1 //===- ICF.cpp ------------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // ICF is short for Identical Code Folding. This is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
14 // In ICF, two sections are considered identical if they have the same
15 // section flags, section data, and relocations. Relocations are tricky,
16 // because two relocations are considered the same if they have the same
17 // relocation types, values, and if they point to the same sections *in
20 // Here is an example. If foo and bar defined below are compiled to the
21 // same machine instructions, ICF can and should merge the two, although
22 // their relocations point to each other.
24 // void foo() { bar(); }
25 // void bar() { foo(); }
27 // If you merge the two, their relocations point to the same section and
28 // thus you know they are mergeable, but how do you know they are
29 // mergeable in the first place? This is not an easy problem to solve.
31 // What we are doing in LLD is to partition sections into equivalence
32 // classes. Sections in the same equivalence class when the algorithm
33 // terminates are considered identical. Here are details:
35 // 1. First, we partition sections using their hash values as keys. Hash
36 // values contain section types, section contents and numbers of
37 // relocations. During this step, relocation targets are not taken into
38 // account. We just put sections that apparently differ into different
39 // equivalence classes.
41 // 2. Next, for each equivalence class, we visit sections to compare
42 // relocation targets. Relocation targets are considered equivalent if
43 // their targets are in the same equivalence class. Sections with
44 // different relocation targets are put into different equivalence
47 // 3. If we split an equivalence class in step 2, two relocations
48 // previously target the same equivalence class may now target
49 // different equivalence classes. Therefore, we repeat step 2 until a
50 // convergence is obtained.
52 // 4. For each equivalence class C, pick an arbitrary section in C, and
53 // merge all the other sections in C with it.
55 // For small programs, this algorithm needs 3-5 iterations. For large
56 // programs such as Chromium, it takes more than 20 iterations.
58 // This algorithm was mentioned as an "optimistic algorithm" in [1],
59 // though gold implements a different algorithm than this.
61 // We parallelize each step so that multiple threads can work on different
62 // equivalence classes concurrently. That gave us a large performance
63 // boost when applying ICF on large programs. For example, MSVC link.exe
64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67 // faster than MSVC or gold though.
69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
73 //===----------------------------------------------------------------------===//
77 #include "InputFiles.h"
78 #include "LinkerScript.h"
79 #include "OutputSections.h"
80 #include "SymbolTable.h"
82 #include "SyntheticSections.h"
83 #include "llvm/BinaryFormat/ELF.h"
84 #include "llvm/Object/ELF.h"
85 #include "llvm/Support/Parallel.h"
86 #include "llvm/Support/TimeProfiler.h"
87 #include "llvm/Support/xxhash.h"
92 using namespace llvm::ELF
;
93 using namespace llvm::object
;
95 using namespace lld::elf
;
98 template <class ELFT
> class ICF
{
103 void segregate(size_t begin
, size_t end
, uint32_t eqClassBase
, bool constant
);
105 template <class RelTy
>
106 bool constantEq(const InputSection
*a
, ArrayRef
<RelTy
> relsA
,
107 const InputSection
*b
, ArrayRef
<RelTy
> relsB
);
109 template <class RelTy
>
110 bool variableEq(const InputSection
*a
, ArrayRef
<RelTy
> relsA
,
111 const InputSection
*b
, ArrayRef
<RelTy
> relsB
);
113 bool equalsConstant(const InputSection
*a
, const InputSection
*b
);
114 bool equalsVariable(const InputSection
*a
, const InputSection
*b
);
116 size_t findBoundary(size_t begin
, size_t end
);
118 void forEachClassRange(size_t begin
, size_t end
,
119 llvm::function_ref
<void(size_t, size_t)> fn
);
121 void forEachClass(llvm::function_ref
<void(size_t, size_t)> fn
);
123 SmallVector
<InputSection
*, 0> sections
;
125 // We repeat the main loop while `Repeat` is true.
126 std::atomic
<bool> repeat
;
128 // The main loop counter.
131 // We have two locations for equivalence classes. On the first iteration
132 // of the main loop, Class[0] has a valid value, and Class[1] contains
133 // garbage. We read equivalence classes from slot 0 and write to slot 1.
134 // So, Class[0] represents the current class, and Class[1] represents
135 // the next class. On each iteration, we switch their roles and use them
138 // Why are we doing this? Recall that other threads may be working on
139 // other equivalence classes in parallel. They may read sections that we
140 // are updating. We cannot update equivalence classes in place because
141 // it breaks the invariance that all possibly-identical sections must be
142 // in the same equivalence class at any moment. In other words, the for
143 // loop to update equivalence classes is not atomic, and that is
144 // observable from other threads. By writing new classes to other
145 // places, we can keep the invariance.
147 // Below, `Current` has the index of the current class, and `Next` has
148 // the index of the next class. If threading is enabled, they are either
151 // Note on single-thread: if that's the case, they are always (0, 0)
152 // because we can safely read the next class without worrying about race
153 // conditions. Using the same location makes this algorithm converge
154 // faster because it uses results of the same iteration earlier.
160 // Returns true if section S is subject of ICF.
161 static bool isEligible(InputSection
*s
) {
162 if (!s
->isLive() || s
->keepUnique
|| !(s
->flags
& SHF_ALLOC
))
165 // Don't merge writable sections. .data.rel.ro sections are marked as writable
166 // but are semantically read-only.
167 if ((s
->flags
& SHF_WRITE
) && s
->name
!= ".data.rel.ro" &&
168 !s
->name
.starts_with(".data.rel.ro."))
171 // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
172 // so we don't consider them for ICF individually.
173 if (s
->flags
& SHF_LINK_ORDER
)
176 // Don't merge synthetic sections as their Data member is not valid and empty.
177 // The Data member needs to be valid for ICF as it is used by ICF to determine
178 // the equality of section contents.
179 if (isa
<SyntheticSection
>(s
))
182 // .init and .fini contains instructions that must be executed to initialize
183 // and finalize the process. They cannot and should not be merged.
184 if (s
->name
== ".init" || s
->name
== ".fini")
187 // A user program may enumerate sections named with a C identifier using
188 // __start_* and __stop_* symbols. We cannot ICF any such sections because
189 // that could change program semantics.
190 if (isValidCIdentifier(s
->name
))
196 // Split an equivalence class into smaller classes.
197 template <class ELFT
>
198 void ICF
<ELFT
>::segregate(size_t begin
, size_t end
, uint32_t eqClassBase
,
200 // This loop rearranges sections in [Begin, End) so that all sections
201 // that are equal in terms of equals{Constant,Variable} are contiguous
204 // The algorithm is quadratic in the worst case, but that is not an
205 // issue in practice because the number of the distinct sections in
206 // each range is usually very small.
208 while (begin
< end
) {
209 // Divide [Begin, End) into two. Let Mid be the start index of the
212 std::stable_partition(sections
.begin() + begin
+ 1,
213 sections
.begin() + end
, [&](InputSection
*s
) {
215 return equalsConstant(sections
[begin
], s
);
216 return equalsVariable(sections
[begin
], s
);
218 size_t mid
= bound
- sections
.begin();
220 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
221 // updating the sections in [Begin, Mid). We use Mid as the basis for
222 // the equivalence class ID because every group ends with a unique index.
223 // Add this to eqClassBase to avoid equality with unique IDs.
224 for (size_t i
= begin
; i
< mid
; ++i
)
225 sections
[i
]->eqClass
[next
] = eqClassBase
+ mid
;
227 // If we created a group, we need to iterate the main loop again.
235 // Compare two lists of relocations.
236 template <class ELFT
>
237 template <class RelTy
>
238 bool ICF
<ELFT
>::constantEq(const InputSection
*secA
, ArrayRef
<RelTy
> ra
,
239 const InputSection
*secB
, ArrayRef
<RelTy
> rb
) {
240 if (ra
.size() != rb
.size())
242 for (size_t i
= 0; i
< ra
.size(); ++i
) {
243 if (ra
[i
].r_offset
!= rb
[i
].r_offset
||
244 ra
[i
].getType(config
->isMips64EL
) != rb
[i
].getType(config
->isMips64EL
))
247 uint64_t addA
= getAddend
<ELFT
>(ra
[i
]);
248 uint64_t addB
= getAddend
<ELFT
>(rb
[i
]);
250 Symbol
&sa
= secA
->template getFile
<ELFT
>()->getRelocTargetSym(ra
[i
]);
251 Symbol
&sb
= secB
->template getFile
<ELFT
>()->getRelocTargetSym(rb
[i
]);
258 auto *da
= dyn_cast
<Defined
>(&sa
);
259 auto *db
= dyn_cast
<Defined
>(&sb
);
261 // Placeholder symbols generated by linker scripts look the same now but
262 // may have different values later.
263 if (!da
|| !db
|| da
->scriptDefined
|| db
->scriptDefined
)
266 // When comparing a pair of relocations, if they refer to different symbols,
267 // and either symbol is preemptible, the containing sections should be
268 // considered different. This is because even if the sections are identical
269 // in this DSO, they may not be after preemption.
270 if (da
->isPreemptible
|| db
->isPreemptible
)
273 // Relocations referring to absolute symbols are constant-equal if their
275 if (!da
->section
&& !db
->section
&& da
->value
+ addA
== db
->value
+ addB
)
277 if (!da
->section
|| !db
->section
)
280 if (da
->section
->kind() != db
->section
->kind())
283 // Relocations referring to InputSections are constant-equal if their
284 // section offsets are equal.
285 if (isa
<InputSection
>(da
->section
)) {
286 if (da
->value
+ addA
== db
->value
+ addB
)
291 // Relocations referring to MergeInputSections are constant-equal if their
292 // offsets in the output section are equal.
293 auto *x
= dyn_cast
<MergeInputSection
>(da
->section
);
296 auto *y
= cast
<MergeInputSection
>(db
->section
);
297 if (x
->getParent() != y
->getParent())
301 sa
.isSection() ? x
->getOffset(addA
) : x
->getOffset(da
->value
) + addA
;
303 sb
.isSection() ? y
->getOffset(addB
) : y
->getOffset(db
->value
) + addB
;
304 if (offsetA
!= offsetB
)
311 // Compare "non-moving" part of two InputSections, namely everything
312 // except relocation targets.
313 template <class ELFT
>
314 bool ICF
<ELFT
>::equalsConstant(const InputSection
*a
, const InputSection
*b
) {
315 if (a
->flags
!= b
->flags
|| a
->getSize() != b
->getSize() ||
316 a
->content() != b
->content())
319 // If two sections have different output sections, we cannot merge them.
320 assert(a
->getParent() && b
->getParent());
321 if (a
->getParent() != b
->getParent())
324 const RelsOrRelas
<ELFT
> ra
= a
->template relsOrRelas
<ELFT
>();
325 const RelsOrRelas
<ELFT
> rb
= b
->template relsOrRelas
<ELFT
>();
326 return ra
.areRelocsRel() || rb
.areRelocsRel()
327 ? constantEq(a
, ra
.rels
, b
, rb
.rels
)
328 : constantEq(a
, ra
.relas
, b
, rb
.relas
);
331 // Compare two lists of relocations. Returns true if all pairs of
332 // relocations point to the same section in terms of ICF.
333 template <class ELFT
>
334 template <class RelTy
>
335 bool ICF
<ELFT
>::variableEq(const InputSection
*secA
, ArrayRef
<RelTy
> ra
,
336 const InputSection
*secB
, ArrayRef
<RelTy
> rb
) {
337 assert(ra
.size() == rb
.size());
339 for (size_t i
= 0; i
< ra
.size(); ++i
) {
340 // The two sections must be identical.
341 Symbol
&sa
= secA
->template getFile
<ELFT
>()->getRelocTargetSym(ra
[i
]);
342 Symbol
&sb
= secB
->template getFile
<ELFT
>()->getRelocTargetSym(rb
[i
]);
346 auto *da
= cast
<Defined
>(&sa
);
347 auto *db
= cast
<Defined
>(&sb
);
349 // We already dealt with absolute and non-InputSection symbols in
350 // constantEq, and for InputSections we have already checked everything
351 // except the equivalence class.
354 auto *x
= dyn_cast
<InputSection
>(da
->section
);
357 auto *y
= cast
<InputSection
>(db
->section
);
359 // Sections that are in the special equivalence class 0, can never be the
360 // same in terms of the equivalence class.
361 if (x
->eqClass
[current
] == 0)
363 if (x
->eqClass
[current
] != y
->eqClass
[current
])
370 // Compare "moving" part of two InputSections, namely relocation targets.
371 template <class ELFT
>
372 bool ICF
<ELFT
>::equalsVariable(const InputSection
*a
, const InputSection
*b
) {
373 const RelsOrRelas
<ELFT
> ra
= a
->template relsOrRelas
<ELFT
>();
374 const RelsOrRelas
<ELFT
> rb
= b
->template relsOrRelas
<ELFT
>();
375 return ra
.areRelocsRel() || rb
.areRelocsRel()
376 ? variableEq(a
, ra
.rels
, b
, rb
.rels
)
377 : variableEq(a
, ra
.relas
, b
, rb
.relas
);
380 template <class ELFT
> size_t ICF
<ELFT
>::findBoundary(size_t begin
, size_t end
) {
381 uint32_t eqClass
= sections
[begin
]->eqClass
[current
];
382 for (size_t i
= begin
+ 1; i
< end
; ++i
)
383 if (eqClass
!= sections
[i
]->eqClass
[current
])
388 // Sections in the same equivalence class are contiguous in Sections
389 // vector. Therefore, Sections vector can be considered as contiguous
390 // groups of sections, grouped by the class.
392 // This function calls Fn on every group within [Begin, End).
393 template <class ELFT
>
394 void ICF
<ELFT
>::forEachClassRange(size_t begin
, size_t end
,
395 llvm::function_ref
<void(size_t, size_t)> fn
) {
396 while (begin
< end
) {
397 size_t mid
= findBoundary(begin
, end
);
403 // Call Fn on each equivalence class.
404 template <class ELFT
>
405 void ICF
<ELFT
>::forEachClass(llvm::function_ref
<void(size_t, size_t)> fn
) {
406 // If threading is disabled or the number of sections are
407 // too small to use threading, call Fn sequentially.
408 if (parallel::strategy
.ThreadsRequested
== 1 || sections
.size() < 1024) {
409 forEachClassRange(0, sections
.size(), fn
);
415 next
= (cnt
+ 1) % 2;
417 // Shard into non-overlapping intervals, and call Fn in parallel.
418 // The sharding must be completed before any calls to Fn are made
419 // so that Fn can modify the Chunks in its shard without causing data
421 const size_t numShards
= 256;
422 size_t step
= sections
.size() / numShards
;
423 size_t boundaries
[numShards
+ 1];
425 boundaries
[numShards
] = sections
.size();
427 parallelFor(1, numShards
, [&](size_t i
) {
428 boundaries
[i
] = findBoundary((i
- 1) * step
, sections
.size());
431 parallelFor(1, numShards
+ 1, [&](size_t i
) {
432 if (boundaries
[i
- 1] < boundaries
[i
])
433 forEachClassRange(boundaries
[i
- 1], boundaries
[i
], fn
);
438 // Combine the hashes of the sections referenced by the given section into its
440 template <class ELFT
, class RelTy
>
441 static void combineRelocHashes(unsigned cnt
, InputSection
*isec
,
442 ArrayRef
<RelTy
> rels
) {
443 uint32_t hash
= isec
->eqClass
[cnt
% 2];
444 for (RelTy rel
: rels
) {
445 Symbol
&s
= isec
->template getFile
<ELFT
>()->getRelocTargetSym(rel
);
446 if (auto *d
= dyn_cast
<Defined
>(&s
))
447 if (auto *relSec
= dyn_cast_or_null
<InputSection
>(d
->section
))
448 hash
+= relSec
->eqClass
[cnt
% 2];
450 // Set MSB to 1 to avoid collisions with unique IDs.
451 isec
->eqClass
[(cnt
+ 1) % 2] = hash
| (1U << 31);
454 static void print(const Twine
&s
) {
455 if (config
->printIcfSections
)
459 // The main function of ICF.
460 template <class ELFT
> void ICF
<ELFT
>::run() {
461 // Compute isPreemptible early. We may add more symbols later, so this loop
462 // cannot be merged with the later computeIsPreemptible() pass which is used
463 // by scanRelocations().
464 if (config
->hasDynSymTab
)
465 for (Symbol
*sym
: symtab
.getSymbols())
466 sym
->isPreemptible
= computeIsPreemptible(*sym
);
468 // Two text sections may have identical content and relocations but different
469 // LSDA, e.g. the two functions may have catch blocks of different types. If a
470 // text section is referenced by a .eh_frame FDE with LSDA, it is not
471 // eligible. This is implemented by iterating over CIE/FDE and setting
472 // eqClass[0] to the referenced text section from a live FDE.
474 // If two .gcc_except_table have identical semantics (usually identical
475 // content with PC-relative encoding), we will lose folding opportunity.
476 uint32_t uniqueId
= 0;
477 for (Partition
&part
: partitions
)
478 part
.ehFrame
->iterateFDEWithLSDA
<ELFT
>(
479 [&](InputSection
&s
) { s
.eqClass
[0] = s
.eqClass
[1] = ++uniqueId
; });
481 // Collect sections to merge.
482 for (InputSectionBase
*sec
: ctx
.inputSections
) {
483 auto *s
= dyn_cast
<InputSection
>(sec
);
484 if (s
&& s
->eqClass
[0] == 0) {
486 sections
.push_back(s
);
488 // Ineligible sections are assigned unique IDs, i.e. each section
489 // belongs to an equivalence class of its own.
490 s
->eqClass
[0] = s
->eqClass
[1] = ++uniqueId
;
494 // Initially, we use hash values to partition sections.
495 parallelForEach(sections
, [&](InputSection
*s
) {
496 // Set MSB to 1 to avoid collisions with unique IDs.
497 s
->eqClass
[0] = xxh3_64bits(s
->content()) | (1U << 31);
500 // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
501 // reduce the average sizes of equivalence classes, i.e. segregate() which has
502 // a large time complexity will have less work to do.
503 for (unsigned cnt
= 0; cnt
!= 2; ++cnt
) {
504 parallelForEach(sections
, [&](InputSection
*s
) {
505 const RelsOrRelas
<ELFT
> rels
= s
->template relsOrRelas
<ELFT
>();
506 if (rels
.areRelocsRel())
507 combineRelocHashes
<ELFT
>(cnt
, s
, rels
.rels
);
509 combineRelocHashes
<ELFT
>(cnt
, s
, rels
.relas
);
513 // From now on, sections in Sections vector are ordered so that sections
514 // in the same equivalence class are consecutive in the vector.
515 llvm::stable_sort(sections
, [](const InputSection
*a
, const InputSection
*b
) {
516 return a
->eqClass
[0] < b
->eqClass
[0];
519 // Compare static contents and assign unique equivalence class IDs for each
520 // static content. Use a base offset for these IDs to ensure no overlap with
521 // the unique IDs already assigned.
522 uint32_t eqClassBase
= ++uniqueId
;
523 forEachClass([&](size_t begin
, size_t end
) {
524 segregate(begin
, end
, eqClassBase
, true);
527 // Split groups by comparing relocations until convergence is obtained.
530 forEachClass([&](size_t begin
, size_t end
) {
531 segregate(begin
, end
, eqClassBase
, false);
535 log("ICF needed " + Twine(cnt
) + " iterations");
537 // Merge sections by the equivalence class.
538 forEachClassRange(0, sections
.size(), [&](size_t begin
, size_t end
) {
539 if (end
- begin
== 1)
541 print("selected section " + toString(sections
[begin
]));
542 for (size_t i
= begin
+ 1; i
< end
; ++i
) {
543 print(" removing identical section " + toString(sections
[i
]));
544 sections
[begin
]->replace(sections
[i
]);
546 // At this point we know sections merged are fully identical and hence
547 // we want to remove duplicate implicit dependencies such as link order
548 // and relocation sections.
549 for (InputSection
*isec
: sections
[i
]->dependentSections
)
554 // Change Defined symbol's section field to the canonical one.
555 auto fold
= [](Symbol
*sym
) {
556 if (auto *d
= dyn_cast
<Defined
>(sym
))
557 if (auto *sec
= dyn_cast_or_null
<InputSection
>(d
->section
))
558 if (sec
->repl
!= d
->section
) {
559 d
->section
= sec
->repl
;
563 for (Symbol
*sym
: symtab
.getSymbols())
565 parallelForEach(ctx
.objectFiles
, [&](ELFFileBase
*file
) {
566 for (Symbol
*sym
: file
->getLocalSymbols())
570 // InputSectionDescription::sections is populated by processSectionCommands().
571 // ICF may fold some input sections assigned to output sections. Remove them.
572 for (SectionCommand
*cmd
: script
->sectionCommands
)
573 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
574 for (SectionCommand
*subCmd
: osd
->osec
.commands
)
575 if (auto *isd
= dyn_cast
<InputSectionDescription
>(subCmd
))
576 llvm::erase_if(isd
->sections
,
577 [](InputSection
*isec
) { return !isec
->isLive(); });
580 // ICF entry point function.
581 template <class ELFT
> void elf::doIcf() {
582 llvm::TimeTraceScope
timeScope("ICF");
586 template void elf::doIcf
<ELF32LE
>();
587 template void elf::doIcf
<ELF32BE
>();
588 template void elf::doIcf
<ELF64LE
>();
589 template void elf::doIcf
<ELF64BE
>();