1 //===- PPC64.cpp ----------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "SymbolTable.h"
13 #include "SyntheticSections.h"
16 #include "lld/Common/CommonLinkerContext.h"
17 #include "llvm/Support/Endian.h"
20 using namespace llvm::object
;
21 using namespace llvm::support::endian
;
22 using namespace llvm::ELF
;
24 using namespace lld::elf
;
26 constexpr uint64_t ppc64TocOffset
= 0x8000;
27 constexpr uint64_t dynamicThreadPointerOffset
= 0x8000;
29 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
30 // instructions that can be used as part of the initial exec TLS sequence.
81 constexpr uint32_t NOP
= 0x60000000;
83 enum class PPCLegacyInsn
: uint32_t {
111 enum class PPCPrefixedInsn
: uint64_t {
113 PREFIX_MLS
= 0x0610000000000000,
114 PREFIX_8LS
= 0x0410000000000000,
121 PLWA
= PREFIX_8LS
| 0xa4000000,
122 PLD
= PREFIX_8LS
| 0xe4000000,
124 PLXSSP
= PREFIX_8LS
| 0xac000000,
126 PLXSD
= PREFIX_8LS
| 0xa8000000,
127 PLXV
= PREFIX_8LS
| 0xc8000000,
128 PLXVP
= PREFIX_8LS
| 0xe8000000,
134 PSTD
= PREFIX_8LS
| 0xf4000000,
136 PSTXSSP
= PREFIX_8LS
| 0xbc000000,
138 PSTXSD
= PREFIX_8LS
| 0xb8000000,
139 PSTXV
= PREFIX_8LS
| 0xd8000000,
140 PSTXVP
= PREFIX_8LS
| 0xf8000000
142 static bool checkPPCLegacyInsn(uint32_t encoding
) {
143 PPCLegacyInsn insn
= static_cast<PPCLegacyInsn
>(encoding
);
144 if (insn
== PPCLegacyInsn::NOINSN
)
146 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
147 if (insn == PPCLegacyInsn::Legacy) \
149 #include "PPCInsns.def"
154 // Masks to apply to legacy instructions when converting them to prefixed,
155 // pc-relative versions. For the most part, the primary opcode is shared
156 // between the legacy instruction and the suffix of its prefixed version.
157 // However, there are some instances where that isn't the case (DS-Form and
158 // DQ-form instructions).
159 enum class LegacyToPrefixMask
: uint64_t {
161 OPC_AND_RST
= 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
162 ONLY_RST
= 0x3e00000, // [RS]T (6-10).
164 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
168 class PPC64 final
: public TargetInfo
{
171 int getTlsGdRelaxSkip(RelType type
) const override
;
172 uint32_t calcEFlags() const override
;
173 RelExpr
getRelExpr(RelType type
, const Symbol
&s
,
174 const uint8_t *loc
) const override
;
175 RelType
getDynRel(RelType type
) const override
;
176 int64_t getImplicitAddend(const uint8_t *buf
, RelType type
) const override
;
177 void writePltHeader(uint8_t *buf
) const override
;
178 void writePlt(uint8_t *buf
, const Symbol
&sym
,
179 uint64_t pltEntryAddr
) const override
;
180 void writeIplt(uint8_t *buf
, const Symbol
&sym
,
181 uint64_t pltEntryAddr
) const override
;
182 void relocate(uint8_t *loc
, const Relocation
&rel
,
183 uint64_t val
) const override
;
184 void writeGotHeader(uint8_t *buf
) const override
;
185 bool needsThunk(RelExpr expr
, RelType type
, const InputFile
*file
,
186 uint64_t branchAddr
, const Symbol
&s
,
187 int64_t a
) const override
;
188 uint32_t getThunkSectionSpacing() const override
;
189 bool inBranchRange(RelType type
, uint64_t src
, uint64_t dst
) const override
;
190 RelExpr
adjustTlsExpr(RelType type
, RelExpr expr
) const override
;
191 RelExpr
adjustGotPcExpr(RelType type
, int64_t addend
,
192 const uint8_t *loc
) const override
;
193 void relaxGot(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
194 void relocateAlloc(InputSectionBase
&sec
, uint8_t *buf
) const override
;
196 bool adjustPrologueForCrossSplitStack(uint8_t *loc
, uint8_t *end
,
197 uint8_t stOther
) const override
;
200 void relaxTlsGdToIe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
201 void relaxTlsGdToLe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
202 void relaxTlsLdToLe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
203 void relaxTlsIeToLe(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const;
207 uint64_t elf::getPPC64TocBase() {
208 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
209 // TOC starts where the first of these sections starts. We always create a
210 // .got when we see a relocation that uses it, so for us the start is always
212 uint64_t tocVA
= in
.got
->getVA();
214 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
215 // thus permitting a full 64 Kbytes segment. Note that the glibc startup
216 // code (crt1.o) assumes that you can get from the TOC base to the
217 // start of the .toc section with only a single (signed) 16-bit relocation.
218 return tocVA
+ ppc64TocOffset
;
221 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther
) {
222 // The offset is encoded into the 3 most significant bits of the st_other
223 // field, with some special values described in section 3.4.1 of the ABI:
224 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use
225 // the TOC pointer (r2). r2 will hold the same value on returning from
226 // the function as it did on entering the function.
227 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a
228 // caller-saved register for all callers.
229 // 2-6 --> The binary logarithm of the offset eg:
230 // 2 --> 2^2 = 4 bytes --> 1 instruction.
231 // 6 --> 2^6 = 64 bytes --> 16 instructions.
233 uint8_t gepToLep
= (stOther
>> 5) & 7;
237 // The value encoded in the st_other bits is the
238 // log-base-2(offset).
240 return 1 << gepToLep
;
242 error("reserved value of 7 in the 3 most-significant-bits of st_other");
246 void elf::writePrefixedInstruction(uint8_t *loc
, uint64_t insn
) {
247 insn
= config
->isLE
? insn
<< 32 | insn
>> 32 : insn
;
251 static bool addOptional(StringRef name
, uint64_t value
,
252 std::vector
<Defined
*> &defined
) {
253 Symbol
*sym
= symtab
.find(name
);
254 if (!sym
|| sym
->isDefined())
256 sym
->resolve(Defined
{/*file=*/nullptr, StringRef(), STB_GLOBAL
, STV_HIDDEN
,
258 /*size=*/0, /*section=*/nullptr});
259 defined
.push_back(cast
<Defined
>(sym
));
263 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
264 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
265 // The labels are defined only if they exist in the symbol table.
266 static void writeSequence(MutableArrayRef
<uint32_t> buf
, const char *prefix
,
267 int from
, uint32_t firstInsn
,
268 ArrayRef
<uint32_t> tail
) {
269 std::vector
<Defined
*> defined
;
272 uint32_t *ptr
= buf
.data();
273 for (int r
= from
; r
< 32; ++r
) {
274 format("%s%d", prefix
, r
).snprint(name
, sizeof(name
));
275 if (addOptional(name
, 4 * (r
- from
), defined
) && defined
.size() == 1)
277 write32(ptr
++, firstInsn
+ 0x200008 * (r
- from
));
279 for (uint32_t insn
: tail
)
280 write32(ptr
++, insn
);
281 assert(ptr
== &*buf
.end());
285 // The full section content has the extent of [begin, end). We drop unused
286 // instructions and write [first,end).
287 auto *sec
= make
<InputSection
>(
288 nullptr, SHF_ALLOC
, SHT_PROGBITS
, 4,
289 ArrayRef(reinterpret_cast<uint8_t *>(buf
.data() + first
),
290 4 * (buf
.size() - first
)),
292 ctx
.inputSections
.push_back(sec
);
293 for (Defined
*sym
: defined
) {
295 sym
->value
-= 4 * first
;
299 // Implements some save and restore functions as described by ELF V2 ABI to be
300 // compatible with GCC. With GCC -Os, when the number of call-saved registers
301 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
302 // expects the linker to define them. See
303 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and
304 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
305 // weird because libgcc.a would be the natural place. The linker generation
306 // approach has the advantage that the linker can generate multiple copies to
307 // avoid long branch thunks. However, we don't consider the advantage
308 // significant enough to complicate our trunk implementation, so we take the
309 // simple approach and synthesize .text sections providing the implementation.
310 void elf::addPPC64SaveRestore() {
311 static uint32_t savegpr0
[20], restgpr0
[21], savegpr1
[19], restgpr1
[19];
312 constexpr uint32_t blr
= 0x4e800020, mtlr_0
= 0x7c0803a6;
314 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
315 // Tail: ld 0, 16(1); mtlr 0; blr
316 writeSequence(restgpr0
, "_restgpr0_", 14, 0xe9c1ff70,
317 {0xe8010010, mtlr_0
, blr
});
318 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
320 writeSequence(restgpr1
, "_restgpr1_", 14, 0xe9ccff70, {blr
});
321 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
322 // Tail: std 0, 16(1); blr
323 writeSequence(savegpr0
, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr
});
324 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
326 writeSequence(savegpr1
, "_savegpr1_", 14, 0xf9ccff70, {blr
});
329 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
330 template <typename ELFT
>
331 static std::pair
<Defined
*, int64_t>
332 getRelaTocSymAndAddend(InputSectionBase
*tocSec
, uint64_t offset
) {
333 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
334 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
335 // relocation index in most cases.
337 // In rare cases a TOC entry may store a constant that doesn't need an
338 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
339 // points to a relocation with larger r_offset. Do a linear probe then.
340 // Constants are extremely uncommon in .toc and the extra number of array
341 // accesses can be seen as a small constant.
342 ArrayRef
<typename
ELFT::Rela
> relas
=
343 tocSec
->template relsOrRelas
<ELFT
>().relas
;
346 uint64_t index
= std::min
<uint64_t>(offset
/ 8, relas
.size() - 1);
348 if (relas
[index
].r_offset
== offset
) {
349 Symbol
&sym
= tocSec
->getFile
<ELFT
>()->getRelocTargetSym(relas
[index
]);
350 return {dyn_cast
<Defined
>(&sym
), getAddend
<ELFT
>(relas
[index
])};
352 if (relas
[index
].r_offset
< offset
|| index
== 0)
359 // When accessing a symbol defined in another translation unit, compilers
360 // reserve a .toc entry, allocate a local label and generate toc-indirect
363 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
364 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
365 // ld/lwa 3, 0(3) # load the value from the address
367 // .section .toc,"aw",@progbits
368 // .LC0: .tc var[TC],var
370 // If var is defined, non-preemptable and addressable with a 32-bit signed
371 // offset from the toc base, the address of var can be computed by adding an
372 // offset to the toc base, saving a load.
374 // addis 3,2,var@toc@ha # this may be relaxed to a nop,
375 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
376 // ld/lwa 3, 0(3) # load the value from the address
378 // Returns true if the relaxation is performed.
379 static bool tryRelaxPPC64TocIndirection(const Relocation
&rel
,
381 assert(config
->tocOptimize
);
385 // If the symbol is not the .toc section, this isn't a toc-indirection.
386 Defined
*defSym
= dyn_cast
<Defined
>(rel
.sym
);
387 if (!defSym
|| !defSym
->isSection() || defSym
->section
->name
!= ".toc")
392 auto *tocISB
= cast
<InputSectionBase
>(defSym
->section
);
393 std::tie(d
, addend
) =
394 config
->isLE
? getRelaTocSymAndAddend
<ELF64LE
>(tocISB
, rel
.addend
)
395 : getRelaTocSymAndAddend
<ELF64BE
>(tocISB
, rel
.addend
);
397 // Only non-preemptable defined symbols can be relaxed.
398 if (!d
|| d
->isPreemptible
)
401 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
402 // ifunc and changed its type to STT_FUNC.
403 assert(!d
->isGnuIFunc());
405 // Two instructions can materialize a 32-bit signed offset from the toc base.
406 uint64_t tocRelative
= d
->getVA(addend
) - getPPC64TocBase();
407 if (!isInt
<32>(tocRelative
))
410 // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
411 static_cast<const PPC64
&>(*target
).relaxGot(bufLoc
, rel
,
412 tocRelative
+ ppc64TocOffset
);
416 // Relocation masks following the #lo(value), #hi(value), #ha(value),
417 // #higher(value), #highera(value), #highest(value), and #highesta(value)
418 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
420 static uint16_t lo(uint64_t v
) { return v
; }
421 static uint16_t hi(uint64_t v
) { return v
>> 16; }
422 static uint64_t ha(uint64_t v
) { return (v
+ 0x8000) >> 16; }
423 static uint16_t higher(uint64_t v
) { return v
>> 32; }
424 static uint16_t highera(uint64_t v
) { return (v
+ 0x8000) >> 32; }
425 static uint16_t highest(uint64_t v
) { return v
>> 48; }
426 static uint16_t highesta(uint64_t v
) { return (v
+ 0x8000) >> 48; }
428 // Extracts the 'PO' field of an instruction encoding.
429 static uint8_t getPrimaryOpCode(uint32_t encoding
) { return (encoding
>> 26); }
431 static bool isDQFormInstruction(uint32_t encoding
) {
432 switch (getPrimaryOpCode(encoding
)) {
435 case 6: // Power10 paired loads/stores (lxvp, stxvp).
437 // The only instruction with a primary opcode of 56 is `lq`.
440 // There are both DS and DQ instruction forms with this primary opcode.
441 // Namely `lxv` and `stxv` are the DQ-forms that use it.
442 // The DS 'XO' bits being set to 01 is restricted to DQ form.
443 return (encoding
& 3) == 0x1;
447 static bool isDSFormInstruction(PPCLegacyInsn insn
) {
451 case PPCLegacyInsn::LWA
:
452 case PPCLegacyInsn::LD
:
453 case PPCLegacyInsn::LXSD
:
454 case PPCLegacyInsn::LXSSP
:
455 case PPCLegacyInsn::STD
:
456 case PPCLegacyInsn::STXSD
:
457 case PPCLegacyInsn::STXSSP
:
462 static PPCLegacyInsn
getPPCLegacyInsn(uint32_t encoding
) {
463 uint32_t opc
= encoding
& 0xfc000000;
465 // If the primary opcode is shared between multiple instructions, we need to
466 // fix it up to match the actual instruction we are after.
467 if ((opc
== 0xe4000000 || opc
== 0xe8000000 || opc
== 0xf4000000 ||
468 opc
== 0xf8000000) &&
469 !isDQFormInstruction(encoding
))
470 opc
= encoding
& 0xfc000003;
471 else if (opc
== 0xf4000000)
472 opc
= encoding
& 0xfc000007;
473 else if (opc
== 0x18000000)
474 opc
= encoding
& 0xfc00000f;
476 // If the value is not one of the enumerators in PPCLegacyInsn, we want to
477 // return PPCLegacyInsn::NOINSN.
478 if (!checkPPCLegacyInsn(opc
))
479 return PPCLegacyInsn::NOINSN
;
480 return static_cast<PPCLegacyInsn
>(opc
);
483 static PPCPrefixedInsn
getPCRelativeForm(PPCLegacyInsn insn
) {
485 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
486 case PPCLegacyInsn::Legacy: \
487 return PPCPrefixedInsn::PCRel
488 #include "PPCInsns.def"
491 return PPCPrefixedInsn::NOINSN
;
494 static LegacyToPrefixMask
getInsnMask(PPCLegacyInsn insn
) {
496 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
497 case PPCLegacyInsn::Legacy: \
498 return LegacyToPrefixMask::InsnMask
499 #include "PPCInsns.def"
502 return LegacyToPrefixMask::NOMASK
;
504 static uint64_t getPCRelativeForm(uint32_t encoding
) {
505 PPCLegacyInsn origInsn
= getPPCLegacyInsn(encoding
);
506 PPCPrefixedInsn pcrelInsn
= getPCRelativeForm(origInsn
);
507 if (pcrelInsn
== PPCPrefixedInsn::NOINSN
)
509 LegacyToPrefixMask origInsnMask
= getInsnMask(origInsn
);
510 uint64_t pcrelEncoding
=
511 (uint64_t)pcrelInsn
| (encoding
& (uint64_t)origInsnMask
);
513 // If the mask requires moving bit 28 to bit 5, do that now.
514 if (origInsnMask
== LegacyToPrefixMask::ST_STX28_TO5
)
515 pcrelEncoding
|= (encoding
& 0x8) << 23;
516 return pcrelEncoding
;
519 static bool isInstructionUpdateForm(uint32_t encoding
) {
520 switch (getPrimaryOpCode(encoding
)) {
535 // LWA has the same opcode as LD, and the DS bits is what differentiates
536 // between LD/LDU/LWA
539 return (encoding
& 3) == 1;
543 // Compute the total displacement between the prefixed instruction that gets
544 // to the start of the data and the load/store instruction that has the offset
545 // into the data structure.
547 // paddi 3, 0, 1000, 1
549 // Should add up to 1020 for total displacement.
550 static int64_t getTotalDisp(uint64_t prefixedInsn
, uint32_t accessInsn
) {
551 int64_t disp34
= llvm::SignExtend64(
552 ((prefixedInsn
& 0x3ffff00000000) >> 16) | (prefixedInsn
& 0xffff), 34);
553 int32_t disp16
= llvm::SignExtend32(accessInsn
& 0xffff, 16);
554 // For DS and DQ form instructions, we need to mask out the XO bits.
555 if (isDQFormInstruction(accessInsn
))
557 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn
)))
559 return disp34
+ disp16
;
562 // There are a number of places when we either want to read or write an
563 // instruction when handling a half16 relocation type. On big-endian the buffer
564 // pointer is pointing into the middle of the word we want to extract, and on
565 // little-endian it is pointing to the start of the word. These 2 helpers are to
566 // simplify reading and writing in that context.
567 static void writeFromHalf16(uint8_t *loc
, uint32_t insn
) {
568 write32(config
->isLE
? loc
: loc
- 2, insn
);
571 static uint32_t readFromHalf16(const uint8_t *loc
) {
572 return read32(config
->isLE
? loc
: loc
- 2);
575 static uint64_t readPrefixedInstruction(const uint8_t *loc
) {
576 uint64_t fullInstr
= read64(loc
);
577 return config
->isLE
? (fullInstr
<< 32 | fullInstr
>> 32) : fullInstr
;
581 copyRel
= R_PPC64_COPY
;
582 gotRel
= R_PPC64_GLOB_DAT
;
583 pltRel
= R_PPC64_JMP_SLOT
;
584 relativeRel
= R_PPC64_RELATIVE
;
585 iRelativeRel
= R_PPC64_IRELATIVE
;
586 symbolicRel
= R_PPC64_ADDR64
;
589 ipltEntrySize
= 16; // PPC64PltCallStub::size
590 gotHeaderEntriesNum
= 1;
591 gotPltHeaderEntriesNum
= 2;
594 tlsModuleIndexRel
= R_PPC64_DTPMOD64
;
595 tlsOffsetRel
= R_PPC64_DTPREL64
;
597 tlsGotRel
= R_PPC64_TPREL64
;
599 needsMoreStackNonSplit
= false;
601 // We need 64K pages (at least under glibc/Linux, the loader won't
602 // set different permissions on a finer granularity than that).
603 defaultMaxPageSize
= 65536;
605 // The PPC64 ELF ABI v1 spec, says:
607 // It is normally desirable to put segments with different characteristics
608 // in separate 256 Mbyte portions of the address space, to give the
609 // operating system full paging flexibility in the 64-bit address space.
611 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
612 // use 0x10000000 as the starting address.
613 defaultImageBase
= 0x10000000;
615 write32(trapInstr
.data(), 0x7fe00008);
618 int PPC64::getTlsGdRelaxSkip(RelType type
) const {
619 // A __tls_get_addr call instruction is marked with 2 relocations:
621 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
622 // R_PPC64_REL24: __tls_get_addr
624 // After the relaxation we no longer call __tls_get_addr and should skip both
625 // relocations to not create a false dependence on __tls_get_addr being
627 if (type
== R_PPC64_TLSGD
|| type
== R_PPC64_TLSLD
)
632 static uint32_t getEFlags(InputFile
*file
) {
633 if (file
->ekind
== ELF64BEKind
)
634 return cast
<ObjFile
<ELF64BE
>>(file
)->getObj().getHeader().e_flags
;
635 return cast
<ObjFile
<ELF64LE
>>(file
)->getObj().getHeader().e_flags
;
638 // This file implements v2 ABI. This function makes sure that all
639 // object files have v2 or an unspecified version as an ABI version.
640 uint32_t PPC64::calcEFlags() const {
641 for (InputFile
*f
: ctx
.objectFiles
) {
642 uint32_t flag
= getEFlags(f
);
644 error(toString(f
) + ": ABI version 1 is not supported");
646 error(toString(f
) + ": unrecognized e_flags: " + Twine(flag
));
651 void PPC64::relaxGot(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const {
653 case R_PPC64_TOC16_HA
:
654 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
655 relocate(loc
, rel
, val
);
657 case R_PPC64_TOC16_LO_DS
: {
658 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
659 // "addi reg, 2, var@toc".
660 uint32_t insn
= readFromHalf16(loc
);
661 if (getPrimaryOpCode(insn
) != LD
)
662 error("expected a 'ld' for got-indirect to toc-relative relaxing");
663 writeFromHalf16(loc
, (insn
& 0x03ffffff) | 0x38000000);
664 relocateNoSym(loc
, R_PPC64_TOC16_LO
, val
);
667 case R_PPC64_GOT_PCREL34
: {
668 // Clear the first 8 bits of the prefix and the first 6 bits of the
669 // instruction (the primary opcode).
670 uint64_t insn
= readPrefixedInstruction(loc
);
671 if ((insn
& 0xfc000000) != 0xe4000000)
672 error("expected a 'pld' for got-indirect to pc-relative relaxing");
673 insn
&= ~0xff000000fc000000;
675 // Replace the cleared bits with the values for PADDI (0x600000038000000);
676 insn
|= 0x600000038000000;
677 writePrefixedInstruction(loc
, insn
);
678 relocate(loc
, rel
, val
);
681 case R_PPC64_PCREL_OPT
: {
682 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
683 // be relaxed. The eligibility for the relaxation needs to be determined
684 // on that relocation since this one does not relocate a symbol.
685 uint64_t insn
= readPrefixedInstruction(loc
);
686 uint32_t accessInsn
= read32(loc
+ rel
.addend
);
687 uint64_t pcRelInsn
= getPCRelativeForm(accessInsn
);
689 // This error is not necessary for correctness but is emitted for now
690 // to ensure we don't miss these opportunities in real code. It can be
691 // removed at a later date.
692 if (pcRelInsn
== UINT64_C(-1)) {
694 "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
695 Twine::utohexstr(accessInsn
));
699 int64_t totalDisp
= getTotalDisp(insn
, accessInsn
);
700 if (!isInt
<34>(totalDisp
))
701 break; // Displacement doesn't fit.
702 // Convert the PADDI to the prefixed version of accessInsn and convert
703 // accessInsn to a nop.
704 writePrefixedInstruction(loc
, pcRelInsn
|
705 ((totalDisp
& 0x3ffff0000) << 16) |
706 (totalDisp
& 0xffff));
707 write32(loc
+ rel
.addend
, NOP
); // nop accessInsn.
711 llvm_unreachable("unexpected relocation type");
715 void PPC64::relaxTlsGdToLe(uint8_t *loc
, const Relocation
&rel
,
716 uint64_t val
) const {
717 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
718 // The general dynamic code sequence for a global `x` will look like:
719 // Instruction Relocation Symbol
720 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
721 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
722 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
723 // R_PPC64_REL24 __tls_get_addr
726 // Relaxing to local exec entails converting:
727 // addis r3, r2, x@got@tlsgd@ha into nop
728 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha
729 // bl __tls_get_addr(x@tlsgd) into nop
730 // nop into addi r3, r3, x@tprel@l
733 case R_PPC64_GOT_TLSGD16_HA
:
734 writeFromHalf16(loc
, NOP
);
736 case R_PPC64_GOT_TLSGD16
:
737 case R_PPC64_GOT_TLSGD16_LO
:
738 writeFromHalf16(loc
, 0x3c6d0000); // addis r3, r13
739 relocateNoSym(loc
, R_PPC64_TPREL16_HA
, val
);
741 case R_PPC64_GOT_TLSGD_PCREL34
:
742 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
743 // paddi r3, r13, x@tprel, 0
744 writePrefixedInstruction(loc
, 0x06000000386d0000);
745 relocateNoSym(loc
, R_PPC64_TPREL34
, val
);
747 case R_PPC64_TLSGD
: {
748 // PC Relative Relaxation:
749 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
752 // Relax from bl __tls_get_addr(x@tlsgd)
756 // addi r3, r3, x@tprel@l
757 const uintptr_t locAsInt
= reinterpret_cast<uintptr_t>(loc
);
758 if (locAsInt
% 4 == 0) {
759 write32(loc
, NOP
); // nop
760 write32(loc
+ 4, 0x38630000); // addi r3, r3
761 // Since we are relocating a half16 type relocation and Loc + 4 points to
762 // the start of an instruction we need to advance the buffer by an extra
764 relocateNoSym(loc
+ 4 + (config
->ekind
== ELF64BEKind
? 2 : 0),
765 R_PPC64_TPREL16_LO
, val
);
766 } else if (locAsInt
% 4 == 1) {
767 write32(loc
- 1, NOP
);
769 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
774 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
778 void PPC64::relaxTlsLdToLe(uint8_t *loc
, const Relocation
&rel
,
779 uint64_t val
) const {
780 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
781 // The local dynamic code sequence for a global `x` will look like:
782 // Instruction Relocation Symbol
783 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x
784 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x
785 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x
786 // R_PPC64_REL24 __tls_get_addr
789 // Relaxing to local exec entails converting:
790 // addis r3, r2, x@got@tlsld@ha into nop
791 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0
792 // bl __tls_get_addr(x@tlsgd) into nop
793 // nop into addi r3, r3, 4096
796 case R_PPC64_GOT_TLSLD16_HA
:
797 writeFromHalf16(loc
, NOP
);
799 case R_PPC64_GOT_TLSLD16_LO
:
800 writeFromHalf16(loc
, 0x3c6d0000); // addis r3, r13, 0
802 case R_PPC64_GOT_TLSLD_PCREL34
:
803 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
804 // paddi r3, r13, 0x1000, 0
805 writePrefixedInstruction(loc
, 0x06000000386d1000);
807 case R_PPC64_TLSLD
: {
808 // PC Relative Relaxation:
809 // Relax from bl __tls_get_addr@notoc(x@tlsld)
813 // Relax from bl __tls_get_addr(x@tlsld)
818 const uintptr_t locAsInt
= reinterpret_cast<uintptr_t>(loc
);
819 if (locAsInt
% 4 == 0) {
821 write32(loc
+ 4, 0x38631000); // addi r3, r3, 4096
822 } else if (locAsInt
% 4 == 1) {
823 write32(loc
- 1, NOP
);
825 errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
829 case R_PPC64_DTPREL16
:
830 case R_PPC64_DTPREL16_HA
:
831 case R_PPC64_DTPREL16_HI
:
832 case R_PPC64_DTPREL16_DS
:
833 case R_PPC64_DTPREL16_LO
:
834 case R_PPC64_DTPREL16_LO_DS
:
835 case R_PPC64_DTPREL34
:
836 relocate(loc
, rel
, val
);
839 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
843 // Map X-Form instructions to their DS-Form counterparts, if applicable.
844 // The full encoding is returned here to distinguish between the different
845 // DS-Form instructions.
846 unsigned elf::getPPCDSFormOp(unsigned secondaryOp
) {
847 switch (secondaryOp
) {
849 return (LWA
<< 26) | 0x2;
859 unsigned elf::getPPCDFormOp(unsigned secondaryOp
) {
860 switch (secondaryOp
) {
890 void PPC64::relaxTlsIeToLe(uint8_t *loc
, const Relocation
&rel
,
891 uint64_t val
) const {
892 // The initial exec code sequence for a global `x` will look like:
893 // Instruction Relocation Symbol
894 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x
895 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x
896 // add r9, r9, x@tls R_PPC64_TLS x
898 // Relaxing to local exec entails converting:
899 // addis r9, r2, x@got@tprel@ha into nop
900 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha
901 // add r9, r9, x@tls into addi r9, r9, x@tprel@l
903 // x@tls R_PPC64_TLS is a relocation which does not compute anything,
904 // it is replaced with r13 (thread pointer).
906 // The add instruction in the initial exec sequence has multiple variations
907 // that need to be handled. If we are building an address it will use an add
908 // instruction, if we are accessing memory it will use any of the X-form
909 // indexed load or store instructions.
911 unsigned offset
= (config
->ekind
== ELF64BEKind
) ? 2 : 0;
913 case R_PPC64_GOT_TPREL16_HA
:
914 write32(loc
- offset
, NOP
);
916 case R_PPC64_GOT_TPREL16_LO_DS
:
917 case R_PPC64_GOT_TPREL16_DS
: {
918 uint32_t regNo
= read32(loc
- offset
) & 0x03E00000; // bits 6-10
919 write32(loc
- offset
, 0x3C0D0000 | regNo
); // addis RegNo, r13
920 relocateNoSym(loc
, R_PPC64_TPREL16_HA
, val
);
923 case R_PPC64_GOT_TPREL_PCREL34
: {
924 const uint64_t pldRT
= readPrefixedInstruction(loc
) & 0x0000000003e00000;
925 // paddi RT(from pld), r13, symbol@tprel, 0
926 writePrefixedInstruction(loc
, 0x06000000380d0000 | pldRT
);
927 relocateNoSym(loc
, R_PPC64_TPREL34
, val
);
931 const uintptr_t locAsInt
= reinterpret_cast<uintptr_t>(loc
);
932 if (locAsInt
% 4 == 0) {
933 uint32_t primaryOp
= getPrimaryOpCode(read32(loc
));
935 error("unrecognized instruction for IE to LE R_PPC64_TLS");
936 uint32_t secondaryOp
= (read32(loc
) & 0x000007FE) >> 1; // bits 21-30
937 uint32_t dFormOp
= getPPCDFormOp(secondaryOp
);
939 if (dFormOp
== 0) { // Expecting a DS-Form instruction.
940 dFormOp
= getPPCDSFormOp(secondaryOp
);
942 error("unrecognized instruction for IE to LE R_PPC64_TLS");
943 finalReloc
= R_PPC64_TPREL16_LO_DS
;
945 finalReloc
= R_PPC64_TPREL16_LO
;
946 write32(loc
, dFormOp
| (read32(loc
) & 0x03ff0000));
947 relocateNoSym(loc
+ offset
, finalReloc
, val
);
948 } else if (locAsInt
% 4 == 1) {
949 // If the offset is not 4 byte aligned then we have a PCRel type reloc.
950 // This version of the relocation is offset by one byte from the
951 // instruction it references.
952 uint32_t tlsInstr
= read32(loc
- 1);
953 uint32_t primaryOp
= getPrimaryOpCode(tlsInstr
);
955 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
956 uint32_t secondaryOp
= (tlsInstr
& 0x000007FE) >> 1; // bits 21-30
957 // The add is a special case and should be turned into a nop. The paddi
958 // that comes before it will already have computed the address of the
960 if (secondaryOp
== 266) {
961 // Check if the add uses the same result register as the input register.
962 uint32_t rt
= (tlsInstr
& 0x03E00000) >> 21; // bits 6-10
963 uint32_t ra
= (tlsInstr
& 0x001F0000) >> 16; // bits 11-15
965 write32(loc
- 1, NOP
);
968 write32(loc
- 1, 0x7C000378 | (rt
<< 16) | (ra
<< 21) | (ra
<< 11));
971 uint32_t dFormOp
= getPPCDFormOp(secondaryOp
);
972 if (dFormOp
== 0) { // Expecting a DS-Form instruction.
973 dFormOp
= getPPCDSFormOp(secondaryOp
);
975 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
977 write32(loc
- 1, (dFormOp
| (tlsInstr
& 0x03ff0000)));
980 errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
981 "offset from 4 byte aligned");
986 llvm_unreachable("unknown relocation for IE to LE");
991 RelExpr
PPC64::getRelExpr(RelType type
, const Symbol
&s
,
992 const uint8_t *loc
) const {
997 case R_PPC64_ADDR16_DS
:
998 case R_PPC64_ADDR16_HA
:
999 case R_PPC64_ADDR16_HI
:
1000 case R_PPC64_ADDR16_HIGH
:
1001 case R_PPC64_ADDR16_HIGHER
:
1002 case R_PPC64_ADDR16_HIGHERA
:
1003 case R_PPC64_ADDR16_HIGHEST
:
1004 case R_PPC64_ADDR16_HIGHESTA
:
1005 case R_PPC64_ADDR16_LO
:
1006 case R_PPC64_ADDR16_LO_DS
:
1007 case R_PPC64_ADDR32
:
1008 case R_PPC64_ADDR64
:
1011 case R_PPC64_GOT16_DS
:
1012 case R_PPC64_GOT16_HA
:
1013 case R_PPC64_GOT16_HI
:
1014 case R_PPC64_GOT16_LO
:
1015 case R_PPC64_GOT16_LO_DS
:
1018 case R_PPC64_TOC16_DS
:
1019 case R_PPC64_TOC16_HI
:
1020 case R_PPC64_TOC16_LO
:
1022 case R_PPC64_GOT_PCREL34
:
1023 case R_PPC64_GOT_TPREL_PCREL34
:
1024 case R_PPC64_PCREL_OPT
:
1026 case R_PPC64_TOC16_HA
:
1027 case R_PPC64_TOC16_LO_DS
:
1028 return config
->tocOptimize
? R_PPC64_RELAX_TOC
: R_GOTREL
;
1030 return R_PPC64_TOCBASE
;
1033 return R_PPC64_CALL_PLT
;
1034 case R_PPC64_REL24_NOTOC
:
1036 case R_PPC64_REL16_LO
:
1037 case R_PPC64_REL16_HA
:
1038 case R_PPC64_REL16_HI
:
1041 case R_PPC64_PCREL34
:
1043 case R_PPC64_GOT_TLSGD16
:
1044 case R_PPC64_GOT_TLSGD16_HA
:
1045 case R_PPC64_GOT_TLSGD16_HI
:
1046 case R_PPC64_GOT_TLSGD16_LO
:
1048 case R_PPC64_GOT_TLSGD_PCREL34
:
1050 case R_PPC64_GOT_TLSLD16
:
1051 case R_PPC64_GOT_TLSLD16_HA
:
1052 case R_PPC64_GOT_TLSLD16_HI
:
1053 case R_PPC64_GOT_TLSLD16_LO
:
1055 case R_PPC64_GOT_TLSLD_PCREL34
:
1057 case R_PPC64_GOT_TPREL16_HA
:
1058 case R_PPC64_GOT_TPREL16_LO_DS
:
1059 case R_PPC64_GOT_TPREL16_DS
:
1060 case R_PPC64_GOT_TPREL16_HI
:
1062 case R_PPC64_GOT_DTPREL16_HA
:
1063 case R_PPC64_GOT_DTPREL16_LO_DS
:
1064 case R_PPC64_GOT_DTPREL16_DS
:
1065 case R_PPC64_GOT_DTPREL16_HI
:
1066 return R_TLSLD_GOT_OFF
;
1067 case R_PPC64_TPREL16
:
1068 case R_PPC64_TPREL16_HA
:
1069 case R_PPC64_TPREL16_LO
:
1070 case R_PPC64_TPREL16_HI
:
1071 case R_PPC64_TPREL16_DS
:
1072 case R_PPC64_TPREL16_LO_DS
:
1073 case R_PPC64_TPREL16_HIGHER
:
1074 case R_PPC64_TPREL16_HIGHERA
:
1075 case R_PPC64_TPREL16_HIGHEST
:
1076 case R_PPC64_TPREL16_HIGHESTA
:
1077 case R_PPC64_TPREL34
:
1079 case R_PPC64_DTPREL16
:
1080 case R_PPC64_DTPREL16_DS
:
1081 case R_PPC64_DTPREL16_HA
:
1082 case R_PPC64_DTPREL16_HI
:
1083 case R_PPC64_DTPREL16_HIGHER
:
1084 case R_PPC64_DTPREL16_HIGHERA
:
1085 case R_PPC64_DTPREL16_HIGHEST
:
1086 case R_PPC64_DTPREL16_HIGHESTA
:
1087 case R_PPC64_DTPREL16_LO
:
1088 case R_PPC64_DTPREL16_LO_DS
:
1089 case R_PPC64_DTPREL64
:
1090 case R_PPC64_DTPREL34
:
1093 return R_TLSDESC_CALL
;
1095 return R_TLSLD_HINT
;
1097 return R_TLSIE_HINT
;
1099 error(getErrorLocation(loc
) + "unknown relocation (" + Twine(type
) +
1100 ") against symbol " + toString(s
));
1105 RelType
PPC64::getDynRel(RelType type
) const {
1106 if (type
== R_PPC64_ADDR64
|| type
== R_PPC64_TOC
)
1107 return R_PPC64_ADDR64
;
1108 return R_PPC64_NONE
;
1111 int64_t PPC64::getImplicitAddend(const uint8_t *buf
, RelType type
) const {
1114 case R_PPC64_GLOB_DAT
:
1115 case R_PPC64_JMP_SLOT
:
1118 return SignExtend64
<32>(read32(buf
));
1119 case R_PPC64_ADDR64
:
1121 case R_PPC64_RELATIVE
:
1122 case R_PPC64_IRELATIVE
:
1123 case R_PPC64_DTPMOD64
:
1124 case R_PPC64_DTPREL64
:
1125 case R_PPC64_TPREL64
:
1128 internalLinkerError(getErrorLocation(buf
),
1129 "cannot read addend for relocation " + toString(type
));
1134 void PPC64::writeGotHeader(uint8_t *buf
) const {
1135 write64(buf
, getPPC64TocBase());
1138 void PPC64::writePltHeader(uint8_t *buf
) const {
1139 // The generic resolver stub goes first.
1140 write32(buf
+ 0, 0x7c0802a6); // mflr r0
1141 write32(buf
+ 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8>
1142 write32(buf
+ 8, 0x7d6802a6); // mflr r11
1143 write32(buf
+ 12, 0x7c0803a6); // mtlr r0
1144 write32(buf
+ 16, 0x7d8b6050); // subf r12, r11, r12
1145 write32(buf
+ 20, 0x380cffcc); // subi r0,r12,52
1146 write32(buf
+ 24, 0x7800f082); // srdi r0,r0,62,2
1147 write32(buf
+ 28, 0xe98b002c); // ld r12,44(r11)
1148 write32(buf
+ 32, 0x7d6c5a14); // add r11,r12,r11
1149 write32(buf
+ 36, 0xe98b0000); // ld r12,0(r11)
1150 write32(buf
+ 40, 0xe96b0008); // ld r11,8(r11)
1151 write32(buf
+ 44, 0x7d8903a6); // mtctr r12
1152 write32(buf
+ 48, 0x4e800420); // bctr
1154 // The 'bcl' instruction will set the link register to the address of the
1155 // following instruction ('mflr r11'). Here we store the offset from that
1156 // instruction to the first entry in the GotPlt section.
1157 int64_t gotPltOffset
= in
.gotPlt
->getVA() - (in
.plt
->getVA() + 8);
1158 write64(buf
+ 52, gotPltOffset
);
1161 void PPC64::writePlt(uint8_t *buf
, const Symbol
&sym
,
1162 uint64_t /*pltEntryAddr*/) const {
1163 int32_t offset
= pltHeaderSize
+ sym
.getPltIdx() * pltEntrySize
;
1164 // bl __glink_PLTresolve
1165 write32(buf
, 0x48000000 | ((-offset
) & 0x03FFFFFc));
1168 void PPC64::writeIplt(uint8_t *buf
, const Symbol
&sym
,
1169 uint64_t /*pltEntryAddr*/) const {
1170 writePPC64LoadAndBranch(buf
, sym
.getGotPltVA() - getPPC64TocBase());
1173 static std::pair
<RelType
, uint64_t> toAddr16Rel(RelType type
, uint64_t val
) {
1174 // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1175 uint64_t tocBiasedVal
= val
- ppc64TocOffset
;
1176 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1177 uint64_t dtpBiasedVal
= val
- dynamicThreadPointerOffset
;
1180 // TOC biased relocation.
1182 case R_PPC64_GOT_TLSGD16
:
1183 case R_PPC64_GOT_TLSLD16
:
1185 return {R_PPC64_ADDR16
, tocBiasedVal
};
1186 case R_PPC64_GOT16_DS
:
1187 case R_PPC64_TOC16_DS
:
1188 case R_PPC64_GOT_TPREL16_DS
:
1189 case R_PPC64_GOT_DTPREL16_DS
:
1190 return {R_PPC64_ADDR16_DS
, tocBiasedVal
};
1191 case R_PPC64_GOT16_HA
:
1192 case R_PPC64_GOT_TLSGD16_HA
:
1193 case R_PPC64_GOT_TLSLD16_HA
:
1194 case R_PPC64_GOT_TPREL16_HA
:
1195 case R_PPC64_GOT_DTPREL16_HA
:
1196 case R_PPC64_TOC16_HA
:
1197 return {R_PPC64_ADDR16_HA
, tocBiasedVal
};
1198 case R_PPC64_GOT16_HI
:
1199 case R_PPC64_GOT_TLSGD16_HI
:
1200 case R_PPC64_GOT_TLSLD16_HI
:
1201 case R_PPC64_GOT_TPREL16_HI
:
1202 case R_PPC64_GOT_DTPREL16_HI
:
1203 case R_PPC64_TOC16_HI
:
1204 return {R_PPC64_ADDR16_HI
, tocBiasedVal
};
1205 case R_PPC64_GOT16_LO
:
1206 case R_PPC64_GOT_TLSGD16_LO
:
1207 case R_PPC64_GOT_TLSLD16_LO
:
1208 case R_PPC64_TOC16_LO
:
1209 return {R_PPC64_ADDR16_LO
, tocBiasedVal
};
1210 case R_PPC64_GOT16_LO_DS
:
1211 case R_PPC64_TOC16_LO_DS
:
1212 case R_PPC64_GOT_TPREL16_LO_DS
:
1213 case R_PPC64_GOT_DTPREL16_LO_DS
:
1214 return {R_PPC64_ADDR16_LO_DS
, tocBiasedVal
};
1216 // Dynamic Thread pointer biased relocation types.
1217 case R_PPC64_DTPREL16
:
1218 return {R_PPC64_ADDR16
, dtpBiasedVal
};
1219 case R_PPC64_DTPREL16_DS
:
1220 return {R_PPC64_ADDR16_DS
, dtpBiasedVal
};
1221 case R_PPC64_DTPREL16_HA
:
1222 return {R_PPC64_ADDR16_HA
, dtpBiasedVal
};
1223 case R_PPC64_DTPREL16_HI
:
1224 return {R_PPC64_ADDR16_HI
, dtpBiasedVal
};
1225 case R_PPC64_DTPREL16_HIGHER
:
1226 return {R_PPC64_ADDR16_HIGHER
, dtpBiasedVal
};
1227 case R_PPC64_DTPREL16_HIGHERA
:
1228 return {R_PPC64_ADDR16_HIGHERA
, dtpBiasedVal
};
1229 case R_PPC64_DTPREL16_HIGHEST
:
1230 return {R_PPC64_ADDR16_HIGHEST
, dtpBiasedVal
};
1231 case R_PPC64_DTPREL16_HIGHESTA
:
1232 return {R_PPC64_ADDR16_HIGHESTA
, dtpBiasedVal
};
1233 case R_PPC64_DTPREL16_LO
:
1234 return {R_PPC64_ADDR16_LO
, dtpBiasedVal
};
1235 case R_PPC64_DTPREL16_LO_DS
:
1236 return {R_PPC64_ADDR16_LO_DS
, dtpBiasedVal
};
1237 case R_PPC64_DTPREL64
:
1238 return {R_PPC64_ADDR64
, dtpBiasedVal
};
1245 static bool isTocOptType(RelType type
) {
1247 case R_PPC64_GOT16_HA
:
1248 case R_PPC64_GOT16_LO_DS
:
1249 case R_PPC64_TOC16_HA
:
1250 case R_PPC64_TOC16_LO_DS
:
1251 case R_PPC64_TOC16_LO
:
1258 void PPC64::relocate(uint8_t *loc
, const Relocation
&rel
, uint64_t val
) const {
1259 RelType type
= rel
.type
;
1260 bool shouldTocOptimize
= isTocOptType(type
);
1261 // For dynamic thread pointer relative, toc-relative, and got-indirect
1262 // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1263 std::tie(type
, val
) = toAddr16Rel(type
, val
);
1266 case R_PPC64_ADDR14
: {
1267 checkAlignment(loc
, val
, 4, rel
);
1268 // Preserve the AA/LK bits in the branch instruction
1269 uint8_t aalk
= loc
[3];
1270 write16(loc
+ 2, (aalk
& 3) | (val
& 0xfffc));
1273 case R_PPC64_ADDR16
:
1274 checkIntUInt(loc
, val
, 16, rel
);
1277 case R_PPC64_ADDR32
:
1278 checkIntUInt(loc
, val
, 32, rel
);
1281 case R_PPC64_ADDR16_DS
:
1282 case R_PPC64_TPREL16_DS
: {
1283 checkInt(loc
, val
, 16, rel
);
1284 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1285 // DS-form instructions only use bits 30-31.
1286 uint16_t mask
= isDQFormInstruction(readFromHalf16(loc
)) ? 0xf : 0x3;
1287 checkAlignment(loc
, lo(val
), mask
+ 1, rel
);
1288 write16(loc
, (read16(loc
) & mask
) | lo(val
));
1290 case R_PPC64_ADDR16_HA
:
1291 case R_PPC64_REL16_HA
:
1292 case R_PPC64_TPREL16_HA
:
1293 if (config
->tocOptimize
&& shouldTocOptimize
&& ha(val
) == 0)
1294 writeFromHalf16(loc
, NOP
);
1296 checkInt(loc
, val
+ 0x8000, 32, rel
);
1297 write16(loc
, ha(val
));
1300 case R_PPC64_ADDR16_HI
:
1301 case R_PPC64_REL16_HI
:
1302 case R_PPC64_TPREL16_HI
:
1303 checkInt(loc
, val
, 32, rel
);
1304 write16(loc
, hi(val
));
1306 case R_PPC64_ADDR16_HIGH
:
1307 write16(loc
, hi(val
));
1309 case R_PPC64_ADDR16_HIGHER
:
1310 case R_PPC64_TPREL16_HIGHER
:
1311 write16(loc
, higher(val
));
1313 case R_PPC64_ADDR16_HIGHERA
:
1314 case R_PPC64_TPREL16_HIGHERA
:
1315 write16(loc
, highera(val
));
1317 case R_PPC64_ADDR16_HIGHEST
:
1318 case R_PPC64_TPREL16_HIGHEST
:
1319 write16(loc
, highest(val
));
1321 case R_PPC64_ADDR16_HIGHESTA
:
1322 case R_PPC64_TPREL16_HIGHESTA
:
1323 write16(loc
, highesta(val
));
1325 case R_PPC64_ADDR16_LO
:
1326 case R_PPC64_REL16_LO
:
1327 case R_PPC64_TPREL16_LO
:
1328 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1329 // changed into a nop. The lo part then needs to be updated to use the
1330 // toc-pointer register r2, as the base register.
1331 if (config
->tocOptimize
&& shouldTocOptimize
&& ha(val
) == 0) {
1332 uint32_t insn
= readFromHalf16(loc
);
1333 if (isInstructionUpdateForm(insn
))
1334 error(getErrorLocation(loc
) +
1335 "can't toc-optimize an update instruction: 0x" +
1337 writeFromHalf16(loc
, (insn
& 0xffe00000) | 0x00020000 | lo(val
));
1339 write16(loc
, lo(val
));
1342 case R_PPC64_ADDR16_LO_DS
:
1343 case R_PPC64_TPREL16_LO_DS
: {
1344 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1345 // DS-form instructions only use bits 30-31.
1346 uint32_t insn
= readFromHalf16(loc
);
1347 uint16_t mask
= isDQFormInstruction(insn
) ? 0xf : 0x3;
1348 checkAlignment(loc
, lo(val
), mask
+ 1, rel
);
1349 if (config
->tocOptimize
&& shouldTocOptimize
&& ha(val
) == 0) {
1350 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1351 // changed into a nop. The lo part then needs to be updated to use the toc
1352 // pointer register r2, as the base register.
1353 if (isInstructionUpdateForm(insn
))
1354 error(getErrorLocation(loc
) +
1355 "Can't toc-optimize an update instruction: 0x" +
1356 Twine::utohexstr(insn
));
1357 insn
&= 0xffe00000 | mask
;
1358 writeFromHalf16(loc
, insn
| 0x00020000 | lo(val
));
1360 write16(loc
, (read16(loc
) & mask
) | lo(val
));
1363 case R_PPC64_TPREL16
:
1364 checkInt(loc
, val
, 16, rel
);
1368 checkInt(loc
, val
, 32, rel
);
1371 case R_PPC64_ADDR64
:
1376 case R_PPC64_REL14
: {
1377 uint32_t mask
= 0x0000FFFC;
1378 checkInt(loc
, val
, 16, rel
);
1379 checkAlignment(loc
, val
, 4, rel
);
1380 write32(loc
, (read32(loc
) & ~mask
) | (val
& mask
));
1384 case R_PPC64_REL24_NOTOC
: {
1385 uint32_t mask
= 0x03FFFFFC;
1386 checkInt(loc
, val
, 26, rel
);
1387 checkAlignment(loc
, val
, 4, rel
);
1388 write32(loc
, (read32(loc
) & ~mask
) | (val
& mask
));
1391 case R_PPC64_DTPREL64
:
1392 write64(loc
, val
- dynamicThreadPointerOffset
);
1394 case R_PPC64_DTPREL34
:
1395 // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1396 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1397 // need to subtract that value then fallthrough to the general case.
1398 val
-= dynamicThreadPointerOffset
;
1400 case R_PPC64_PCREL34
:
1401 case R_PPC64_GOT_PCREL34
:
1402 case R_PPC64_GOT_TLSGD_PCREL34
:
1403 case R_PPC64_GOT_TLSLD_PCREL34
:
1404 case R_PPC64_GOT_TPREL_PCREL34
:
1405 case R_PPC64_TPREL34
: {
1406 const uint64_t si0Mask
= 0x00000003ffff0000;
1407 const uint64_t si1Mask
= 0x000000000000ffff;
1408 const uint64_t fullMask
= 0x0003ffff0000ffff;
1409 checkInt(loc
, val
, 34, rel
);
1411 uint64_t instr
= readPrefixedInstruction(loc
) & ~fullMask
;
1412 writePrefixedInstruction(loc
, instr
| ((val
& si0Mask
) << 16) |
1416 // If we encounter a PCREL_OPT relocation that we won't optimize.
1417 case R_PPC64_PCREL_OPT
:
1420 llvm_unreachable("unknown relocation");
1424 bool PPC64::needsThunk(RelExpr expr
, RelType type
, const InputFile
*file
,
1425 uint64_t branchAddr
, const Symbol
&s
, int64_t a
) const {
1426 if (type
!= R_PPC64_REL14
&& type
!= R_PPC64_REL24
&&
1427 type
!= R_PPC64_REL24_NOTOC
)
1430 // If a function is in the Plt it needs to be called with a call-stub.
1434 // This check looks at the st_other bits of the callee with relocation
1435 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1436 // clobbers the TOC and we need an R2 save stub.
1437 if (type
!= R_PPC64_REL24_NOTOC
&& (s
.stOther
>> 5) == 1)
1440 if (type
== R_PPC64_REL24_NOTOC
&& (s
.stOther
>> 5) > 1)
1443 // An undefined weak symbol not in a PLT does not need a thunk. If it is
1444 // hidden, its binding has been converted to local, so we just check
1445 // isUndefined() here. A undefined non-weak symbol has been errored.
1446 if (s
.isUndefined())
1449 // If the offset exceeds the range of the branch type then it will need
1450 // a range-extending thunk.
1451 // See the comment in getRelocTargetVA() about R_PPC64_CALL.
1452 return !inBranchRange(type
, branchAddr
,
1454 getPPC64GlobalEntryToLocalEntryOffset(s
.stOther
));
1457 uint32_t PPC64::getThunkSectionSpacing() const {
1458 // See comment in Arch/ARM.cpp for a more detailed explanation of
1459 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1460 // R_PPC64_REL24, which is used by unconditional branch instructions.
1461 // 0x2000000 = (1 << 24-1) * 4
1465 bool PPC64::inBranchRange(RelType type
, uint64_t src
, uint64_t dst
) const {
1466 int64_t offset
= dst
- src
;
1467 if (type
== R_PPC64_REL14
)
1468 return isInt
<16>(offset
);
1469 if (type
== R_PPC64_REL24
|| type
== R_PPC64_REL24_NOTOC
)
1470 return isInt
<26>(offset
);
1471 llvm_unreachable("unsupported relocation type used in branch");
1474 RelExpr
PPC64::adjustTlsExpr(RelType type
, RelExpr expr
) const {
1475 if (type
!= R_PPC64_GOT_TLSGD_PCREL34
&& expr
== R_RELAX_TLS_GD_TO_IE
)
1476 return R_RELAX_TLS_GD_TO_IE_GOT_OFF
;
1477 if (expr
== R_RELAX_TLS_LD_TO_LE
)
1478 return R_RELAX_TLS_LD_TO_LE_ABS
;
1482 RelExpr
PPC64::adjustGotPcExpr(RelType type
, int64_t addend
,
1483 const uint8_t *loc
) const {
1484 if ((type
== R_PPC64_GOT_PCREL34
|| type
== R_PPC64_PCREL_OPT
) &&
1485 config
->pcRelOptimize
) {
1486 // It only makes sense to optimize pld since paddi means that the address
1487 // of the object in the GOT is required rather than the object itself.
1488 if ((readPrefixedInstruction(loc
) & 0xfc000000) == 0xe4000000)
1489 return R_PPC64_RELAX_GOT_PC
;
1494 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1495 // The general dynamic code sequence for a global `x` uses 4 instructions.
1496 // Instruction Relocation Symbol
1497 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
1498 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
1499 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
1500 // R_PPC64_REL24 __tls_get_addr
1503 // Relaxing to initial-exec entails:
1504 // 1) Convert the addis/addi pair that builds the address of the tls_index
1505 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1506 // 2) Convert the call to __tls_get_addr to a nop.
1507 // 3) Convert the nop following the call to an add of the loaded offset to the
1509 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1510 // used as the relaxation hint for both steps 2 and 3.
1511 void PPC64::relaxTlsGdToIe(uint8_t *loc
, const Relocation
&rel
,
1512 uint64_t val
) const {
1514 case R_PPC64_GOT_TLSGD16_HA
:
1515 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1516 // addis rT, r2, sym@got@tprel@ha.
1517 relocateNoSym(loc
, R_PPC64_GOT_TPREL16_HA
, val
);
1519 case R_PPC64_GOT_TLSGD16
:
1520 case R_PPC64_GOT_TLSGD16_LO
: {
1521 // Relax from addi r3, rA, sym@got@tlsgd@l to
1522 // ld r3, sym@got@tprel@l(rA)
1523 uint32_t ra
= (readFromHalf16(loc
) & (0x1f << 16));
1524 writeFromHalf16(loc
, 0xe8600000 | ra
);
1525 relocateNoSym(loc
, R_PPC64_GOT_TPREL16_LO_DS
, val
);
1528 case R_PPC64_GOT_TLSGD_PCREL34
: {
1529 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1530 // pld r3, sym@got@tprel@pcrel
1531 writePrefixedInstruction(loc
, 0x04100000e4600000);
1532 relocateNoSym(loc
, R_PPC64_GOT_TPREL_PCREL34
, val
);
1535 case R_PPC64_TLSGD
: {
1536 // PC Relative Relaxation:
1537 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1540 // Relax from bl __tls_get_addr(x@tlsgd)
1545 const uintptr_t locAsInt
= reinterpret_cast<uintptr_t>(loc
);
1546 if (locAsInt
% 4 == 0) {
1547 write32(loc
, NOP
); // bl __tls_get_addr(sym@tlsgd) --> nop
1548 write32(loc
+ 4, 0x7c636A14); // nop --> add r3, r3, r13
1549 } else if (locAsInt
% 4 == 1) {
1550 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1551 write32(loc
- 1, 0x7c636a14);
1553 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
1558 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1562 void PPC64::relocateAlloc(InputSectionBase
&sec
, uint8_t *buf
) const {
1563 uint64_t secAddr
= sec
.getOutputSection()->addr
;
1564 if (auto *s
= dyn_cast
<InputSection
>(&sec
))
1565 secAddr
+= s
->outSecOff
;
1566 else if (auto *ehIn
= dyn_cast
<EhInputSection
>(&sec
))
1567 secAddr
+= ehIn
->getParent()->outSecOff
;
1568 uint64_t lastPPCRelaxedRelocOff
= -1;
1569 for (const Relocation
&rel
: sec
.relocs()) {
1570 uint8_t *loc
= buf
+ rel
.offset
;
1571 const uint64_t val
=
1572 sec
.getRelocTargetVA(sec
.file
, rel
.type
, rel
.addend
,
1573 secAddr
+ rel
.offset
, *rel
.sym
, rel
.expr
);
1575 case R_PPC64_RELAX_GOT_PC
: {
1576 // The R_PPC64_PCREL_OPT relocation must appear immediately after
1577 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1578 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1579 // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1580 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1581 // and only relax the other if the saved offset matches.
1582 if (rel
.type
== R_PPC64_GOT_PCREL34
)
1583 lastPPCRelaxedRelocOff
= rel
.offset
;
1584 if (rel
.type
== R_PPC64_PCREL_OPT
&& rel
.offset
!= lastPPCRelaxedRelocOff
)
1586 relaxGot(loc
, rel
, val
);
1589 case R_PPC64_RELAX_TOC
:
1590 // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1591 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1592 // entry, there may be R_PPC64_TOC16_HA not paired with
1593 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1594 // opportunities but is safe.
1595 if (ppc64noTocRelax
.count({rel
.sym
, rel
.addend
}) ||
1596 !tryRelaxPPC64TocIndirection(rel
, loc
))
1597 relocate(loc
, rel
, val
);
1600 // If this is a call to __tls_get_addr, it may be part of a TLS
1601 // sequence that has been relaxed and turned into a nop. In this
1602 // case, we don't want to handle it as a call.
1603 if (read32(loc
) == 0x60000000) // nop
1606 // Patch a nop (0x60000000) to a ld.
1607 if (rel
.sym
->needsTocRestore()) {
1608 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1609 // recursive calls even if the function is preemptible. This is not
1610 // wrong in the common case where the function is not preempted at
1611 // runtime. Just ignore.
1612 if ((rel
.offset
+ 8 > sec
.content().size() ||
1613 read32(loc
+ 4) != 0x60000000) &&
1614 rel
.sym
->file
!= sec
.file
) {
1615 // Use substr(6) to remove the "__plt_" prefix.
1616 errorOrWarn(getErrorLocation(loc
) + "call to " +
1617 lld::toString(*rel
.sym
).substr(6) +
1618 " lacks nop, can't restore toc");
1621 write32(loc
+ 4, 0xe8410018); // ld %r2, 24(%r1)
1623 relocate(loc
, rel
, val
);
1625 case R_RELAX_TLS_GD_TO_IE
:
1626 case R_RELAX_TLS_GD_TO_IE_GOT_OFF
:
1627 relaxTlsGdToIe(loc
, rel
, val
);
1629 case R_RELAX_TLS_GD_TO_LE
:
1630 relaxTlsGdToLe(loc
, rel
, val
);
1632 case R_RELAX_TLS_LD_TO_LE_ABS
:
1633 relaxTlsLdToLe(loc
, rel
, val
);
1635 case R_RELAX_TLS_IE_TO_LE
:
1636 relaxTlsIeToLe(loc
, rel
, val
);
1639 relocate(loc
, rel
, val
);
1645 // The prologue for a split-stack function is expected to look roughly
1647 // .Lglobal_entry_point:
1648 // # TOC pointer initialization.
1650 // .Llocal_entry_point:
1651 // # load the __private_ss member of the threads tcbhead.
1652 // ld r0,-0x7000-64(r13)
1653 // # subtract the functions stack size from the stack pointer.
1654 // addis r12, r1, ha(-stack-frame size)
1655 // addi r12, r12, l(-stack-frame size)
1656 // # compare needed to actual and branch to allocate_more_stack if more
1657 // # space is needed, otherwise fallthrough to 'normal' function body.
1659 // blt- cr7, .Lallocate_more_stack
1661 // -) The allocate_more_stack block might be placed after the split-stack
1662 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1664 // -) If either the addis or addi is not needed due to the stack size being
1665 // smaller then 32K or a multiple of 64K they will be replaced with a nop,
1666 // but there will always be 2 instructions the linker can overwrite for the
1667 // adjusted stack size.
1669 // The linkers job here is to increase the stack size used in the addis/addi
1670 // pair by split-stack-size-adjust.
1671 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1672 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size)
1673 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc
, uint8_t *end
,
1674 uint8_t stOther
) const {
1675 // If the caller has a global entry point adjust the buffer past it. The start
1676 // of the split-stack prologue will be at the local entry point.
1677 loc
+= getPPC64GlobalEntryToLocalEntryOffset(stOther
);
1679 // At the very least we expect to see a load of some split-stack data from the
1680 // tcb, and 2 instructions that calculate the ending stack address this
1681 // function will require. If there is not enough room for at least 3
1682 // instructions it can't be a split-stack prologue.
1683 if (loc
+ 12 >= end
)
1686 // First instruction must be `ld r0, -0x7000-64(r13)`
1687 if (read32(loc
) != 0xe80d8fc0)
1692 // First instruction can be either an addis if the frame size is larger then
1693 // 32K, or an addi if the size is less then 32K.
1694 int32_t firstInstr
= read32(loc
+ 4);
1695 if (getPrimaryOpCode(firstInstr
) == 15) {
1696 hiImm
= firstInstr
& 0xFFFF;
1697 } else if (getPrimaryOpCode(firstInstr
) == 14) {
1698 loImm
= firstInstr
& 0xFFFF;
1703 // Second instruction is either an addi or a nop. If the first instruction was
1704 // an addi then LoImm is set and the second instruction must be a nop.
1705 uint32_t secondInstr
= read32(loc
+ 8);
1706 if (!loImm
&& getPrimaryOpCode(secondInstr
) == 14) {
1707 loImm
= secondInstr
& 0xFFFF;
1708 } else if (secondInstr
!= NOP
) {
1712 // The register operands of the first instruction should be the stack-pointer
1713 // (r1) as the input (RA) and r12 as the output (RT). If the second
1714 // instruction is not a nop, then it should use r12 as both input and output.
1715 auto checkRegOperands
= [](uint32_t instr
, uint8_t expectedRT
,
1716 uint8_t expectedRA
) {
1717 return ((instr
& 0x3E00000) >> 21 == expectedRT
) &&
1718 ((instr
& 0x1F0000) >> 16 == expectedRA
);
1720 if (!checkRegOperands(firstInstr
, 12, 1))
1722 if (secondInstr
!= NOP
&& !checkRegOperands(secondInstr
, 12, 12))
1725 int32_t stackFrameSize
= (hiImm
* 65536) + loImm
;
1726 // Check that the adjusted size doesn't overflow what we can represent with 2
1728 if (stackFrameSize
< config
->splitStackAdjustSize
+ INT32_MIN
) {
1729 error(getErrorLocation(loc
) + "split-stack prologue adjustment overflows");
1733 int32_t adjustedStackFrameSize
=
1734 stackFrameSize
- config
->splitStackAdjustSize
;
1736 loImm
= adjustedStackFrameSize
& 0xFFFF;
1737 hiImm
= (adjustedStackFrameSize
+ 0x8000) >> 16;
1739 write32(loc
+ 4, 0x3D810000 | (uint16_t)hiImm
);
1740 // If the low immediate is zero the second instruction will be a nop.
1741 secondInstr
= loImm
? 0x398C0000 | (uint16_t)loImm
: NOP
;
1742 write32(loc
+ 8, secondInstr
);
1744 // addi r12, r1, imm
1745 write32(loc
+ 4, (0x39810000) | (uint16_t)loImm
);
1746 write32(loc
+ 8, NOP
);
1752 TargetInfo
*elf::getPPC64TargetInfo() {
1753 static PPC64 target
;