
394 dst &= ~0x1;
396 int64_t offset = dst - src;
397 switch (type) {
398 case R_ARM_PC24:
399 case R_ARM_PLT32:
400 case R_ARM_JUMP24:
401 case R_ARM_CALL:
402 return llvm::isInt<26>(offset);
403 case R_ARM_THM_JUMP19:
404 return llvm::isInt<21>(offset);
405 case R_ARM_THM_JUMP24:
406 case R_ARM_THM_CALL:
407 return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset)
408 : llvm::isInt<23>(offset);
409 default:
410 return true;
414 // Helper to produce message text when LLD detects that a CALL relocation to
415 // a non STT_FUNC symbol that may result in incorrect interworking between ARM
416 // or Thumb.
417 static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
418 assert(!s.isFunc());
419 const ErrorPlace place = getErrorPlace(loc);
420 std::string hint;
421 if (!place.srcLoc.empty())
422 hint = "; " + place.srcLoc;
423 if (s.isSection()) {
424 // Section symbols must be defined and in a section. Users cannot change
425 // the type. Use the section name as getName() returns an empty string.
426 warn(place.loc + "branch and link relocation: " + toString(relt) +
427 " to STT_SECTION symbol " + cast<Defined>(s).section->name +
428 " ; interworking not performed" + hint);
429 } else {
430 // Warn with hint on how to alter the symbol type.
431 warn(getErrorLocation(loc) + "branch and link relocation: " +
432 toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
433 " interworking not performed; consider using directive '.type " +
434 s.getName() +
435 ", %function' to give symbol type STT_FUNC if interworking between "
436 "ARM and Thumb is required" +
437 hint);
441 // Rotate a 32-bit unsigned value right by a specified amt of bits.
442 static uint32_t rotr32(uint32_t val, uint32_t amt) {
443 assert(amt < 32 && "Invalid rotate amount");
444 return (val >> amt) | (val << ((32 - amt) & 31));
447 static std::pair<uint32_t, uint32_t> getRemAndLZForGroup(unsigned group,
448 uint32_t val) {
449 uint32_t rem, lz;
450 do {
451 lz = llvm::countl_zero(val) & ~1;
452 rem = val;
453 if (lz == 32) // implies rem == 0
454 break;
455 val &= 0xffffff >> lz;
456 } while (group--);
457 return {rem, lz};
460 static void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
461 int group, bool check) {
462 // ADD/SUB (immediate) add = bit23, sub = bit22
463 // immediate field carries is a 12-bit modified immediate, made up of a 4-bit
464 // even rotate right and an 8-bit immediate.
465 uint32_t opcode = 0x00800000;
466 if (val >> 63) {
467 opcode = 0x00400000;
468 val = -val;
470 uint32_t imm, lz;
471 std::tie(imm, lz) = getRemAndLZForGroup(group, val);
472 uint32_t rot = 0;
473 if (lz < 24) {
474 imm = rotr32(imm, 24 - lz);
475 rot = (lz + 8) << 7;
477 if (check && imm > 0xff)
478 error(getErrorLocation(loc) + "unencodeable immediate " + Twine(val).str() +
479 " for relocation " + toString(rel.type));
480 write32(loc, (read32(loc) & 0xff3ff000) | opcode | rot | (imm & 0xff));
483 static void encodeLdrGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
484 int group) {
485 // R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
486 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
487 // bottom bit to recover S + A - P.
488 if (rel.sym->isFunc())
489 val &= ~0x1;
490 // LDR (literal) u = bit23
491 uint32_t opcode = 0x00800000;
492 if (val >> 63) {
493 opcode = 0x0;
494 val = -val;
496 uint32_t imm = getRemAndLZForGroup(group, val).first;
497 checkUInt(loc, imm, 12, rel);
498 write32(loc, (read32(loc) & 0xff7ff000) | opcode | imm);
501 static void encodeLdrsGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
502 int group) {
503 // R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
504 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
505 // bottom bit to recover S + A - P.
506 if (rel.sym->isFunc())
507 val &= ~0x1;
508 // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23
509 uint32_t opcode = 0x00800000;
510 if (val >> 63) {
511 opcode = 0x0;
512 val = -val;
514 uint32_t imm = getRemAndLZForGroup(group, val).first;
515 checkUInt(loc, imm, 8, rel);
516 write32(loc, (read32(loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) |
517 (imm & 0xf));
520 void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
521 switch (rel.type) {
522 case R_ARM_ABS32:
523 case R_ARM_BASE_PREL:
524 case R_ARM_GOTOFF32:
525 case R_ARM_GOT_BREL:
526 case R_ARM_GOT_PREL:
527 case R_ARM_REL32:
528 case R_ARM_RELATIVE:
529 case R_ARM_SBREL32:
530 case R_ARM_TARGET1:
531 case R_ARM_TARGET2:
532 case R_ARM_TLS_GD32:
533 case R_ARM_TLS_IE32:
534 case R_ARM_TLS_LDM32:
535 case R_ARM_TLS_LDO32:
536 case R_ARM_TLS_LE32:
537 case R_ARM_TLS_TPOFF32:
538 case R_ARM_TLS_DTPOFF32:
539 write32(loc, val);
540 break;
541 case R_ARM_PREL31:
542 checkInt(loc, val, 31, rel);
543 write32(loc, (read32(loc) & 0x80000000) | (val & ~0x80000000));
544 break;
545 case R_ARM_CALL: {
546 // R_ARM_CALL is used for BL and BLX instructions, for symbols of type
547 // STT_FUNC we choose whether to write a BL or BLX depending on the
548 // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
549 // not of type STT_FUNC then we must preserve the original instruction.
550 // PLT entries are always ARM state so we know we don't need to interwork.
551 assert(rel.sym); // R_ARM_CALL is always reached via relocate().
552 bool bit0Thumb = val & 1;
553 bool isBlx = (read32(loc) & 0xfe000000) == 0xfa000000;
554 // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
555 // even when type not STT_FUNC.
556 if (!rel.sym->isFunc() && isBlx != bit0Thumb)
557 stateChangeWarning(loc, rel.type, *rel.sym);
558 if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
559 // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
560 checkInt(loc, val, 26, rel);
561 write32(loc, 0xfa000000 | // opcode
562 ((val & 2) << 23) | // H
563 ((val >> 2) & 0x00ffffff)); // imm24
564 break;
566 // BLX (always unconditional) instruction to an ARM Target, select an
567 // unconditional BL.
568 write32(loc, 0xeb000000 | (read32(loc) & 0x00ffffff));
569 // fall through as BL encoding is shared with B
571 [[fallthrough]];
572 case R_ARM_JUMP24:
573 case R_ARM_PC24:
574 case R_ARM_PLT32:
575 checkInt(loc, val, 26, rel);
576 write32(loc, (read32(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
577 break;
578 case R_ARM_THM_JUMP8:
579 // We do a 9 bit check because val is right-shifted by 1 bit.
580 checkInt(loc, val, 9, rel);
581 write16(loc, (read32(loc) & 0xff00) | ((val >> 1) & 0x00ff));
582 break;
583 case R_ARM_THM_JUMP11:
584 // We do a 12 bit check because val is right-shifted by 1 bit.
585 checkInt(loc, val, 12, rel);
586 write16(loc, (read32(loc) & 0xf800) | ((val >> 1) & 0x07ff));
587 break;
588 case R_ARM_THM_JUMP19:
589 // Encoding T3: Val = S:J2:J1:imm6:imm11:0
590 checkInt(loc, val, 21, rel);
591 write16(loc,
592 (read16(loc) & 0xfbc0) | // opcode cond
593 ((val >> 10) & 0x0400) | // S
594 ((val >> 12) & 0x003f)); // imm6
595 write16(loc + 2,
596 0x8000 | // opcode
597 ((val >> 8) & 0x0800) | // J2
598 ((val >> 5) & 0x2000) | // J1
599 ((val >> 1) & 0x07ff)); // imm11
600 break;
601 case R_ARM_THM_CALL: {
602 // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
603 // STT_FUNC we choose whether to write a BL or BLX depending on the
604 // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
605 // not of type STT_FUNC then we must preserve the original instruction.
606 // PLT entries are always ARM state so we know we need to interwork.
607 assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
608 bool bit0Thumb = val & 1;
609 bool isBlx = (read16(loc + 2) & 0x1000) == 0;
610 // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
611 // even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
612 if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
613 stateChangeWarning(loc, rel.type, *rel.sym);
614 if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
615 // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
616 // the BLX instruction may only be two byte aligned. This must be done
617 // before overflow check.
618 val = alignTo(val, 4);
619 write16(loc + 2, read16(loc + 2) & ~0x1000);
620 } else {
621 write16(loc + 2, (read16(loc + 2) & ~0x1000) | 1 << 12);
623 if (!config->armJ1J2BranchEncoding) {
624 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
625 // different encoding rules and range due to J1 and J2 always being 1.
626 checkInt(loc, val, 23, rel);
627 write16(loc,
628 0xf000 | // opcode
629 ((val >> 12) & 0x07ff)); // imm11
630 write16(loc + 2,
631 (read16(loc + 2) & 0xd000) | // opcode
632 0x2800 | // J1 == J2 == 1
633 ((val >> 1) & 0x07ff)); // imm11
634 break;
637 // Fall through as rest of encoding is the same as B.W
638 [[fallthrough]];
639 case R_ARM_THM_JUMP24:
640 // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
641 checkInt(loc, val, 25, rel);
642 write16(loc,
643 0xf000 | // opcode
644 ((val >> 14) & 0x0400) | // S
645 ((val >> 12) & 0x03ff)); // imm10
646 write16(loc + 2,
647 (read16(loc + 2) & 0xd000) | // opcode
648 (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
649 (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
650 ((val >> 1) & 0x07ff)); // imm11
651 break;
652 case R_ARM_MOVW_ABS_NC:
653 case R_ARM_MOVW_PREL_NC:
654 case R_ARM_MOVW_BREL_NC:
655 write32(loc, (read32(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
656 (val & 0x0fff));
657 break;
658 case R_ARM_MOVT_ABS:
659 case R_ARM_MOVT_PREL:
660 case R_ARM_MOVT_BREL:
661 write32(loc, (read32(loc) & ~0x000f0fff) |
662 (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
663 break;
664 case R_ARM_THM_MOVT_ABS:
665 case R_ARM_THM_MOVT_PREL:
666 case R_ARM_THM_MOVT_BREL:
667 // Encoding T1: A = imm4:i:imm3:imm8
669 write16(loc,
670 0xf2c0 | // opcode
671 ((val >> 17) & 0x0400) | // i
672 ((val >> 28) & 0x000f)); // imm4
674 write16(loc + 2,
675 (read16(loc + 2) & 0x8f00) | // opcode
676 ((val >> 12) & 0x7000) | // imm3
677 ((val >> 16) & 0x00ff)); // imm8
678 break;
679 case R_ARM_THM_MOVW_ABS_NC:
680 case R_ARM_THM_MOVW_PREL_NC:
681 case R_ARM_THM_MOVW_BREL_NC:
682 // Encoding T3: A = imm4:i:imm3:imm8
683 write16(loc,
684 0xf240 | // opcode
685 ((val >> 1) & 0x0400) | // i
686 ((val >> 12) & 0x000f)); // imm4
687 write16(loc + 2,
688 (read16(loc + 2) & 0x8f00) | // opcode
689 ((val << 4) & 0x7000) | // imm3
690 (val & 0x00ff)); // imm8
691 break;
692 case R_ARM_THM_ALU_ABS_G3:
693 write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 24) & 0x00ff));
694 break;
695 case R_ARM_THM_ALU_ABS_G2_NC:
696 write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 16) & 0x00ff));
697 break;
698 case R_ARM_THM_ALU_ABS_G1_NC:
699 write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 8) & 0x00ff));
700 break;
701 case R_ARM_THM_ALU_ABS_G0_NC:
702 write16(loc, (read16(loc) &~ 0x00ff) | (val & 0x00ff));
703 break;
704 case R_ARM_ALU_PC_G0:
705 encodeAluGroup(loc, rel, val, 0, true);
706 break;
707 case R_ARM_ALU_PC_G0_NC:
708 encodeAluGroup(loc, rel, val, 0, false);
709 break;
710 case R_ARM_ALU_PC_G1:
711 encodeAluGroup(loc, rel, val, 1, true);
712 break;
713 case R_ARM_ALU_PC_G1_NC:
714 encodeAluGroup(loc, rel, val, 1, false);
715 break;
716 case R_ARM_ALU_PC_G2:
717 encodeAluGroup(loc, rel, val, 2, true);
718 break;
719 case R_ARM_LDR_PC_G0:
720 encodeLdrGroup(loc, rel, val, 0);
721 break;
722 case R_ARM_LDR_PC_G1:
723 encodeLdrGroup(loc, rel, val, 1);
724 break;
725 case R_ARM_LDR_PC_G2:
726 encodeLdrGroup(loc, rel, val, 2);
727 break;
728 case R_ARM_LDRS_PC_G0:
729 encodeLdrsGroup(loc, rel, val, 0);
730 break;
731 case R_ARM_LDRS_PC_G1:
732 encodeLdrsGroup(loc, rel, val, 1);
733 break;
734 case R_ARM_LDRS_PC_G2:
735 encodeLdrsGroup(loc, rel, val, 2);
736 break;
737 case R_ARM_THM_ALU_PREL_11_0: {
738 // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
739 int64_t imm = val;
740 uint16_t sub = 0;
741 if (imm < 0) {
742 imm = -imm;
743 sub = 0x00a0;
745 checkUInt(loc, imm, 12, rel);
746 write16(loc, (read16(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
747 write16(loc + 2,
748 (read16(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
749 break;
751 case R_ARM_THM_PC8:
752 // ADR and LDR literal encoding T1 positive offset only imm8:00
753 // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
754 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
755 // bottom bit to recover S + A - Pa.
756 if (rel.sym->isFunc())
757 val &= ~0x1;
758 checkUInt(loc, val, 10, rel);
759 checkAlignment(loc, val, 4, rel);
760 write16(loc, (read16(loc) & 0xff00) | (val & 0x3fc) >> 2);
761 break;
762 case R_ARM_THM_PC12: {
763 // LDR (literal) encoding T2, add = (U == '1') imm12
764 // imm12 is unsigned
765 // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
766 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
767 // bottom bit to recover S + A - Pa.
768 if (rel.sym->isFunc())
769 val &= ~0x1;
770 int64_t imm12 = val;
771 uint16_t u = 0x0080;
772 if (imm12 < 0) {
773 imm12 = -imm12;
774 u = 0;
776 checkUInt(loc, imm12, 12, rel);
777 write16(loc, read16(loc) | u);
778 write16(loc + 2, (read16(loc + 2) & 0xf000) | imm12);
779 break;
781 default:
782 llvm_unreachable("unknown relocation");
786 int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
787 switch (type) {
788 default:
789 internalLinkerError(getErrorLocation(buf),
790 "cannot read addend for relocation " + toString(type));
791 return 0;
792 case R_ARM_ABS32:
793 case R_ARM_BASE_PREL:
794 case R_ARM_GLOB_DAT:
795 case R_ARM_GOTOFF32:
796 case R_ARM_GOT_BREL:
797 case R_ARM_GOT_PREL:
798 case R_ARM_IRELATIVE:
799 case R_ARM_REL32:
800 case R_ARM_RELATIVE:
801 case R_ARM_SBREL32:
802 case R_ARM_TARGET1:
803 case R_ARM_TARGET2:
804 case R_ARM_TLS_DTPMOD32:
805 case R_ARM_TLS_DTPOFF32:
806 case R_ARM_TLS_GD32:
807 case R_ARM_TLS_IE32:
808 case R_ARM_TLS_LDM32:
809 case R_ARM_TLS_LE32:
810 case R_ARM_TLS_LDO32:
811 case R_ARM_TLS_TPOFF32:
812 return SignExtend64<32>(read32(buf));
813 case R_ARM_PREL31:
814 return SignExtend64<31>(read32(buf));
815 case R_ARM_CALL:
816 case R_ARM_JUMP24:
817 case R_ARM_PC24:
818 case R_ARM_PLT32:
819 return SignExtend64<26>(read32(buf) << 2);
820 case R_ARM_THM_JUMP8:
821 return SignExtend64<9>(read16(buf) << 1);
822 case R_ARM_THM_JUMP11:
823 return SignExtend64<12>(read16(buf) << 1);
824 case R_ARM_THM_JUMP19: {
825 // Encoding T3: A = S:J2:J1:imm10:imm6:0
826 uint16_t hi = read16(buf);
827 uint16_t lo = read16(buf + 2);
828 return SignExtend64<20>(((hi & 0x0400) << 10) | // S
829 ((lo & 0x0800) << 8) | // J2
830 ((lo & 0x2000) << 5) | // J1
831 ((hi & 0x003f) << 12) | // imm6
832 ((lo & 0x07ff) << 1)); // imm11:0
834 case R_ARM_THM_CALL:
835 if (!config->armJ1J2BranchEncoding) {
836 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
837 // different encoding rules and range due to J1 and J2 always being 1.
838 uint16_t hi = read16(buf);
839 uint16_t lo = read16(buf + 2);
840 return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
841 ((lo & 0x7ff) << 1)); // imm11:0
842 break;
844 [[fallthrough]];
845 case R_ARM_THM_JUMP24: {
846 // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
847 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
848 uint16_t hi = read16(buf);
849 uint16_t lo = read16(buf + 2);
850 return SignExtend64<24>(((hi & 0x0400) << 14) | // S
851 (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
852 (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
853 ((hi & 0x003ff) << 12) | // imm0
854 ((lo & 0x007ff) << 1)); // imm11:0
856 // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
857 // MOVT is in the range -32768 <= A < 32768
858 case R_ARM_MOVW_ABS_NC:
859 case R_ARM_MOVT_ABS:
860 case R_ARM_MOVW_PREL_NC:
861 case R_ARM_MOVT_PREL:
862 case R_ARM_MOVW_BREL_NC:
863 case R_ARM_MOVT_BREL: {
864 uint64_t val = read32(buf) & 0x000f0fff;
865 return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
867 case R_ARM_THM_MOVW_ABS_NC:
868 case R_ARM_THM_MOVT_ABS:
869 case R_ARM_THM_MOVW_PREL_NC:
870 case R_ARM_THM_MOVT_PREL:
871 case R_ARM_THM_MOVW_BREL_NC:
872 case R_ARM_THM_MOVT_BREL: {
873 // Encoding T3: A = imm4:i:imm3:imm8
874 uint16_t hi = read16(buf);
875 uint16_t lo = read16(buf + 2);
876 return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
877 ((hi & 0x0400) << 1) | // i
878 ((lo & 0x7000) >> 4) | // imm3
879 (lo & 0x00ff)); // imm8
881 case R_ARM_THM_ALU_ABS_G0_NC:
882 case R_ARM_THM_ALU_ABS_G1_NC:
883 case R_ARM_THM_ALU_ABS_G2_NC:
884 case R_ARM_THM_ALU_ABS_G3:
885 return read16(buf) & 0xff;
886 case R_ARM_ALU_PC_G0:
887 case R_ARM_ALU_PC_G0_NC:
888 case R_ARM_ALU_PC_G1:
889 case R_ARM_ALU_PC_G1_NC:
890 case R_ARM_ALU_PC_G2: {
891 // 12-bit immediate is a modified immediate made up of a 4-bit even
892 // right rotation and 8-bit constant. After the rotation the value
893 // is zero-extended. When bit 23 is set the instruction is an add, when
894 // bit 22 is set it is a sub.
895 uint32_t instr = read32(buf);
896 uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
897 return (instr & 0x00400000) ? -val : val;
899 case R_ARM_LDR_PC_G0:
900 case R_ARM_LDR_PC_G1:
901 case R_ARM_LDR_PC_G2: {
902 // ADR (literal) add = bit23, sub = bit22
903 // LDR (literal) u = bit23 unsigned imm12
904 bool u = read32(buf) & 0x00800000;
905 uint32_t imm12 = read32(buf) & 0xfff;
906 return u ? imm12 : -imm12;
908 case R_ARM_LDRS_PC_G0:
909 case R_ARM_LDRS_PC_G1:
910 case R_ARM_LDRS_PC_G2: {
911 // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8
912 uint32_t opcode = read32(buf);
913 bool u = opcode & 0x00800000;
914 uint32_t imm4l = opcode & 0xf;
915 uint32_t imm4h = (opcode & 0xf00) >> 4;
916 return u ? (imm4h | imm4l) : -(imm4h | imm4l);
918 case R_ARM_THM_ALU_PREL_11_0: {
919 // Thumb2 ADR, which is an alias for a sub or add instruction with an
920 // unsigned immediate.
921 // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
922 uint16_t hi = read16(buf);
923 uint16_t lo = read16(buf + 2);
924 uint64_t imm = (hi & 0x0400) << 1 | // i
925 (lo & 0x7000) >> 4 | // imm3
926 (lo & 0x00ff); // imm8
927 // For sub, addend is negative, add is positive.
928 return (hi & 0x00f0) ? -imm : imm;
930 case R_ARM_THM_PC8:
931 // ADR and LDR (literal) encoding T1
932 // From ELF for the ARM Architecture the initial signed addend is formed
933 // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) ā€“ 4)
934 // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
935 return ((((read16(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
936 case R_ARM_THM_PC12: {
937 // LDR (literal) encoding T2, add = (U == '1') imm12
938 bool u = read16(buf) & 0x0080;
939 uint64_t imm12 = read16(buf + 2) & 0x0fff;
940 return u ? imm12 : -imm12;
942 case R_ARM_NONE:
943 case R_ARM_V4BX:
944 case R_ARM_JUMP_SLOT:
945 // These relocations are defined as not having an implicit addend.
946 return 0;
950 static bool isArmMapSymbol(const Symbol *b) {
951 return b->getName() == "$a" || b->getName().startswith("$a.");
954 static bool isThumbMapSymbol(const Symbol *s) {
955 return s->getName() == "$t" || s->getName().startswith("$t.");
958 static bool isDataMapSymbol(const Symbol *b) {
959 return b->getName() == "$d" || b->getName().startswith("$d.");
962 void elf::sortArmMappingSymbols() {
963 // For each input section make sure the mapping symbols are sorted in
964 // ascending order.
965 for (auto &kv : sectionMap) {
966 SmallVector<const Defined *, 0> &mapSyms = kv.second;
967 llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
968 return a->value < b->value;
973 void elf::addArmInputSectionMappingSymbols() {
974 // Collect mapping symbols for every executable input sections.
975 // The linker generated mapping symbols for all the synthetic
976 // sections are adding into the sectionmap through the function
977 // addArmSyntheitcSectionMappingSymbol.
978 for (ELFFileBase *file : ctx.objectFiles) {
979 for (Symbol *sym : file->getLocalSymbols()) {
980 auto *def = dyn_cast<Defined>(sym);
981 if (!def)
982 continue;
983 if (!isArmMapSymbol(def) && !isDataMapSymbol(def) &&
984 !isThumbMapSymbol(def))
985 continue;
986 if (auto *sec = cast_if_present<InputSection>(def->section))
987 if (sec->flags & SHF_EXECINSTR)
988 sectionMap[sec].push_back(def);
993 // Synthetic sections are not backed by an ELF file where we can access the
994 // symbol table, instead mapping symbols added to synthetic sections are stored
995 // in the synthetic symbol table. Due to the presence of strip (--strip-all),
996 // we can not rely on the synthetic symbol table retaining the mapping symbols.
997 // Instead we record the mapping symbols locally.
998 void elf::addArmSyntheticSectionMappingSymbol(Defined *sym) {
999 if (!isArmMapSymbol(sym) && !isDataMapSymbol(sym) && !isThumbMapSymbol(sym))
1000 return;
1001 if (auto *sec = cast_if_present<InputSection>(sym->section))
1002 if (sec->flags & SHF_EXECINSTR)
1003 sectionMap[sec].push_back(sym);
1006 static void toLittleEndianInstructions(uint8_t *buf, uint64_t start,
1007 uint64_t end, uint64_t width) {
1008 CodeState curState = static_cast<CodeState>(width);
1009 if (curState == CodeState::Arm)
1010 for (uint64_t i = start; i < end; i += width)
1011 write32le(buf + i, read32(buf + i));
1013 if (curState == CodeState::Thumb)
1014 for (uint64_t i = start; i < end; i += width)
1015 write16le(buf + i, read16(buf + i));
1018 // Arm BE8 big endian format requires instructions to be little endian, with
1019 // the initial contents big-endian. Convert the big-endian instructions to
1020 // little endian leaving literal data untouched. We use mapping symbols to
1021 // identify half open intervals of Arm code [$a, non $a) and Thumb code
1022 // [$t, non $t) and convert these to little endian a word or half word at a
1023 // time respectively.
1024 void elf::convertArmInstructionstoBE8(InputSection *sec, uint8_t *buf) {
1025 if (!sectionMap.contains(sec))
1026 return;
1028 SmallVector<const Defined *, 0> &mapSyms = sectionMap[sec];
1030 if (mapSyms.empty())
1031 return;
1033 CodeState curState = CodeState::Data;
1034 uint64_t start = 0, width = 0, size = sec->getSize();
1035 for (auto &msym : mapSyms) {
1036 CodeState newState = CodeState::Data;
1037 if (isThumbMapSymbol(msym))
1038 newState = CodeState::Thumb;
1039 else if (isArmMapSymbol(msym))
1040 newState = CodeState::Arm;
1042 if (newState == curState)
1043 continue;
1045 if (curState != CodeState::Data) {
1046 width = static_cast<uint64_t>(curState);
1047 toLittleEndianInstructions(buf, start, msym->value, width);
1049 start = msym->value;
1050 curState = newState;
1053 // Passed last mapping symbol, may need to reverse
1054 // up to end of section.
1055 if (curState != CodeState::Data) {
1056 width = static_cast<uint64_t>(curState);
1057 toLittleEndianInstructions(buf, start, size, width);
1061 // The Arm Cortex-M Security Extensions (CMSE) splits a system into two parts;
1062 // the non-secure and secure states with the secure state inaccessible from the
1063 // non-secure state, apart from an area of memory in secure state called the
1064 // secure gateway which is accessible from non-secure state. The secure gateway
1065 // contains one or more entry points which must start with a landing pad
1066 // instruction SG. Arm recommends that the secure gateway consists only of
1067 // secure gateway veneers, which are made up of a SG instruction followed by a
1068 // branch to the destination in secure state. Full details can be found in Arm
1069 // v8-M Security Extensions Requirements on Development Tools.
1071 // The CMSE model of software development requires the non-secure and secure
1072 // states to be developed as two separate programs. The non-secure developer is
1073 // provided with an import library defining symbols describing the entry points
1074 // in the secure gateway. No additional linker support is required for the
1075 // non-secure state.
1077 // Development of the secure state requires linker support to manage the secure
1078 // gateway veneers. The management consists of:
1079 // - Creation of new secure gateway veneers based on symbol conventions.
1080 // - Checking the address of existing secure gateway veneers.
1081 // - Warning when existing secure gateway veneers removed.
1083 // The secure gateway veneers are created in an import library, which is just an
1084 // ELF object with a symbol table. The import library is controlled by two
1085 // command line options:
1086 // --in-implib (specify an input import library from a previous revision of the
1087 // program).
1088 // --out-implib (specify an output import library to be created by the linker).
1090 // The input import library is used to manage consistency of the secure entry
1091 // points. The output import library is for new and updated secure entry points.
1093 // The symbol convention that identifies secure entry functions is the prefix
1094 // __acle_se_ for a symbol called name the linker is expected to create a secure
1095 // gateway veneer if symbols __acle_se_name and name have the same address.
1096 // After creating a secure gateway veneer the symbol name labels the secure
1097 // gateway veneer and the __acle_se_name labels the function definition.
1099 // The LLD implementation:
1100 // - Reads an existing import library with importCmseSymbols().
1101 // - Determines which new secure gateway veneers to create and redirects calls
1102 // within the secure state to the __acle_se_ prefixed symbol with
1103 // processArmCmseSymbols().
1104 // - Models the SG veneers as a synthetic section.
1106 // Initialize symbols. symbols is a parallel array to the corresponding ELF
1107 // symbol table.
1108 template <class ELFT> void ObjFile<ELFT>::importCmseSymbols() {
1109 ArrayRef<Elf_Sym> eSyms = getELFSyms<ELFT>();
1110 // Error for local symbols. The symbol at index 0 is LOCAL. So skip it.
1111 for (size_t i = 1, end = firstGlobal; i != end; ++i) {
1112 errorOrWarn("CMSE symbol '" + CHECK(eSyms[i].getName(stringTable), this) +
1113 "' in import library '" + toString(this) + "' is not global");
1116 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1117 const Elf_Sym &eSym = eSyms[i];
1118 Defined *sym = reinterpret_cast<Defined *>(make<SymbolUnion>());
1120 // Initialize symbol fields.
1121 memset(sym, 0, sizeof(Symbol));
1122 sym->setName(CHECK(eSyms[i].getName(stringTable), this));
1123 sym->value = eSym.st_value;
1124 sym->size = eSym.st_size;
1125 sym->type = eSym.getType();
1126 sym->binding = eSym.getBinding();
1127 sym->stOther = eSym.st_other;
1129 if (eSym.st_shndx != SHN_ABS) {
1130 error("CMSE symbol '" + sym->getName() + "' in import library '" +
1131 toString(this) + "' is not absolute");
1132 continue;
1135 if (!(eSym.st_value & 1) || (eSym.getType() != STT_FUNC)) {
1136 error("CMSE symbol '" + sym->getName() + "' in import library '" +
1137 toString(this) + "' is not a Thumb function definition");
1138 continue;
1141 if (symtab.cmseImportLib.count(sym->getName())) {
1142 error("CMSE symbol '" + sym->getName() +
1143 "' is multiply defined in import library '" + toString(this) + "'");
1144 continue;
1147 if (eSym.st_size != ACLESESYM_SIZE) {
1148 warn("CMSE symbol '" + sym->getName() + "' in import library '" +
1149 toString(this) + "' does not have correct size of " +
1150 Twine(ACLESESYM_SIZE) + " bytes");
1153 symtab.cmseImportLib[sym->getName()] = sym;
1157 // Check symbol attributes of the acleSeSym, sym pair.
1158 // Both symbols should be global/weak Thumb code symbol definitions.
1159 static std::string checkCmseSymAttributes(Symbol *acleSeSym, Symbol *sym) {
1160 auto check = [](Symbol *s, StringRef type) -> std::optional<std::string> {
1161 auto d = dyn_cast_or_null<Defined>(s);
1162 if (!(d && d->isFunc() && (d->value & 1)))
1163 return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
1164 s->getName() + "' is not a Thumb function definition")
1165 .str();
1166 if (!d->section)
1167 return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
1168 s->getName() + "' cannot be an absolute symbol")
1169 .str();
1170 return std::nullopt;
1172 for (auto [sym, type] :
1173 {std::make_pair(acleSeSym, "special"), std::make_pair(sym, "entry")})
1174 if (auto err = check(sym, type))
1175 return *err;
1176 return "";
1179 // Look for [__acle_se_<sym>, <sym>] pairs, as specified in the Cortex-M
1180 // Security Extensions specification.
1181 // 1) <sym> : A standard function name.
1182 // 2) __acle_se_<sym> : A special symbol that prefixes the standard function
1183 // name with __acle_se_.
1184 // Both these symbols are Thumb function symbols with external linkage.
1185 // <sym> may be redefined in .gnu.sgstubs.
1186 void elf::processArmCmseSymbols() {
1187 if (!config->cmseImplib)
1188 return;
1189 // Only symbols with external linkage end up in symtab, so no need to do
1190 // linkage checks. Only check symbol type.
1191 for (Symbol *acleSeSym : symtab.getSymbols()) {
1192 if (!acleSeSym->getName().startswith(ACLESESYM_PREFIX))
1193 continue;
1194 // If input object build attributes do not support CMSE, error and disable
1195 // further scanning for <sym>, __acle_se_<sym> pairs.
1196 if (!config->armCMSESupport) {
1197 error("CMSE is only supported by ARMv8-M architecture or later");
1198 config->cmseImplib = false;
1199 break;
1202 // Try to find the associated symbol definition.
1203 // Symbol must have external linkage.
1204 StringRef name = acleSeSym->getName().substr(std::strlen(ACLESESYM_PREFIX));
1205 Symbol *sym = symtab.find(name);
1206 if (!sym) {
1207 error(toString(acleSeSym->file) + ": cmse special symbol '" +
1208 acleSeSym->getName() +
1209 "' detected, but no associated entry function definition '" + name +
1210 "' with external linkage found");
1211 continue;
1214 std::string errMsg = checkCmseSymAttributes(acleSeSym, sym);
1215 if (!errMsg.empty()) {
1216 error(errMsg);
1217 continue;
1220 // <sym> may be redefined later in the link in .gnu.sgstubs
1221 symtab.cmseSymMap[name] = {acleSeSym, sym};
1224 // If this is an Arm CMSE secure app, replace references to entry symbol <sym>
1225 // with its corresponding special symbol __acle_se_<sym>.
1226 parallelForEach(ctx.objectFiles, [&](InputFile *file) {
1227 MutableArrayRef<Symbol *> syms = file->getMutableSymbols();
1228 for (size_t i = 0, e = syms.size(); i != e; ++i) {
1229 StringRef symName = syms[i]->getName();
1230 if (symtab.cmseSymMap.count(symName))
1231 syms[i] = symtab.cmseSymMap[symName].acleSeSym;
1236 class elf::ArmCmseSGVeneer {
1237 public:
1238 ArmCmseSGVeneer(Symbol *sym, Symbol *acleSeSym,
1239 std::optional<uint64_t> addr = std::nullopt)
1240 : sym(sym), acleSeSym(acleSeSym), entAddr{addr} {}
1241 static const size_t size{ACLESESYM_SIZE};
1242 const std::optional<uint64_t> getAddr() const { return entAddr; };
1244 Symbol *sym;
1245 Symbol *acleSeSym;
1246 uint64_t offset = 0;
1248 private:
1249 const std::optional<uint64_t> entAddr;
1252 ArmCmseSGSection::ArmCmseSGSection()
1253 : SyntheticSection(llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_EXECINSTR,
1254 llvm::ELF::SHT_PROGBITS,
1255 /*alignment=*/32, ".gnu.sgstubs") {
1256 entsize = ACLESESYM_SIZE;
1257 // The range of addresses used in the CMSE import library should be fixed.
1258 for (auto &[_, sym] : symtab.cmseImportLib) {
1259 if (impLibMaxAddr <= sym->value)
1260 impLibMaxAddr = sym->value + sym->size;
1262 if (symtab.cmseSymMap.empty())
1263 return;
1264 addMappingSymbol();
1265 for (auto &[_, entryFunc] : symtab.cmseSymMap)
1266 addSGVeneer(cast<Defined>(entryFunc.acleSeSym),
1267 cast<Defined>(entryFunc.sym));
1268 for (auto &[_, sym] : symtab.cmseImportLib) {
1269 if (!symtab.inCMSEOutImpLib.count(sym->getName()))
1270 warn("entry function '" + sym->getName() +
1271 "' from CMSE import library is not present in secure application");
1274 if (!symtab.cmseImportLib.empty() && config->cmseOutputLib.empty()) {
1275 for (auto &[_, entryFunc] : symtab.cmseSymMap) {
1276 Symbol *sym = entryFunc.sym;
1277 if (!symtab.inCMSEOutImpLib.count(sym->getName()))
1278 warn("new entry function '" + sym->getName() +
1279 "' introduced but no output import library specified");
1284 void ArmCmseSGSection::addSGVeneer(Symbol *acleSeSym, Symbol *sym) {
1285 entries.emplace_back(acleSeSym, sym);
1286 if (symtab.cmseImportLib.count(sym->getName()))
1287 symtab.inCMSEOutImpLib[sym->getName()] = true;
1288 // Symbol addresses different, nothing to do.
1289 if (acleSeSym->file != sym->file ||
1290 cast<Defined>(*acleSeSym).value != cast<Defined>(*sym).value)
1291 return;
1292 // Only secure symbols with values equal to that of it's non-secure
1293 // counterpart needs to be in the .gnu.sgstubs section.
1294 ArmCmseSGVeneer *ss = nullptr;
1295 if (symtab.cmseImportLib.count(sym->getName())) {
1296 Defined *impSym = symtab.cmseImportLib[sym->getName()];
1297 ss = make<ArmCmseSGVeneer>(sym, acleSeSym, impSym->value);
1298 } else {
1299 ss = make<ArmCmseSGVeneer>(sym, acleSeSym);
1300 ++newEntries;
1302 sgVeneers.emplace_back(ss);
1305 void ArmCmseSGSection::writeTo(uint8_t *buf) {
1306 for (ArmCmseSGVeneer *s : sgVeneers) {
1307 uint8_t *p = buf + s->offset;
1308 write16(p + 0, 0xe97f); // SG
1309 write16(p + 2, 0xe97f);
1310 write16(p + 4, 0xf000); // B.W S
1311 write16(p + 6, 0xb000);
1312 target->relocateNoSym(p + 4, R_ARM_THM_JUMP24,
1313 s->acleSeSym->getVA() -
1314 (getVA() + s->offset + s->size));
1318 void ArmCmseSGSection::addMappingSymbol() {
1319 addSyntheticLocal("$t", STT_NOTYPE, /*off=*/0, /*size=*/0, *this);
1322 size_t ArmCmseSGSection::getSize() const {
1323 if (sgVeneers.empty())
1324 return (impLibMaxAddr ? impLibMaxAddr - getVA() : 0) + newEntries * entsize;
1326 return entries.size() * entsize;
1329 void ArmCmseSGSection::finalizeContents() {
1330 if (sgVeneers.empty())
1331 return;
1333 auto it =
1334 std::stable_partition(sgVeneers.begin(), sgVeneers.end(),
1335 [](auto *i) { return i->getAddr().has_value(); });
1336 std::sort(sgVeneers.begin(), it, [](auto *a, auto *b) {
1337 return a->getAddr().value() < b->getAddr().value();
1339 // This is the partition of the veneers with fixed addresses.
1340 uint64_t addr = (*sgVeneers.begin())->getAddr().has_value()
1341 ? (*sgVeneers.begin())->getAddr().value()
1342 : getVA();
1343 // Check if the start address of '.gnu.sgstubs' correspond to the
1344 // linker-synthesized veneer with the lowest address.
1345 if ((getVA() & ~1) != (addr & ~1)) {
1346 error("start address of '.gnu.sgstubs' is different from previous link");
1347 return;
1350 for (size_t i = 0; i < sgVeneers.size(); ++i) {
1351 ArmCmseSGVeneer *s = sgVeneers[i];
1352 s->offset = i * s->size;
1353 Defined(file, StringRef(), s->sym->binding, s->sym->stOther, s->sym->type,
1354 s->offset | 1, s->size, this)
1355 .overwrite(*s->sym);
1359 // Write the CMSE import library to disk.
1360 // The CMSE import library is a relocatable object with only a symbol table.
1361 // The symbols are copies of the (absolute) symbols of the secure gateways
1362 // in the executable output by this link.
1363 // See ArmĀ® v8-M Security Extensions: Requirements on Development Tools
1364 // https://developer.arm.com/documentation/ecm0359818/latest
1365 template <typename ELFT> void elf::writeARMCmseImportLib() {
1366 StringTableSection *shstrtab =
1367 make<StringTableSection>(".shstrtab", /*dynamic=*/false);
1368 StringTableSection *strtab =
1369 make<StringTableSection>(".strtab", /*dynamic=*/false);
1370 SymbolTableBaseSection *impSymTab = make<SymbolTableSection<ELFT>>(*strtab);
1372 SmallVector<std::pair<OutputSection *, SyntheticSection *>, 0> osIsPairs;
1373 osIsPairs.emplace_back(make<OutputSection>(strtab->name, 0, 0), strtab);
1374 osIsPairs.emplace_back(make<OutputSection>(impSymTab->name, 0, 0), impSymTab);
1375 osIsPairs.emplace_back(make<OutputSection>(shstrtab->name, 0, 0), shstrtab);
1377 std::sort(symtab.cmseSymMap.begin(), symtab.cmseSymMap.end(),
1378 [](const auto &a, const auto &b) -> bool {
1379 return a.second.sym->getVA() < b.second.sym->getVA();
1381 // Copy the secure gateway entry symbols to the import library symbol table.
1382 for (auto &p : symtab.cmseSymMap) {
1383 Defined *d = cast<Defined>(p.second.sym);
1384 impSymTab->addSymbol(makeDefined(nullptr, d->getName(), d->computeBinding(),
1385 /*stOther=*/0, STT_FUNC, d->getVA(),
1386 d->getSize(), nullptr));
1389 size_t idx = 0;
1390 uint64_t off = sizeof(typename ELFT::Ehdr);
1391 for (auto &[osec, isec] : osIsPairs) {
1392 osec->sectionIndex = ++idx;
1393 osec->recordSection(isec);
1394 osec->finalizeInputSections();
1395 osec->shName = shstrtab->addString(osec->name);
1396 osec->size = isec->getSize();
1397 isec->finalizeContents();
1398 osec->offset = alignToPowerOf2(off, osec->addralign);
1399 off = osec->offset + osec->size;
1402 const uint64_t sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
1403 const auto shnum = osIsPairs.size() + 1;
1404 const uint64_t fileSize =
1405 sectionHeaderOff + shnum * sizeof(typename ELFT::Shdr);
1406 const unsigned flags =
1407 config->mmapOutputFile ? 0 : (unsigned)FileOutputBuffer::F_no_mmap;
1408 unlinkAsync(config->cmseOutputLib);
1409 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
1410 FileOutputBuffer::create(config->cmseOutputLib, fileSize, flags);
1411 if (!bufferOrErr) {
1412 error("failed to open " + config->cmseOutputLib + ": " +
1413 llvm::toString(bufferOrErr.takeError()));
1414 return;
1417 // Write the ELF Header
1418 std::unique_ptr<FileOutputBuffer> &buffer = *bufferOrErr;
1419 uint8_t *const buf = buffer->getBufferStart();
1420 memcpy(buf, "\177ELF", 4);
1421 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
1422 eHdr->e_type = ET_REL;
1423 eHdr->e_entry = 0;
1424 eHdr->e_shoff = sectionHeaderOff;
1425 eHdr->e_ident[EI_CLASS] = ELFCLASS32;
1426 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
1427 eHdr->e_ident[EI_VERSION] = EV_CURRENT;
1428 eHdr->e_ident[EI_OSABI] = config->osabi;
1429 eHdr->e_ident[EI_ABIVERSION] = 0;
1430 eHdr->e_machine = EM_ARM;
1431 eHdr->e_version = EV_CURRENT;
1432 eHdr->e_flags = config->eflags;
1433 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
1434 eHdr->e_phnum = 0;
1435 eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
1436 eHdr->e_phoff = 0;
1437 eHdr->e_phentsize = 0;
1438 eHdr->e_shnum = shnum;
1439 eHdr->e_shstrndx = shstrtab->getParent()->sectionIndex;
1441 // Write the section header table.
1442 auto *sHdrs = reinterpret_cast<typename ELFT::Shdr *>(buf + eHdr->e_shoff);
1443 for (auto &[osec, _] : osIsPairs)
1444 osec->template writeHeaderTo<ELFT>(++sHdrs);
1446 // Write section contents to a mmap'ed file.
1448 parallel::TaskGroup tg;
1449 for (auto &[osec, _] : osIsPairs)
1450 osec->template writeTo<ELFT>(buf + osec->offset, tg);
1453 if (auto e = buffer->commit())
1454 fatal("failed to write output '" + buffer->getPath() +
1455 "': " + toString(std::move(e)));
1458 TargetInfo *elf::getARMTargetInfo() {
1459 static ARM target;
1460 return &target;
1463 template void elf::writeARMCmseImportLib<ELF32LE>();
1464 template void elf::writeARMCmseImportLib<ELF32BE>();
1465 template void elf::writeARMCmseImportLib<ELF64LE>();
1466 template void elf::writeARMCmseImportLib<ELF64BE>();
1468 template void ObjFile<ELF32LE>::importCmseSymbols();
1469 template void ObjFile<ELF32BE>::importCmseSymbols();
1470 template void ObjFile<ELF64LE>::importCmseSymbols();
1471 template void ObjFile<ELF64BE>::importCmseSymbols();