Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / ELF / ICF.cpp
blob9d7251037fb6d657f2ad2241a7cc097d976f0cb0
1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. This is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
14 // In ICF, two sections are considered identical if they have the same
15 // section flags, section data, and relocations. Relocations are tricky,
16 // because two relocations are considered the same if they have the same
17 // relocation types, values, and if they point to the same sections *in
18 // terms of ICF*.
20 // Here is an example. If foo and bar defined below are compiled to the
21 // same machine instructions, ICF can and should merge the two, although
22 // their relocations point to each other.
24 // void foo() { bar(); }
25 // void bar() { foo(); }
27 // If you merge the two, their relocations point to the same section and
28 // thus you know they are mergeable, but how do you know they are
29 // mergeable in the first place? This is not an easy problem to solve.
31 // What we are doing in LLD is to partition sections into equivalence
32 // classes. Sections in the same equivalence class when the algorithm
33 // terminates are considered identical. Here are details:
35 // 1. First, we partition sections using their hash values as keys. Hash
36 // values contain section types, section contents and numbers of
37 // relocations. During this step, relocation targets are not taken into
38 // account. We just put sections that apparently differ into different
39 // equivalence classes.
41 // 2. Next, for each equivalence class, we visit sections to compare
42 // relocation targets. Relocation targets are considered equivalent if
43 // their targets are in the same equivalence class. Sections with
44 // different relocation targets are put into different equivalence
45 // classes.
47 // 3. If we split an equivalence class in step 2, two relocations
48 // previously target the same equivalence class may now target
49 // different equivalence classes. Therefore, we repeat step 2 until a
50 // convergence is obtained.
52 // 4. For each equivalence class C, pick an arbitrary section in C, and
53 // merge all the other sections in C with it.
55 // For small programs, this algorithm needs 3-5 iterations. For large
56 // programs such as Chromium, it takes more than 20 iterations.
58 // This algorithm was mentioned as an "optimistic algorithm" in [1],
59 // though gold implements a different algorithm than this.
61 // We parallelize each step so that multiple threads can work on different
62 // equivalence classes concurrently. That gave us a large performance
63 // boost when applying ICF on large programs. For example, MSVC link.exe
64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67 // faster than MSVC or gold though.
69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
70 // in the Gold Linker
71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
73 //===----------------------------------------------------------------------===//
75 #include "ICF.h"
76 #include "Config.h"
77 #include "InputFiles.h"
78 #include "LinkerScript.h"
79 #include "OutputSections.h"
80 #include "SymbolTable.h"
81 #include "Symbols.h"
82 #include "SyntheticSections.h"
83 #include "llvm/BinaryFormat/ELF.h"
84 #include "llvm/Object/ELF.h"
85 #include "llvm/Support/Parallel.h"
86 #include "llvm/Support/TimeProfiler.h"
87 #include "llvm/Support/xxhash.h"
88 #include <algorithm>
89 #include <atomic>
91 using namespace llvm;
92 using namespace llvm::ELF;
93 using namespace llvm::object;
94 using namespace lld;
95 using namespace lld::elf;
97 namespace {
98 template <class ELFT> class ICF {
99 public:
100 void run();
102 private:
103 void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant);
105 template <class RelTy>
106 bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
107 const InputSection *b, ArrayRef<RelTy> relsB);
109 template <class RelTy>
110 bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
111 const InputSection *b, ArrayRef<RelTy> relsB);
113 bool equalsConstant(const InputSection *a, const InputSection *b);
114 bool equalsVariable(const InputSection *a, const InputSection *b);
116 size_t findBoundary(size_t begin, size_t end);
118 void forEachClassRange(size_t begin, size_t end,
119 llvm::function_ref<void(size_t, size_t)> fn);
121 void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
123 SmallVector<InputSection *, 0> sections;
125 // We repeat the main loop while `Repeat` is true.
126 std::atomic<bool> repeat;
128 // The main loop counter.
129 int cnt = 0;
131 // We have two locations for equivalence classes. On the first iteration
132 // of the main loop, Class[0] has a valid value, and Class[1] contains
133 // garbage. We read equivalence classes from slot 0 and write to slot 1.
134 // So, Class[0] represents the current class, and Class[1] represents
135 // the next class. On each iteration, we switch their roles and use them
136 // alternately.
138 // Why are we doing this? Recall that other threads may be working on
139 // other equivalence classes in parallel. They may read sections that we
140 // are updating. We cannot update equivalence classes in place because
141 // it breaks the invariance that all possibly-identical sections must be
142 // in the same equivalence class at any moment. In other words, the for
143 // loop to update equivalence classes is not atomic, and that is
144 // observable from other threads. By writing new classes to other
145 // places, we can keep the invariance.
147 // Below, `Current` has the index of the current class, and `Next` has
148 // the index of the next class. If threading is enabled, they are either
149 // (0, 1) or (1, 0).
151 // Note on single-thread: if that's the case, they are always (0, 0)
152 // because we can safely read the next class without worrying about race
153 // conditions. Using the same location makes this algorithm converge
154 // faster because it uses results of the same iteration earlier.
155 int current = 0;
156 int next = 0;
160 // Returns true if section S is subject of ICF.
161 static bool isEligible(InputSection *s) {
162 if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
163 return false;
165 // Don't merge writable sections. .data.rel.ro sections are marked as writable
166 // but are semantically read-only.
167 if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
168 !s->name.starts_with(".data.rel.ro."))
169 return false;
171 // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
172 // so we don't consider them for ICF individually.
173 if (s->flags & SHF_LINK_ORDER)
174 return false;
176 // Don't merge synthetic sections as their Data member is not valid and empty.
177 // The Data member needs to be valid for ICF as it is used by ICF to determine
178 // the equality of section contents.
179 if (isa<SyntheticSection>(s))
180 return false;
182 // .init and .fini contains instructions that must be executed to initialize
183 // and finalize the process. They cannot and should not be merged.
184 if (s->name == ".init" || s->name == ".fini")
185 return false;
187 // A user program may enumerate sections named with a C identifier using
188 // __start_* and __stop_* symbols. We cannot ICF any such sections because
189 // that could change program semantics.
190 if (isValidCIdentifier(s->name))
191 return false;
193 return true;
196 // Split an equivalence class into smaller classes.
197 template <class ELFT>
198 void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase,
199 bool constant) {
200 // This loop rearranges sections in [Begin, End) so that all sections
201 // that are equal in terms of equals{Constant,Variable} are contiguous
202 // in [Begin, End).
204 // The algorithm is quadratic in the worst case, but that is not an
205 // issue in practice because the number of the distinct sections in
206 // each range is usually very small.
208 while (begin < end) {
209 // Divide [Begin, End) into two. Let Mid be the start index of the
210 // second group.
211 auto bound =
212 std::stable_partition(sections.begin() + begin + 1,
213 sections.begin() + end, [&](InputSection *s) {
214 if (constant)
215 return equalsConstant(sections[begin], s);
216 return equalsVariable(sections[begin], s);
218 size_t mid = bound - sections.begin();
220 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
221 // updating the sections in [Begin, Mid). We use Mid as the basis for
222 // the equivalence class ID because every group ends with a unique index.
223 // Add this to eqClassBase to avoid equality with unique IDs.
224 for (size_t i = begin; i < mid; ++i)
225 sections[i]->eqClass[next] = eqClassBase + mid;
227 // If we created a group, we need to iterate the main loop again.
228 if (mid != end)
229 repeat = true;
231 begin = mid;
235 // Compare two lists of relocations.
236 template <class ELFT>
237 template <class RelTy>
238 bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
239 const InputSection *secB, ArrayRef<RelTy> rb) {
240 if (ra.size() != rb.size())
241 return false;
242 for (size_t i = 0; i < ra.size(); ++i) {
243 if (ra[i].r_offset != rb[i].r_offset ||
244 ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
245 return false;
247 uint64_t addA = getAddend<ELFT>(ra[i]);
248 uint64_t addB = getAddend<ELFT>(rb[i]);
250 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
251 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
252 if (&sa == &sb) {
253 if (addA == addB)
254 continue;
255 return false;
258 auto *da = dyn_cast<Defined>(&sa);
259 auto *db = dyn_cast<Defined>(&sb);
261 // Placeholder symbols generated by linker scripts look the same now but
262 // may have different values later.
263 if (!da || !db || da->scriptDefined || db->scriptDefined)
264 return false;
266 // When comparing a pair of relocations, if they refer to different symbols,
267 // and either symbol is preemptible, the containing sections should be
268 // considered different. This is because even if the sections are identical
269 // in this DSO, they may not be after preemption.
270 if (da->isPreemptible || db->isPreemptible)
271 return false;
273 // Relocations referring to absolute symbols are constant-equal if their
274 // values are equal.
275 if (!da->section && !db->section && da->value + addA == db->value + addB)
276 continue;
277 if (!da->section || !db->section)
278 return false;
280 if (da->section->kind() != db->section->kind())
281 return false;
283 // Relocations referring to InputSections are constant-equal if their
284 // section offsets are equal.
285 if (isa<InputSection>(da->section)) {
286 if (da->value + addA == db->value + addB)
287 continue;
288 return false;
291 // Relocations referring to MergeInputSections are constant-equal if their
292 // offsets in the output section are equal.
293 auto *x = dyn_cast<MergeInputSection>(da->section);
294 if (!x)
295 return false;
296 auto *y = cast<MergeInputSection>(db->section);
297 if (x->getParent() != y->getParent())
298 return false;
300 uint64_t offsetA =
301 sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
302 uint64_t offsetB =
303 sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
304 if (offsetA != offsetB)
305 return false;
308 return true;
311 // Compare "non-moving" part of two InputSections, namely everything
312 // except relocation targets.
313 template <class ELFT>
314 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
315 if (a->flags != b->flags || a->getSize() != b->getSize() ||
316 a->content() != b->content())
317 return false;
319 // If two sections have different output sections, we cannot merge them.
320 assert(a->getParent() && b->getParent());
321 if (a->getParent() != b->getParent())
322 return false;
324 const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
325 const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
326 return ra.areRelocsRel() || rb.areRelocsRel()
327 ? constantEq(a, ra.rels, b, rb.rels)
328 : constantEq(a, ra.relas, b, rb.relas);
331 // Compare two lists of relocations. Returns true if all pairs of
332 // relocations point to the same section in terms of ICF.
333 template <class ELFT>
334 template <class RelTy>
335 bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
336 const InputSection *secB, ArrayRef<RelTy> rb) {
337 assert(ra.size() == rb.size());
339 for (size_t i = 0; i < ra.size(); ++i) {
340 // The two sections must be identical.
341 Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
342 Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
343 if (&sa == &sb)
344 continue;
346 auto *da = cast<Defined>(&sa);
347 auto *db = cast<Defined>(&sb);
349 // We already dealt with absolute and non-InputSection symbols in
350 // constantEq, and for InputSections we have already checked everything
351 // except the equivalence class.
352 if (!da->section)
353 continue;
354 auto *x = dyn_cast<InputSection>(da->section);
355 if (!x)
356 continue;
357 auto *y = cast<InputSection>(db->section);
359 // Sections that are in the special equivalence class 0, can never be the
360 // same in terms of the equivalence class.
361 if (x->eqClass[current] == 0)
362 return false;
363 if (x->eqClass[current] != y->eqClass[current])
364 return false;
367 return true;
370 // Compare "moving" part of two InputSections, namely relocation targets.
371 template <class ELFT>
372 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
373 const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
374 const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
375 return ra.areRelocsRel() || rb.areRelocsRel()
376 ? variableEq(a, ra.rels, b, rb.rels)
377 : variableEq(a, ra.relas, b, rb.relas);
380 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
381 uint32_t eqClass = sections[begin]->eqClass[current];
382 for (size_t i = begin + 1; i < end; ++i)
383 if (eqClass != sections[i]->eqClass[current])
384 return i;
385 return end;
388 // Sections in the same equivalence class are contiguous in Sections
389 // vector. Therefore, Sections vector can be considered as contiguous
390 // groups of sections, grouped by the class.
392 // This function calls Fn on every group within [Begin, End).
393 template <class ELFT>
394 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
395 llvm::function_ref<void(size_t, size_t)> fn) {
396 while (begin < end) {
397 size_t mid = findBoundary(begin, end);
398 fn(begin, mid);
399 begin = mid;
403 // Call Fn on each equivalence class.
404 template <class ELFT>
405 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
406 // If threading is disabled or the number of sections are
407 // too small to use threading, call Fn sequentially.
408 if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
409 forEachClassRange(0, sections.size(), fn);
410 ++cnt;
411 return;
414 current = cnt % 2;
415 next = (cnt + 1) % 2;
417 // Shard into non-overlapping intervals, and call Fn in parallel.
418 // The sharding must be completed before any calls to Fn are made
419 // so that Fn can modify the Chunks in its shard without causing data
420 // races.
421 const size_t numShards = 256;
422 size_t step = sections.size() / numShards;
423 size_t boundaries[numShards + 1];
424 boundaries[0] = 0;
425 boundaries[numShards] = sections.size();
427 parallelFor(1, numShards, [&](size_t i) {
428 boundaries[i] = findBoundary((i - 1) * step, sections.size());
431 parallelFor(1, numShards + 1, [&](size_t i) {
432 if (boundaries[i - 1] < boundaries[i])
433 forEachClassRange(boundaries[i - 1], boundaries[i], fn);
435 ++cnt;
438 // Combine the hashes of the sections referenced by the given section into its
439 // hash.
440 template <class ELFT, class RelTy>
441 static void combineRelocHashes(unsigned cnt, InputSection *isec,
442 ArrayRef<RelTy> rels) {
443 uint32_t hash = isec->eqClass[cnt % 2];
444 for (RelTy rel : rels) {
445 Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
446 if (auto *d = dyn_cast<Defined>(&s))
447 if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
448 hash += relSec->eqClass[cnt % 2];
450 // Set MSB to 1 to avoid collisions with unique IDs.
451 isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
454 static void print(const Twine &s) {
455 if (config->printIcfSections)
456 message(s);
459 // The main function of ICF.
460 template <class ELFT> void ICF<ELFT>::run() {
461 // Compute isPreemptible early. We may add more symbols later, so this loop
462 // cannot be merged with the later computeIsPreemptible() pass which is used
463 // by scanRelocations().
464 if (config->hasDynSymTab)
465 for (Symbol *sym : symtab.getSymbols())
466 sym->isPreemptible = computeIsPreemptible(*sym);
468 // Two text sections may have identical content and relocations but different
469 // LSDA, e.g. the two functions may have catch blocks of different types. If a
470 // text section is referenced by a .eh_frame FDE with LSDA, it is not
471 // eligible. This is implemented by iterating over CIE/FDE and setting
472 // eqClass[0] to the referenced text section from a live FDE.
474 // If two .gcc_except_table have identical semantics (usually identical
475 // content with PC-relative encoding), we will lose folding opportunity.
476 uint32_t uniqueId = 0;
477 for (Partition &part : partitions)
478 part.ehFrame->iterateFDEWithLSDA<ELFT>(
479 [&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; });
481 // Collect sections to merge.
482 for (InputSectionBase *sec : ctx.inputSections) {
483 auto *s = dyn_cast<InputSection>(sec);
484 if (s && s->eqClass[0] == 0) {
485 if (isEligible(s))
486 sections.push_back(s);
487 else
488 // Ineligible sections are assigned unique IDs, i.e. each section
489 // belongs to an equivalence class of its own.
490 s->eqClass[0] = s->eqClass[1] = ++uniqueId;
494 // Initially, we use hash values to partition sections.
495 parallelForEach(sections, [&](InputSection *s) {
496 // Set MSB to 1 to avoid collisions with unique IDs.
497 s->eqClass[0] = xxh3_64bits(s->content()) | (1U << 31);
500 // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
501 // reduce the average sizes of equivalence classes, i.e. segregate() which has
502 // a large time complexity will have less work to do.
503 for (unsigned cnt = 0; cnt != 2; ++cnt) {
504 parallelForEach(sections, [&](InputSection *s) {
505 const RelsOrRelas<ELFT> rels = s->template relsOrRelas<ELFT>();
506 if (rels.areRelocsRel())
507 combineRelocHashes<ELFT>(cnt, s, rels.rels);
508 else
509 combineRelocHashes<ELFT>(cnt, s, rels.relas);
513 // From now on, sections in Sections vector are ordered so that sections
514 // in the same equivalence class are consecutive in the vector.
515 llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
516 return a->eqClass[0] < b->eqClass[0];
519 // Compare static contents and assign unique equivalence class IDs for each
520 // static content. Use a base offset for these IDs to ensure no overlap with
521 // the unique IDs already assigned.
522 uint32_t eqClassBase = ++uniqueId;
523 forEachClass([&](size_t begin, size_t end) {
524 segregate(begin, end, eqClassBase, true);
527 // Split groups by comparing relocations until convergence is obtained.
528 do {
529 repeat = false;
530 forEachClass([&](size_t begin, size_t end) {
531 segregate(begin, end, eqClassBase, false);
533 } while (repeat);
535 log("ICF needed " + Twine(cnt) + " iterations");
537 // Merge sections by the equivalence class.
538 forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
539 if (end - begin == 1)
540 return;
541 print("selected section " + toString(sections[begin]));
542 for (size_t i = begin + 1; i < end; ++i) {
543 print(" removing identical section " + toString(sections[i]));
544 sections[begin]->replace(sections[i]);
546 // At this point we know sections merged are fully identical and hence
547 // we want to remove duplicate implicit dependencies such as link order
548 // and relocation sections.
549 for (InputSection *isec : sections[i]->dependentSections)
550 isec->markDead();
554 // Change Defined symbol's section field to the canonical one.
555 auto fold = [](Symbol *sym) {
556 if (auto *d = dyn_cast<Defined>(sym))
557 if (auto *sec = dyn_cast_or_null<InputSection>(d->section))
558 if (sec->repl != d->section) {
559 d->section = sec->repl;
560 d->folded = true;
563 for (Symbol *sym : symtab.getSymbols())
564 fold(sym);
565 parallelForEach(ctx.objectFiles, [&](ELFFileBase *file) {
566 for (Symbol *sym : file->getLocalSymbols())
567 fold(sym);
570 // InputSectionDescription::sections is populated by processSectionCommands().
571 // ICF may fold some input sections assigned to output sections. Remove them.
572 for (SectionCommand *cmd : script->sectionCommands)
573 if (auto *osd = dyn_cast<OutputDesc>(cmd))
574 for (SectionCommand *subCmd : osd->osec.commands)
575 if (auto *isd = dyn_cast<InputSectionDescription>(subCmd))
576 llvm::erase_if(isd->sections,
577 [](InputSection *isec) { return !isec->isLive(); });
580 // ICF entry point function.
581 template <class ELFT> void elf::doIcf() {
582 llvm::TimeTraceScope timeScope("ICF");
583 ICF<ELFT>().run();
586 template void elf::doIcf<ELF32LE>();
587 template void elf::doIcf<ELF32BE>();
588 template void elf::doIcf<ELF64LE>();
589 template void elf::doIcf<ELF64BE>();