Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / ELF / CallGraphSort.cpp
blob5e36964da94fc52328f66d978a65ee6d18a1e0f8
1 //===- CallGraphSort.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// The file is responsible for sorting sections using LLVM call graph profile
10 /// data by placing frequently executed code sections together. The goal of the
11 /// placement is to improve the runtime performance of the final executable by
12 /// arranging code sections so that i-TLB misses and i-cache misses are reduced.
13 ///
14 /// The algorithm first builds a call graph based on the profile data and then
15 /// iteratively merges "chains" (ordered lists) of input sections which will be
16 /// laid out as a unit. There are two implementations for deciding how to
17 /// merge a pair of chains:
18 /// - a simpler one, referred to as Call-Chain Clustering (C^3), that follows
19 /// "Optimizing Function Placement for Large-Scale Data-Center Applications"
20 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
21 /// - a more advanced one, referred to as Cache-Directed-Sort (CDSort), which
22 /// typically produces layouts with higher locality, and hence, yields fewer
23 /// instruction cache misses on large binaries.
24 //===----------------------------------------------------------------------===//
26 #include "CallGraphSort.h"
27 #include "InputFiles.h"
28 #include "InputSection.h"
29 #include "Symbols.h"
30 #include "llvm/Support/FileSystem.h"
31 #include "llvm/Transforms/Utils/CodeLayout.h"
33 #include <numeric>
35 using namespace llvm;
36 using namespace lld;
37 using namespace lld::elf;
39 namespace {
40 struct Edge {
41 int from;
42 uint64_t weight;
45 struct Cluster {
46 Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
48 double getDensity() const {
49 if (size == 0)
50 return 0;
51 return double(weight) / double(size);
54 int next;
55 int prev;
56 uint64_t size;
57 uint64_t weight = 0;
58 uint64_t initialWeight = 0;
59 Edge bestPred = {-1, 0};
62 /// Implementation of the Call-Chain Clustering (C^3). The goal of this
63 /// algorithm is to improve runtime performance of the executable by arranging
64 /// code sections such that page table and i-cache misses are minimized.
65 ///
66 /// Definitions:
67 /// * Cluster
68 /// * An ordered list of input sections which are laid out as a unit. At the
69 /// beginning of the algorithm each input section has its own cluster and
70 /// the weight of the cluster is the sum of the weight of all incoming
71 /// edges.
72 /// * Call-Chain Clustering (C³) Heuristic
73 /// * Defines when and how clusters are combined. Pick the highest weighted
74 /// input section then add it to its most likely predecessor if it wouldn't
75 /// penalize it too much.
76 /// * Density
77 /// * The weight of the cluster divided by the size of the cluster. This is a
78 /// proxy for the amount of execution time spent per byte of the cluster.
79 ///
80 /// It does so given a call graph profile by the following:
81 /// * Build a weighted call graph from the call graph profile
82 /// * Sort input sections by weight
83 /// * For each input section starting with the highest weight
84 /// * Find its most likely predecessor cluster
85 /// * Check if the combined cluster would be too large, or would have too low
86 /// a density.
87 /// * If not, then combine the clusters.
88 /// * Sort non-empty clusters by density
89 class CallGraphSort {
90 public:
91 CallGraphSort();
93 DenseMap<const InputSectionBase *, int> run();
95 private:
96 std::vector<Cluster> clusters;
97 std::vector<const InputSectionBase *> sections;
100 // Maximum amount the combined cluster density can be worse than the original
101 // cluster to consider merging.
102 constexpr int MAX_DENSITY_DEGRADATION = 8;
104 // Maximum cluster size in bytes.
105 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
106 } // end anonymous namespace
108 using SectionPair =
109 std::pair<const InputSectionBase *, const InputSectionBase *>;
111 // Take the edge list in Config->CallGraphProfile, resolve symbol names to
112 // Symbols, and generate a graph between InputSections with the provided
113 // weights.
114 CallGraphSort::CallGraphSort() {
115 MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
116 DenseMap<const InputSectionBase *, int> secToCluster;
118 auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
119 auto res = secToCluster.try_emplace(isec, clusters.size());
120 if (res.second) {
121 sections.push_back(isec);
122 clusters.emplace_back(clusters.size(), isec->getSize());
124 return res.first->second;
127 // Create the graph.
128 for (std::pair<SectionPair, uint64_t> &c : profile) {
129 const auto *fromSB = cast<InputSectionBase>(c.first.first);
130 const auto *toSB = cast<InputSectionBase>(c.first.second);
131 uint64_t weight = c.second;
133 // Ignore edges between input sections belonging to different output
134 // sections. This is done because otherwise we would end up with clusters
135 // containing input sections that can't actually be placed adjacently in the
136 // output. This messes with the cluster size and density calculations. We
137 // would also end up moving input sections in other output sections without
138 // moving them closer to what calls them.
139 if (fromSB->getOutputSection() != toSB->getOutputSection())
140 continue;
142 int from = getOrCreateNode(fromSB);
143 int to = getOrCreateNode(toSB);
145 clusters[to].weight += weight;
147 if (from == to)
148 continue;
150 // Remember the best edge.
151 Cluster &toC = clusters[to];
152 if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
153 toC.bestPred.from = from;
154 toC.bestPred.weight = weight;
157 for (Cluster &c : clusters)
158 c.initialWeight = c.weight;
161 // It's bad to merge clusters which would degrade the density too much.
162 static bool isNewDensityBad(Cluster &a, Cluster &b) {
163 double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
164 return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
167 // Find the leader of V's belonged cluster (represented as an equivalence
168 // class). We apply union-find path-halving technique (simple to implement) in
169 // the meantime as it decreases depths and the time complexity.
170 static int getLeader(int *leaders, int v) {
171 while (leaders[v] != v) {
172 leaders[v] = leaders[leaders[v]];
173 v = leaders[v];
175 return v;
178 static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
179 Cluster &from, int fromIdx) {
180 int tail1 = into.prev, tail2 = from.prev;
181 into.prev = tail2;
182 cs[tail2].next = intoIdx;
183 from.prev = tail1;
184 cs[tail1].next = fromIdx;
185 into.size += from.size;
186 into.weight += from.weight;
187 from.size = 0;
188 from.weight = 0;
191 // Group InputSections into clusters using the Call-Chain Clustering heuristic
192 // then sort the clusters by density.
193 DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
194 std::vector<int> sorted(clusters.size());
195 std::unique_ptr<int[]> leaders(new int[clusters.size()]);
197 std::iota(leaders.get(), leaders.get() + clusters.size(), 0);
198 std::iota(sorted.begin(), sorted.end(), 0);
199 llvm::stable_sort(sorted, [&](int a, int b) {
200 return clusters[a].getDensity() > clusters[b].getDensity();
203 for (int l : sorted) {
204 // The cluster index is the same as the index of its leader here because
205 // clusters[L] has not been merged into another cluster yet.
206 Cluster &c = clusters[l];
208 // Don't consider merging if the edge is unlikely.
209 if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
210 continue;
212 int predL = getLeader(leaders.get(), c.bestPred.from);
213 if (l == predL)
214 continue;
216 Cluster *predC = &clusters[predL];
217 if (c.size + predC->size > MAX_CLUSTER_SIZE)
218 continue;
220 if (isNewDensityBad(*predC, c))
221 continue;
223 leaders[l] = predL;
224 mergeClusters(clusters, *predC, predL, c, l);
227 // Sort remaining non-empty clusters by density.
228 sorted.clear();
229 for (int i = 0, e = (int)clusters.size(); i != e; ++i)
230 if (clusters[i].size > 0)
231 sorted.push_back(i);
232 llvm::stable_sort(sorted, [&](int a, int b) {
233 return clusters[a].getDensity() > clusters[b].getDensity();
236 DenseMap<const InputSectionBase *, int> orderMap;
237 int curOrder = 1;
238 for (int leader : sorted) {
239 for (int i = leader;;) {
240 orderMap[sections[i]] = curOrder++;
241 i = clusters[i].next;
242 if (i == leader)
243 break;
246 if (!config->printSymbolOrder.empty()) {
247 std::error_code ec;
248 raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None);
249 if (ec) {
250 error("cannot open " + config->printSymbolOrder + ": " + ec.message());
251 return orderMap;
254 // Print the symbols ordered by C3, in the order of increasing curOrder
255 // Instead of sorting all the orderMap, just repeat the loops above.
256 for (int leader : sorted)
257 for (int i = leader;;) {
258 // Search all the symbols in the file of the section
259 // and find out a Defined symbol with name that is within the section.
260 for (Symbol *sym : sections[i]->file->getSymbols())
261 if (!sym->isSection()) // Filter out section-type symbols here.
262 if (auto *d = dyn_cast<Defined>(sym))
263 if (sections[i] == d->section)
264 os << sym->getName() << "\n";
265 i = clusters[i].next;
266 if (i == leader)
267 break;
271 return orderMap;
274 // Sort sections by the profile data using the Cache-Directed Sort algorithm.
275 // The placement is done by optimizing the locality by co-locating frequently
276 // executed code sections together.
277 DenseMap<const InputSectionBase *, int> elf::computeCacheDirectedSortOrder() {
278 SmallVector<uint64_t, 0> funcSizes;
279 SmallVector<uint64_t, 0> funcCounts;
280 SmallVector<codelayout::EdgeCount, 0> callCounts;
281 SmallVector<uint64_t, 0> callOffsets;
282 SmallVector<const InputSectionBase *, 0> sections;
283 DenseMap<const InputSectionBase *, size_t> secToTargetId;
285 auto getOrCreateNode = [&](const InputSectionBase *inSec) -> size_t {
286 auto res = secToTargetId.try_emplace(inSec, sections.size());
287 if (res.second) {
288 // inSec does not appear before in the graph.
289 sections.push_back(inSec);
290 assert(inSec->getSize() > 0 && "found a function with zero size");
291 funcSizes.push_back(inSec->getSize());
292 funcCounts.push_back(0);
294 return res.first->second;
297 // Create the graph.
298 for (std::pair<SectionPair, uint64_t> &c : config->callGraphProfile) {
299 const InputSectionBase *fromSB = cast<InputSectionBase>(c.first.first);
300 const InputSectionBase *toSB = cast<InputSectionBase>(c.first.second);
301 // Ignore edges between input sections belonging to different sections.
302 if (fromSB->getOutputSection() != toSB->getOutputSection())
303 continue;
305 uint64_t weight = c.second;
306 // Ignore edges with zero weight.
307 if (weight == 0)
308 continue;
310 size_t from = getOrCreateNode(fromSB);
311 size_t to = getOrCreateNode(toSB);
312 // Ignore self-edges (recursive calls).
313 if (from == to)
314 continue;
316 callCounts.push_back({from, to, weight});
317 // Assume that the jump is at the middle of the input section. The profile
318 // data does not contain jump offsets.
319 callOffsets.push_back((funcSizes[from] + 1) / 2);
320 funcCounts[to] += weight;
323 // Run the layout algorithm.
324 std::vector<uint64_t> sortedSections = codelayout::computeCacheDirectedLayout(
325 funcSizes, funcCounts, callCounts, callOffsets);
327 // Create the final order.
328 DenseMap<const InputSectionBase *, int> orderMap;
329 int curOrder = 1;
330 for (uint64_t secIdx : sortedSections)
331 orderMap[sections[secIdx]] = curOrder++;
333 return orderMap;
336 // Sort sections by the profile data provided by --callgraph-profile-file.
338 // This first builds a call graph based on the profile data then merges sections
339 // according either to the C³ or Cache-Directed-Sort ordering algorithm.
340 DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() {
341 if (config->callGraphProfileSort == CGProfileSortKind::Cdsort)
342 return computeCacheDirectedSortOrder();
343 return CallGraphSort().run();