Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / ELF / Arch / X86_64.cpp
blob2135ac23486451379341874ec5b67d63e4447007
1 //===- X86_64.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "OutputSections.h"
10 #include "Relocations.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/Support/Endian.h"
17 #include "llvm/Support/MathExtras.h"
19 using namespace llvm;
20 using namespace llvm::object;
21 using namespace llvm::support::endian;
22 using namespace llvm::ELF;
23 using namespace lld;
24 using namespace lld::elf;
26 namespace {
27 class X86_64 : public TargetInfo {
28 public:
29 X86_64();
30 int getTlsGdRelaxSkip(RelType type) const override;
31 RelExpr getRelExpr(RelType type, const Symbol &s,
32 const uint8_t *loc) const override;
33 RelType getDynRel(RelType type) const override;
34 void writeGotPltHeader(uint8_t *buf) const override;
35 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
36 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
37 void writePltHeader(uint8_t *buf) const override;
38 void writePlt(uint8_t *buf, const Symbol &sym,
39 uint64_t pltEntryAddr) const override;
40 void relocate(uint8_t *loc, const Relocation &rel,
41 uint64_t val) const override;
42 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
43 void applyJumpInstrMod(uint8_t *loc, JumpModType type,
44 unsigned size) const override;
45 RelExpr adjustGotPcExpr(RelType type, int64_t addend,
46 const uint8_t *loc) const override;
47 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
48 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
49 uint8_t stOther) const override;
50 bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
51 InputSection *nextIS) const override;
52 bool relaxOnce(int pass) const override;
54 } // namespace
56 // This is vector of NOP instructions of sizes from 1 to 8 bytes. The
57 // appropriately sized instructions are used to fill the gaps between sections
58 // which are executed during fall through.
59 static const std::vector<std::vector<uint8_t>> nopInstructions = {
60 {0x90},
61 {0x66, 0x90},
62 {0x0f, 0x1f, 0x00},
63 {0x0f, 0x1f, 0x40, 0x00},
64 {0x0f, 0x1f, 0x44, 0x00, 0x00},
65 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
66 {0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
67 {0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
68 {0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
70 X86_64::X86_64() {
71 copyRel = R_X86_64_COPY;
72 gotRel = R_X86_64_GLOB_DAT;
73 pltRel = R_X86_64_JUMP_SLOT;
74 relativeRel = R_X86_64_RELATIVE;
75 iRelativeRel = R_X86_64_IRELATIVE;
76 symbolicRel = R_X86_64_64;
77 tlsDescRel = R_X86_64_TLSDESC;
78 tlsGotRel = R_X86_64_TPOFF64;
79 tlsModuleIndexRel = R_X86_64_DTPMOD64;
80 tlsOffsetRel = R_X86_64_DTPOFF64;
81 gotBaseSymInGotPlt = true;
82 gotEntrySize = 8;
83 pltHeaderSize = 16;
84 pltEntrySize = 16;
85 ipltEntrySize = 16;
86 trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
87 nopInstrs = nopInstructions;
89 // Align to the large page size (known as a superpage or huge page).
90 // FreeBSD automatically promotes large, superpage-aligned allocations.
91 defaultImageBase = 0x200000;
94 int X86_64::getTlsGdRelaxSkip(RelType type) const {
95 // TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
96 return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1
97 : 2;
100 // Opcodes for the different X86_64 jmp instructions.
101 enum JmpInsnOpcode : uint32_t {
102 J_JMP_32,
103 J_JNE_32,
104 J_JE_32,
105 J_JG_32,
106 J_JGE_32,
107 J_JB_32,
108 J_JBE_32,
109 J_JL_32,
110 J_JLE_32,
111 J_JA_32,
112 J_JAE_32,
113 J_UNKNOWN,
116 // Given the first (optional) and second byte of the insn's opcode, this
117 // returns the corresponding enum value.
118 static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
119 const uint8_t *second) {
120 if (*second == 0xe9)
121 return J_JMP_32;
123 if (first == nullptr)
124 return J_UNKNOWN;
126 if (*first == 0x0f) {
127 switch (*second) {
128 case 0x84:
129 return J_JE_32;
130 case 0x85:
131 return J_JNE_32;
132 case 0x8f:
133 return J_JG_32;
134 case 0x8d:
135 return J_JGE_32;
136 case 0x82:
137 return J_JB_32;
138 case 0x86:
139 return J_JBE_32;
140 case 0x8c:
141 return J_JL_32;
142 case 0x8e:
143 return J_JLE_32;
144 case 0x87:
145 return J_JA_32;
146 case 0x83:
147 return J_JAE_32;
150 return J_UNKNOWN;
153 // Return the relocation index for input section IS with a specific Offset.
154 // Returns the maximum size of the vector if no such relocation is found.
155 static unsigned getRelocationWithOffset(const InputSection &is,
156 uint64_t offset) {
157 unsigned size = is.relocs().size();
158 for (unsigned i = size - 1; i + 1 > 0; --i) {
159 if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE)
160 return i;
162 return size;
165 // Returns true if R corresponds to a relocation used for a jump instruction.
166 // TODO: Once special relocations for relaxable jump instructions are available,
167 // this should be modified to use those relocations.
168 static bool isRelocationForJmpInsn(Relocation &R) {
169 return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
170 R.type == R_X86_64_PC8;
173 // Return true if Relocation R points to the first instruction in the
174 // next section.
175 // TODO: Delete this once psABI reserves a new relocation type for fall thru
176 // jumps.
177 static bool isFallThruRelocation(InputSection &is, InputFile *file,
178 InputSection *nextIS, Relocation &r) {
179 if (!isRelocationForJmpInsn(r))
180 return false;
182 uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
183 uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
184 file, r.type, r.addend, addrLoc, *r.sym, r.expr);
186 // If this jmp is a fall thru, the target offset is the beginning of the
187 // next section.
188 uint64_t nextSectionOffset =
189 nextIS->getOutputSection()->addr + nextIS->outSecOff;
190 return (addrLoc + 4 + targetOffset) == nextSectionOffset;
193 // Return the jmp instruction opcode that is the inverse of the given
194 // opcode. For example, JE inverted is JNE.
195 static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
196 switch (opcode) {
197 case J_JE_32:
198 return J_JNE_32;
199 case J_JNE_32:
200 return J_JE_32;
201 case J_JG_32:
202 return J_JLE_32;
203 case J_JGE_32:
204 return J_JL_32;
205 case J_JB_32:
206 return J_JAE_32;
207 case J_JBE_32:
208 return J_JA_32;
209 case J_JL_32:
210 return J_JGE_32;
211 case J_JLE_32:
212 return J_JG_32;
213 case J_JA_32:
214 return J_JBE_32;
215 case J_JAE_32:
216 return J_JB_32;
217 default:
218 return J_UNKNOWN;
222 // Deletes direct jump instruction in input sections that jumps to the
223 // following section as it is not required. If there are two consecutive jump
224 // instructions, it checks if they can be flipped and one can be deleted.
225 // For example:
226 // .section .text
227 // a.BB.foo:
228 // ...
229 // 10: jne aa.BB.foo
230 // 16: jmp bar
231 // aa.BB.foo:
232 // ...
234 // can be converted to:
235 // a.BB.foo:
236 // ...
237 // 10: je bar #jne flipped to je and the jmp is deleted.
238 // aa.BB.foo:
239 // ...
240 bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
241 InputSection *nextIS) const {
242 const unsigned sizeOfDirectJmpInsn = 5;
244 if (nextIS == nullptr)
245 return false;
247 if (is.getSize() < sizeOfDirectJmpInsn)
248 return false;
250 // If this jmp insn can be removed, it is the last insn and the
251 // relocation is 4 bytes before the end.
252 unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
253 if (rIndex == is.relocs().size())
254 return false;
256 Relocation &r = is.relocs()[rIndex];
258 // Check if the relocation corresponds to a direct jmp.
259 const uint8_t *secContents = is.content().data();
260 // If it is not a direct jmp instruction, there is nothing to do here.
261 if (*(secContents + r.offset - 1) != 0xe9)
262 return false;
264 if (isFallThruRelocation(is, file, nextIS, r)) {
265 // This is a fall thru and can be deleted.
266 r.expr = R_NONE;
267 r.offset = 0;
268 is.drop_back(sizeOfDirectJmpInsn);
269 is.nopFiller = true;
270 return true;
273 // Now, check if flip and delete is possible.
274 const unsigned sizeOfJmpCCInsn = 6;
275 // To flip, there must be at least one JmpCC and one direct jmp.
276 if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
277 return false;
279 unsigned rbIndex =
280 getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
281 if (rbIndex == is.relocs().size())
282 return false;
284 Relocation &rB = is.relocs()[rbIndex];
286 const uint8_t *jmpInsnB = secContents + rB.offset - 1;
287 JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
288 if (jmpOpcodeB == J_UNKNOWN)
289 return false;
291 if (!isFallThruRelocation(is, file, nextIS, rB))
292 return false;
294 // jmpCC jumps to the fall thru block, the branch can be flipped and the
295 // jmp can be deleted.
296 JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
297 if (jInvert == J_UNKNOWN)
298 return false;
299 is.jumpInstrMod = make<JumpInstrMod>();
300 *is.jumpInstrMod = {rB.offset - 1, jInvert, 4};
301 // Move R's values to rB except the offset.
302 rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
303 // Cancel R
304 r.expr = R_NONE;
305 r.offset = 0;
306 is.drop_back(sizeOfDirectJmpInsn);
307 is.nopFiller = true;
308 return true;
311 bool X86_64::relaxOnce(int pass) const {
312 uint64_t minVA = UINT64_MAX, maxVA = 0;
313 for (OutputSection *osec : outputSections) {
314 minVA = std::min(minVA, osec->addr);
315 maxVA = std::max(maxVA, osec->addr + osec->size);
317 // If the max VA difference is under 2^31, GOT-generating relocations with a 32-bit range cannot overflow.
318 if (isUInt<31>(maxVA - minVA))
319 return false;
321 SmallVector<InputSection *, 0> storage;
322 bool changed = false;
323 for (OutputSection *osec : outputSections) {
324 if (!(osec->flags & SHF_EXECINSTR))
325 continue;
326 for (InputSection *sec : getInputSections(*osec, storage)) {
327 for (Relocation &rel : sec->relocs()) {
328 if (rel.expr != R_RELAX_GOT_PC)
329 continue;
331 uint64_t v = sec->getRelocTargetVA(
332 sec->file, rel.type, rel.addend,
333 sec->getOutputSection()->addr + rel.offset, *rel.sym, rel.expr);
334 if (isInt<32>(v))
335 continue;
336 if (rel.sym->auxIdx == 0) {
337 rel.sym->allocateAux();
338 addGotEntry(*rel.sym);
339 changed = true;
341 rel.expr = R_GOT_PC;
345 return changed;
348 RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
349 const uint8_t *loc) const {
350 switch (type) {
351 case R_X86_64_8:
352 case R_X86_64_16:
353 case R_X86_64_32:
354 case R_X86_64_32S:
355 case R_X86_64_64:
356 return R_ABS;
357 case R_X86_64_DTPOFF32:
358 case R_X86_64_DTPOFF64:
359 return R_DTPREL;
360 case R_X86_64_TPOFF32:
361 return R_TPREL;
362 case R_X86_64_TLSDESC_CALL:
363 return R_TLSDESC_CALL;
364 case R_X86_64_TLSLD:
365 return R_TLSLD_PC;
366 case R_X86_64_TLSGD:
367 return R_TLSGD_PC;
368 case R_X86_64_SIZE32:
369 case R_X86_64_SIZE64:
370 return R_SIZE;
371 case R_X86_64_PLT32:
372 return R_PLT_PC;
373 case R_X86_64_PC8:
374 case R_X86_64_PC16:
375 case R_X86_64_PC32:
376 case R_X86_64_PC64:
377 return R_PC;
378 case R_X86_64_GOT32:
379 case R_X86_64_GOT64:
380 return R_GOTPLT;
381 case R_X86_64_GOTPC32_TLSDESC:
382 return R_TLSDESC_PC;
383 case R_X86_64_GOTPCREL:
384 case R_X86_64_GOTPCRELX:
385 case R_X86_64_REX_GOTPCRELX:
386 case R_X86_64_GOTTPOFF:
387 return R_GOT_PC;
388 case R_X86_64_GOTOFF64:
389 return R_GOTPLTREL;
390 case R_X86_64_PLTOFF64:
391 return R_PLT_GOTPLT;
392 case R_X86_64_GOTPC32:
393 case R_X86_64_GOTPC64:
394 return R_GOTPLTONLY_PC;
395 case R_X86_64_NONE:
396 return R_NONE;
397 default:
398 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
399 ") against symbol " + toString(s));
400 return R_NONE;
404 void X86_64::writeGotPltHeader(uint8_t *buf) const {
405 // The first entry holds the value of _DYNAMIC. It is not clear why that is
406 // required, but it is documented in the psabi and the glibc dynamic linker
407 // seems to use it (note that this is relevant for linking ld.so, not any
408 // other program).
409 write64le(buf, mainPart->dynamic->getVA());
412 void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
413 // See comments in X86::writeGotPlt.
414 write64le(buf, s.getPltVA() + 6);
417 void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
418 // An x86 entry is the address of the ifunc resolver function (for -z rel).
419 if (config->writeAddends)
420 write64le(buf, s.getVA());
423 void X86_64::writePltHeader(uint8_t *buf) const {
424 const uint8_t pltData[] = {
425 0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
426 0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
427 0x0f, 0x1f, 0x40, 0x00, // nop
429 memcpy(buf, pltData, sizeof(pltData));
430 uint64_t gotPlt = in.gotPlt->getVA();
431 uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
432 write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
433 write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
436 void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
437 uint64_t pltEntryAddr) const {
438 const uint8_t inst[] = {
439 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
440 0x68, 0, 0, 0, 0, // pushq <relocation index>
441 0xe9, 0, 0, 0, 0, // jmpq plt[0]
443 memcpy(buf, inst, sizeof(inst));
445 write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
446 write32le(buf + 7, sym.getPltIdx());
447 write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
450 RelType X86_64::getDynRel(RelType type) const {
451 if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
452 type == R_X86_64_SIZE64)
453 return type;
454 return R_X86_64_NONE;
457 static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
458 if (rel.type == R_X86_64_TLSGD) {
459 // Convert
460 // .byte 0x66
461 // leaq x@tlsgd(%rip), %rdi
462 // .word 0x6666
463 // rex64
464 // call __tls_get_addr@plt
465 // to the following two instructions.
466 const uint8_t inst[] = {
467 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
468 0x00, 0x00, // mov %fs:0x0,%rax
469 0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax
471 memcpy(loc - 4, inst, sizeof(inst));
473 // The original code used a pc relative relocation and so we have to
474 // compensate for the -4 in had in the addend.
475 write32le(loc + 8, val + 4);
476 } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
477 // Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG.
478 if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
479 (loc[-1] & 0xc7) != 0x05) {
480 errorOrWarn(getErrorLocation(loc - 3) +
481 "R_X86_64_GOTPC32_TLSDESC must be used "
482 "in leaq x@tlsdesc(%rip), %REG");
483 return;
485 loc[-3] = 0x48 | ((loc[-3] >> 2) & 1);
486 loc[-2] = 0xc7;
487 loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7);
488 write32le(loc, val + 4);
489 } else {
490 // Convert call *x@tlsdesc(%REG) to xchg ax, ax.
491 assert(rel.type == R_X86_64_TLSDESC_CALL);
492 loc[0] = 0x66;
493 loc[1] = 0x90;
497 static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) {
498 if (rel.type == R_X86_64_TLSGD) {
499 // Convert
500 // .byte 0x66
501 // leaq x@tlsgd(%rip), %rdi
502 // .word 0x6666
503 // rex64
504 // call __tls_get_addr@plt
505 // to the following two instructions.
506 const uint8_t inst[] = {
507 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
508 0x00, 0x00, // mov %fs:0x0,%rax
509 0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax
511 memcpy(loc - 4, inst, sizeof(inst));
513 // Both code sequences are PC relatives, but since we are moving the
514 // constant forward by 8 bytes we have to subtract the value by 8.
515 write32le(loc + 8, val - 8);
516 } else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
517 // Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG.
518 assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
519 if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
520 (loc[-1] & 0xc7) != 0x05) {
521 errorOrWarn(getErrorLocation(loc - 3) +
522 "R_X86_64_GOTPC32_TLSDESC must be used "
523 "in leaq x@tlsdesc(%rip), %REG");
524 return;
526 loc[-2] = 0x8b;
527 write32le(loc, val);
528 } else {
529 // Convert call *x@tlsdesc(%rax) to xchg ax, ax.
530 assert(rel.type == R_X86_64_TLSDESC_CALL);
531 loc[0] = 0x66;
532 loc[1] = 0x90;
536 // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
537 // R_X86_64_TPOFF32 so that it does not use GOT.
538 static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) {
539 uint8_t *inst = loc - 3;
540 uint8_t reg = loc[-1] >> 3;
541 uint8_t *regSlot = loc - 1;
543 // Note that ADD with RSP or R12 is converted to ADD instead of LEA
544 // because LEA with these registers needs 4 bytes to encode and thus
545 // wouldn't fit the space.
547 if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
548 // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
549 memcpy(inst, "\x48\x81\xc4", 3);
550 } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
551 // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
552 memcpy(inst, "\x49\x81\xc4", 3);
553 } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
554 // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
555 memcpy(inst, "\x4d\x8d", 2);
556 *regSlot = 0x80 | (reg << 3) | reg;
557 } else if (memcmp(inst, "\x48\x03", 2) == 0) {
558 // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
559 memcpy(inst, "\x48\x8d", 2);
560 *regSlot = 0x80 | (reg << 3) | reg;
561 } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
562 // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
563 memcpy(inst, "\x49\xc7", 2);
564 *regSlot = 0xc0 | reg;
565 } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
566 // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
567 memcpy(inst, "\x48\xc7", 2);
568 *regSlot = 0xc0 | reg;
569 } else {
570 error(getErrorLocation(loc - 3) +
571 "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
574 // The original code used a PC relative relocation.
575 // Need to compensate for the -4 it had in the addend.
576 write32le(loc, val + 4);
579 static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
580 const uint8_t inst[] = {
581 0x66, 0x66, // .word 0x6666
582 0x66, // .byte 0x66
583 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
586 if (loc[4] == 0xe8) {
587 // Convert
588 // leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc>
589 // callq __tls_get_addr@PLT # e8 <disp32>
590 // leaq bar@dtpoff(%rax), %rcx
591 // to
592 // .word 0x6666
593 // .byte 0x66
594 // mov %fs:0,%rax
595 // leaq bar@tpoff(%rax), %rcx
596 memcpy(loc - 3, inst, sizeof(inst));
597 return;
600 if (loc[4] == 0xff && loc[5] == 0x15) {
601 // Convert
602 // leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc>
603 // call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32>
604 // to
605 // .long 0x66666666
606 // movq %fs:0,%rax
607 // See "Table 11.9: LD -> LE Code Transition (LP64)" in
608 // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
609 loc[-3] = 0x66;
610 memcpy(loc - 2, inst, sizeof(inst));
611 return;
614 error(getErrorLocation(loc - 3) +
615 "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
618 // A JumpInstrMod at a specific offset indicates that the jump instruction
619 // opcode at that offset must be modified. This is specifically used to relax
620 // jump instructions with basic block sections. This function looks at the
621 // JumpMod and effects the change.
622 void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
623 unsigned size) const {
624 switch (type) {
625 case J_JMP_32:
626 if (size == 4)
627 *loc = 0xe9;
628 else
629 *loc = 0xeb;
630 break;
631 case J_JE_32:
632 if (size == 4) {
633 loc[-1] = 0x0f;
634 *loc = 0x84;
635 } else
636 *loc = 0x74;
637 break;
638 case J_JNE_32:
639 if (size == 4) {
640 loc[-1] = 0x0f;
641 *loc = 0x85;
642 } else
643 *loc = 0x75;
644 break;
645 case J_JG_32:
646 if (size == 4) {
647 loc[-1] = 0x0f;
648 *loc = 0x8f;
649 } else
650 *loc = 0x7f;
651 break;
652 case J_JGE_32:
653 if (size == 4) {
654 loc[-1] = 0x0f;
655 *loc = 0x8d;
656 } else
657 *loc = 0x7d;
658 break;
659 case J_JB_32:
660 if (size == 4) {
661 loc[-1] = 0x0f;
662 *loc = 0x82;
663 } else
664 *loc = 0x72;
665 break;
666 case J_JBE_32:
667 if (size == 4) {
668 loc[-1] = 0x0f;
669 *loc = 0x86;
670 } else
671 *loc = 0x76;
672 break;
673 case J_JL_32:
674 if (size == 4) {
675 loc[-1] = 0x0f;
676 *loc = 0x8c;
677 } else
678 *loc = 0x7c;
679 break;
680 case J_JLE_32:
681 if (size == 4) {
682 loc[-1] = 0x0f;
683 *loc = 0x8e;
684 } else
685 *loc = 0x7e;
686 break;
687 case J_JA_32:
688 if (size == 4) {
689 loc[-1] = 0x0f;
690 *loc = 0x87;
691 } else
692 *loc = 0x77;
693 break;
694 case J_JAE_32:
695 if (size == 4) {
696 loc[-1] = 0x0f;
697 *loc = 0x83;
698 } else
699 *loc = 0x73;
700 break;
701 case J_UNKNOWN:
702 llvm_unreachable("Unknown Jump Relocation");
706 int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
707 switch (type) {
708 case R_X86_64_8:
709 case R_X86_64_PC8:
710 return SignExtend64<8>(*buf);
711 case R_X86_64_16:
712 case R_X86_64_PC16:
713 return SignExtend64<16>(read16le(buf));
714 case R_X86_64_32:
715 case R_X86_64_32S:
716 case R_X86_64_TPOFF32:
717 case R_X86_64_GOT32:
718 case R_X86_64_GOTPC32:
719 case R_X86_64_GOTPC32_TLSDESC:
720 case R_X86_64_GOTPCREL:
721 case R_X86_64_GOTPCRELX:
722 case R_X86_64_REX_GOTPCRELX:
723 case R_X86_64_PC32:
724 case R_X86_64_GOTTPOFF:
725 case R_X86_64_PLT32:
726 case R_X86_64_TLSGD:
727 case R_X86_64_TLSLD:
728 case R_X86_64_DTPOFF32:
729 case R_X86_64_SIZE32:
730 return SignExtend64<32>(read32le(buf));
731 case R_X86_64_64:
732 case R_X86_64_TPOFF64:
733 case R_X86_64_DTPOFF64:
734 case R_X86_64_DTPMOD64:
735 case R_X86_64_PC64:
736 case R_X86_64_SIZE64:
737 case R_X86_64_GLOB_DAT:
738 case R_X86_64_GOT64:
739 case R_X86_64_GOTOFF64:
740 case R_X86_64_GOTPC64:
741 case R_X86_64_PLTOFF64:
742 case R_X86_64_IRELATIVE:
743 case R_X86_64_RELATIVE:
744 return read64le(buf);
745 case R_X86_64_TLSDESC:
746 return read64le(buf + 8);
747 case R_X86_64_JUMP_SLOT:
748 case R_X86_64_NONE:
749 // These relocations are defined as not having an implicit addend.
750 return 0;
751 default:
752 internalLinkerError(getErrorLocation(buf),
753 "cannot read addend for relocation " + toString(type));
754 return 0;
758 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val);
760 void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
761 switch (rel.type) {
762 case R_X86_64_8:
763 checkIntUInt(loc, val, 8, rel);
764 *loc = val;
765 break;
766 case R_X86_64_PC8:
767 checkInt(loc, val, 8, rel);
768 *loc = val;
769 break;
770 case R_X86_64_16:
771 checkIntUInt(loc, val, 16, rel);
772 write16le(loc, val);
773 break;
774 case R_X86_64_PC16:
775 checkInt(loc, val, 16, rel);
776 write16le(loc, val);
777 break;
778 case R_X86_64_32:
779 checkUInt(loc, val, 32, rel);
780 write32le(loc, val);
781 break;
782 case R_X86_64_32S:
783 case R_X86_64_GOT32:
784 case R_X86_64_GOTPC32:
785 case R_X86_64_GOTPCREL:
786 case R_X86_64_PC32:
787 case R_X86_64_PLT32:
788 case R_X86_64_DTPOFF32:
789 case R_X86_64_SIZE32:
790 checkInt(loc, val, 32, rel);
791 write32le(loc, val);
792 break;
793 case R_X86_64_64:
794 case R_X86_64_DTPOFF64:
795 case R_X86_64_PC64:
796 case R_X86_64_SIZE64:
797 case R_X86_64_GOT64:
798 case R_X86_64_GOTOFF64:
799 case R_X86_64_GOTPC64:
800 case R_X86_64_PLTOFF64:
801 write64le(loc, val);
802 break;
803 case R_X86_64_GOTPCRELX:
804 case R_X86_64_REX_GOTPCRELX:
805 if (rel.expr != R_GOT_PC) {
806 relaxGot(loc, rel, val);
807 } else {
808 checkInt(loc, val, 32, rel);
809 write32le(loc, val);
811 break;
812 case R_X86_64_GOTPC32_TLSDESC:
813 case R_X86_64_TLSDESC_CALL:
814 case R_X86_64_TLSGD:
815 if (rel.expr == R_RELAX_TLS_GD_TO_LE) {
816 relaxTlsGdToLe(loc, rel, val);
817 } else if (rel.expr == R_RELAX_TLS_GD_TO_IE) {
818 relaxTlsGdToIe(loc, rel, val);
819 } else {
820 checkInt(loc, val, 32, rel);
821 write32le(loc, val);
823 break;
824 case R_X86_64_TLSLD:
825 if (rel.expr == R_RELAX_TLS_LD_TO_LE) {
826 relaxTlsLdToLe(loc, rel, val);
827 } else {
828 checkInt(loc, val, 32, rel);
829 write32le(loc, val);
831 break;
832 case R_X86_64_GOTTPOFF:
833 if (rel.expr == R_RELAX_TLS_IE_TO_LE) {
834 relaxTlsIeToLe(loc, rel, val);
835 } else {
836 checkInt(loc, val, 32, rel);
837 write32le(loc, val);
839 break;
840 case R_X86_64_TPOFF32:
841 checkInt(loc, val, 32, rel);
842 write32le(loc, val);
843 break;
845 case R_X86_64_TLSDESC:
846 // The addend is stored in the second 64-bit word.
847 write64le(loc + 8, val);
848 break;
849 default:
850 llvm_unreachable("unknown relocation");
854 RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
855 const uint8_t *loc) const {
856 // Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
857 // with addend != -4. Such an instruction does not load the full GOT entry, so
858 // we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
859 // (addend=0) loads the high 32 bits of the GOT entry.
860 if (!config->relax || addend != -4 ||
861 (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX))
862 return R_GOT_PC;
863 const uint8_t op = loc[-2];
864 const uint8_t modRm = loc[-1];
866 // FIXME: When PIC is disabled and foo is defined locally in the
867 // lower 32 bit address space, memory operand in mov can be converted into
868 // immediate operand. Otherwise, mov must be changed to lea. We support only
869 // latter relaxation at this moment.
870 if (op == 0x8b)
871 return R_RELAX_GOT_PC;
873 // Relax call and jmp.
874 if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
875 return R_RELAX_GOT_PC;
877 // We don't support test/binop instructions without a REX prefix.
878 if (type == R_X86_64_GOTPCRELX)
879 return R_GOT_PC;
881 // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
882 // If PIC then no relaxation is available.
883 return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
886 // A subset of relaxations can only be applied for no-PIC. This method
887 // handles such relaxations. Instructions encoding information was taken from:
888 // "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
889 // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
890 // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
891 static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
892 uint8_t modRm) {
893 const uint8_t rex = loc[-3];
894 // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
895 if (op == 0x85) {
896 // See "TEST-Logical Compare" (4-428 Vol. 2B),
897 // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
899 // ModR/M byte has form XX YYY ZZZ, where
900 // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
901 // XX has different meanings:
902 // 00: The operand's memory address is in reg1.
903 // 01: The operand's memory address is reg1 + a byte-sized displacement.
904 // 10: The operand's memory address is reg1 + a word-sized displacement.
905 // 11: The operand is reg1 itself.
906 // If an instruction requires only one operand, the unused reg2 field
907 // holds extra opcode bits rather than a register code
908 // 0xC0 == 11 000 000 binary.
909 // 0x38 == 00 111 000 binary.
910 // We transfer reg2 to reg1 here as operand.
911 // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
912 loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
914 // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
915 // See "TEST-Logical Compare" (4-428 Vol. 2B).
916 loc[-2] = 0xf7;
918 // Move R bit to the B bit in REX byte.
919 // REX byte is encoded as 0100WRXB, where
920 // 0100 is 4bit fixed pattern.
921 // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
922 // default operand size is used (which is 32-bit for most but not all
923 // instructions).
924 // REX.R This 1-bit value is an extension to the MODRM.reg field.
925 // REX.X This 1-bit value is an extension to the SIB.index field.
926 // REX.B This 1-bit value is an extension to the MODRM.rm field or the
927 // SIB.base field.
928 // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
929 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
930 write32le(loc, val);
931 return;
934 // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
935 // or xor operations.
937 // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
938 // Logic is close to one for test instruction above, but we also
939 // write opcode extension here, see below for details.
940 loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
942 // Primary opcode is 0x81, opcode extension is one of:
943 // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
944 // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
945 // This value was wrote to MODRM.reg in a line above.
946 // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
947 // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
948 // descriptions about each operation.
949 loc[-2] = 0x81;
950 loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
951 write32le(loc, val);
954 static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) {
955 assert(isInt<32>(val) &&
956 "GOTPCRELX should not have been relaxed if it overflows");
957 const uint8_t op = loc[-2];
958 const uint8_t modRm = loc[-1];
960 // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
961 if (op == 0x8b) {
962 loc[-2] = 0x8d;
963 write32le(loc, val);
964 return;
967 if (op != 0xff) {
968 // We are relaxing a rip relative to an absolute, so compensate
969 // for the old -4 addend.
970 assert(!config->isPic);
971 relaxGotNoPic(loc, val + 4, op, modRm);
972 return;
975 // Convert call/jmp instructions.
976 if (modRm == 0x15) {
977 // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
978 // Instead we convert to "addr32 call foo" where addr32 is an instruction
979 // prefix. That makes result expression to be a single instruction.
980 loc[-2] = 0x67; // addr32 prefix
981 loc[-1] = 0xe8; // call
982 write32le(loc, val);
983 return;
986 // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
987 // jmp doesn't return, so it is fine to use nop here, it is just a stub.
988 assert(modRm == 0x25);
989 loc[-2] = 0xe9; // jmp
990 loc[3] = 0x90; // nop
991 write32le(loc - 1, val + 1);
994 // A split-stack prologue starts by checking the amount of stack remaining
995 // in one of two ways:
996 // A) Comparing of the stack pointer to a field in the tcb.
997 // B) Or a load of a stack pointer offset with an lea to r10 or r11.
998 bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
999 uint8_t stOther) const {
1000 if (!config->is64) {
1001 error("target doesn't support split stacks");
1002 return false;
1005 if (loc + 8 >= end)
1006 return false;
1008 // Replace "cmp %fs:0x70,%rsp" and subsequent branch
1009 // with "stc, nopl 0x0(%rax,%rax,1)"
1010 if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
1011 memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
1012 return true;
1015 // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
1016 // be r10 or r11. The lea instruction feeds a subsequent compare which checks
1017 // if there is X available stack space. Making X larger effectively reserves
1018 // that much additional space. The stack grows downward so subtract the value.
1019 if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
1020 memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
1021 // The offset bytes are encoded four bytes after the start of the
1022 // instruction.
1023 write32le(loc + 4, read32le(loc + 4) - 0x4000);
1024 return true;
1026 return false;
1029 void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1030 uint64_t secAddr = sec.getOutputSection()->addr;
1031 if (auto *s = dyn_cast<InputSection>(&sec))
1032 secAddr += s->outSecOff;
1033 else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
1034 secAddr += ehIn->getParent()->outSecOff;
1035 for (const Relocation &rel : sec.relocs()) {
1036 if (rel.expr == R_NONE) // See deleteFallThruJmpInsn
1037 continue;
1038 uint8_t *loc = buf + rel.offset;
1039 const uint64_t val =
1040 sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
1041 secAddr + rel.offset, *rel.sym, rel.expr);
1042 relocate(loc, rel, val);
1044 if (sec.jumpInstrMod) {
1045 applyJumpInstrMod(buf + sec.jumpInstrMod->offset,
1046 sec.jumpInstrMod->original, sec.jumpInstrMod->size);
1050 // If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
1051 // entries containing endbr64 instructions. A PLT entry will be split into two
1052 // parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
1053 namespace {
1054 class IntelIBT : public X86_64 {
1055 public:
1056 IntelIBT();
1057 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1058 void writePlt(uint8_t *buf, const Symbol &sym,
1059 uint64_t pltEntryAddr) const override;
1060 void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
1062 static const unsigned IBTPltHeaderSize = 16;
1064 } // namespace
1066 IntelIBT::IntelIBT() { pltHeaderSize = 0; }
1068 void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1069 uint64_t va =
1070 in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize;
1071 write64le(buf, va);
1074 void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
1075 uint64_t pltEntryAddr) const {
1076 const uint8_t Inst[] = {
1077 0xf3, 0x0f, 0x1e, 0xfa, // endbr64
1078 0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
1079 0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
1081 memcpy(buf, Inst, sizeof(Inst));
1082 write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
1085 void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
1086 writePltHeader(buf);
1087 buf += IBTPltHeaderSize;
1089 const uint8_t inst[] = {
1090 0xf3, 0x0f, 0x1e, 0xfa, // endbr64
1091 0x68, 0, 0, 0, 0, // pushq <relocation index>
1092 0xe9, 0, 0, 0, 0, // jmpq plt[0]
1093 0x66, 0x90, // nop
1096 for (size_t i = 0; i < numEntries; ++i) {
1097 memcpy(buf, inst, sizeof(inst));
1098 write32le(buf + 5, i);
1099 write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
1100 buf += sizeof(inst);
1104 // These nonstandard PLT entries are to migtigate Spectre v2 security
1105 // vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
1106 // branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
1107 // entries, we use a CALL followed by MOV and RET to do the same thing as an
1108 // indirect jump. That instruction sequence is so-called "retpoline".
1110 // We have two types of retpoline PLTs as a size optimization. If `-z now`
1111 // is specified, all dynamic symbols are resolved at load-time. Thus, when
1112 // that option is given, we can omit code for symbol lazy resolution.
1113 namespace {
1114 class Retpoline : public X86_64 {
1115 public:
1116 Retpoline();
1117 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1118 void writePltHeader(uint8_t *buf) const override;
1119 void writePlt(uint8_t *buf, const Symbol &sym,
1120 uint64_t pltEntryAddr) const override;
1123 class RetpolineZNow : public X86_64 {
1124 public:
1125 RetpolineZNow();
1126 void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
1127 void writePltHeader(uint8_t *buf) const override;
1128 void writePlt(uint8_t *buf, const Symbol &sym,
1129 uint64_t pltEntryAddr) const override;
1131 } // namespace
1133 Retpoline::Retpoline() {
1134 pltHeaderSize = 48;
1135 pltEntrySize = 32;
1136 ipltEntrySize = 32;
1139 void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1140 write64le(buf, s.getPltVA() + 17);
1143 void Retpoline::writePltHeader(uint8_t *buf) const {
1144 const uint8_t insn[] = {
1145 0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip)
1146 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11
1147 0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next
1148 0xf3, 0x90, // 12: loop: pause
1149 0x0f, 0xae, 0xe8, // 14: lfence
1150 0xeb, 0xf9, // 17: jmp loop
1151 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
1152 0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp)
1153 0xc3, // 24: ret
1154 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding
1155 0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding
1157 memcpy(buf, insn, sizeof(insn));
1159 uint64_t gotPlt = in.gotPlt->getVA();
1160 uint64_t plt = in.plt->getVA();
1161 write32le(buf + 2, gotPlt - plt - 6 + 8);
1162 write32le(buf + 9, gotPlt - plt - 13 + 16);
1165 void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1166 uint64_t pltEntryAddr) const {
1167 const uint8_t insn[] = {
1168 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11
1169 0xe8, 0, 0, 0, 0, // 7: callq plt+0x20
1170 0xe9, 0, 0, 0, 0, // c: jmp plt+0x12
1171 0x68, 0, 0, 0, 0, // 11: pushq <relocation index>
1172 0xe9, 0, 0, 0, 0, // 16: jmp plt+0
1173 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1175 memcpy(buf, insn, sizeof(insn));
1177 uint64_t off = pltEntryAddr - in.plt->getVA();
1179 write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1180 write32le(buf + 8, -off - 12 + 32);
1181 write32le(buf + 13, -off - 17 + 18);
1182 write32le(buf + 18, sym.getPltIdx());
1183 write32le(buf + 23, -off - 27);
1186 RetpolineZNow::RetpolineZNow() {
1187 pltHeaderSize = 32;
1188 pltEntrySize = 16;
1189 ipltEntrySize = 16;
1192 void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1193 const uint8_t insn[] = {
1194 0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next
1195 0xf3, 0x90, // 5: loop: pause
1196 0x0f, 0xae, 0xe8, // 7: lfence
1197 0xeb, 0xf9, // a: jmp loop
1198 0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16
1199 0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp)
1200 0xc3, // 14: ret
1201 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding
1202 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
1203 0xcc, // 1f: int3; padding
1205 memcpy(buf, insn, sizeof(insn));
1208 void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1209 uint64_t pltEntryAddr) const {
1210 const uint8_t insn[] = {
1211 0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1212 0xe9, 0, 0, 0, 0, // jmp plt+0
1213 0xcc, 0xcc, 0xcc, 0xcc, // int3; padding
1215 memcpy(buf, insn, sizeof(insn));
1217 write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1218 write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
1221 static TargetInfo *getTargetInfo() {
1222 if (config->zRetpolineplt) {
1223 if (config->zNow) {
1224 static RetpolineZNow t;
1225 return &t;
1227 static Retpoline t;
1228 return &t;
1231 if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
1232 static IntelIBT t;
1233 return &t;
1236 static X86_64 t;
1237 return &t;
1240 TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }