1 //===- InputSection.cpp ---------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "InputSection.h"
11 #include "InputFiles.h"
12 #include "OutputSections.h"
13 #include "Relocations.h"
14 #include "SymbolTable.h"
16 #include "SyntheticSections.h"
18 #include "lld/Common/CommonLinkerContext.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Compression.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/xxhash.h"
28 using namespace llvm::ELF
;
29 using namespace llvm::object
;
30 using namespace llvm::support
;
31 using namespace llvm::support::endian
;
32 using namespace llvm::sys
;
34 using namespace lld::elf
;
36 DenseSet
<std::pair
<const Symbol
*, uint64_t>> elf::ppc64noTocRelax
;
38 // Returns a string to construct an error message.
39 std::string
lld::toString(const InputSectionBase
*sec
) {
40 return (toString(sec
->file
) + ":(" + sec
->name
+ ")").str();
44 static ArrayRef
<uint8_t> getSectionContents(ObjFile
<ELFT
> &file
,
45 const typename
ELFT::Shdr
&hdr
) {
46 if (hdr
.sh_type
== SHT_NOBITS
)
47 return ArrayRef
<uint8_t>(nullptr, hdr
.sh_size
);
48 return check(file
.getObj().getSectionContents(hdr
));
51 InputSectionBase::InputSectionBase(InputFile
*file
, uint64_t flags
,
52 uint32_t type
, uint64_t entsize
,
53 uint32_t link
, uint32_t info
,
54 uint32_t addralign
, ArrayRef
<uint8_t> data
,
55 StringRef name
, Kind sectionKind
)
56 : SectionBase(sectionKind
, name
, flags
, entsize
, addralign
, type
, info
,
58 file(file
), content_(data
.data()), size(data
.size()) {
59 // In order to reduce memory allocation, we assume that mergeable
60 // sections are smaller than 4 GiB, which is not an unreasonable
61 // assumption as of 2017.
62 if (sectionKind
== SectionBase::Merge
&& content().size() > UINT32_MAX
)
63 error(toString(this) + ": section too large");
65 // The ELF spec states that a value of 0 means the section has
66 // no alignment constraints.
67 uint32_t v
= std::max
<uint32_t>(addralign
, 1);
68 if (!isPowerOf2_64(v
))
69 fatal(toString(this) + ": sh_addralign is not a power of 2");
72 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
74 if (flags
& SHF_COMPRESSED
)
75 invokeELFT(parseCompressedHeader
,);
78 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
79 // SHF_GROUP is a marker that a section belongs to some comdat group.
80 // That flag doesn't make sense in an executable.
81 static uint64_t getFlags(uint64_t flags
) {
82 flags
&= ~(uint64_t)SHF_INFO_LINK
;
83 if (!config
->relocatable
)
84 flags
&= ~(uint64_t)SHF_GROUP
;
89 InputSectionBase::InputSectionBase(ObjFile
<ELFT
> &file
,
90 const typename
ELFT::Shdr
&hdr
,
91 StringRef name
, Kind sectionKind
)
92 : InputSectionBase(&file
, getFlags(hdr
.sh_flags
), hdr
.sh_type
,
93 hdr
.sh_entsize
, hdr
.sh_link
, hdr
.sh_info
,
94 hdr
.sh_addralign
, getSectionContents(file
, hdr
), name
,
96 // We reject object files having insanely large alignments even though
97 // they are allowed by the spec. I think 4GB is a reasonable limitation.
98 // We might want to relax this in the future.
99 if (hdr
.sh_addralign
> UINT32_MAX
)
100 fatal(toString(&file
) + ": section sh_addralign is too large");
103 size_t InputSectionBase::getSize() const {
104 if (auto *s
= dyn_cast
<SyntheticSection
>(this))
106 return size
- bytesDropped
;
109 template <class ELFT
>
110 static void decompressAux(const InputSectionBase
&sec
, uint8_t *out
,
112 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(sec
.content_
);
113 auto compressed
= ArrayRef
<uint8_t>(sec
.content_
, sec
.compressedSize
)
114 .slice(sizeof(typename
ELFT::Chdr
));
115 if (Error e
= hdr
->ch_type
== ELFCOMPRESS_ZLIB
116 ? compression::zlib::decompress(compressed
, out
, size
)
117 : compression::zstd::decompress(compressed
, out
, size
))
118 fatal(toString(&sec
) +
119 ": decompress failed: " + llvm::toString(std::move(e
)));
122 void InputSectionBase::decompress() const {
123 uint8_t *uncompressedBuf
;
125 static std::mutex mu
;
126 std::lock_guard
<std::mutex
> lock(mu
);
127 uncompressedBuf
= bAlloc().Allocate
<uint8_t>(size
);
130 invokeELFT(decompressAux
, *this, uncompressedBuf
, size
);
131 content_
= uncompressedBuf
;
135 template <class ELFT
> RelsOrRelas
<ELFT
> InputSectionBase::relsOrRelas() const {
138 RelsOrRelas
<ELFT
> ret
;
139 typename
ELFT::Shdr shdr
=
140 cast
<ELFFileBase
>(file
)->getELFShdrs
<ELFT
>()[relSecIdx
];
141 if (shdr
.sh_type
== SHT_REL
) {
142 ret
.rels
= ArrayRef(reinterpret_cast<const typename
ELFT::Rel
*>(
143 file
->mb
.getBufferStart() + shdr
.sh_offset
),
144 shdr
.sh_size
/ sizeof(typename
ELFT::Rel
));
146 assert(shdr
.sh_type
== SHT_RELA
);
147 ret
.relas
= ArrayRef(reinterpret_cast<const typename
ELFT::Rela
*>(
148 file
->mb
.getBufferStart() + shdr
.sh_offset
),
149 shdr
.sh_size
/ sizeof(typename
ELFT::Rela
));
154 uint64_t SectionBase::getOffset(uint64_t offset
) const {
157 auto *os
= cast
<OutputSection
>(this);
158 // For output sections we treat offset -1 as the end of the section.
159 return offset
== uint64_t(-1) ? os
->size
: offset
;
163 return cast
<InputSection
>(this)->outSecOff
+ offset
;
165 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
166 // crtbeginT.o may reference the start of an empty .eh_frame to identify the
167 // start of the output .eh_frame. Just return offset.
169 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
170 // discarded due to GC/ICF. We should compute the output section offset.
171 const EhInputSection
*es
= cast
<EhInputSection
>(this);
172 if (!es
->content().empty())
173 if (InputSection
*isec
= es
->getParent())
174 return isec
->outSecOff
+ es
->getParentOffset(offset
);
178 const MergeInputSection
*ms
= cast
<MergeInputSection
>(this);
179 if (InputSection
*isec
= ms
->getParent())
180 return isec
->outSecOff
+ ms
->getParentOffset(offset
);
181 return ms
->getParentOffset(offset
);
183 llvm_unreachable("invalid section kind");
186 uint64_t SectionBase::getVA(uint64_t offset
) const {
187 const OutputSection
*out
= getOutputSection();
188 return (out
? out
->addr
: 0) + getOffset(offset
);
191 OutputSection
*SectionBase::getOutputSection() {
193 if (auto *isec
= dyn_cast
<InputSection
>(this))
195 else if (auto *ms
= dyn_cast
<MergeInputSection
>(this))
196 sec
= ms
->getParent();
197 else if (auto *eh
= dyn_cast
<EhInputSection
>(this))
198 sec
= eh
->getParent();
200 return cast
<OutputSection
>(this);
201 return sec
? sec
->getParent() : nullptr;
204 // When a section is compressed, `rawData` consists with a header followed
205 // by zlib-compressed data. This function parses a header to initialize
206 // `uncompressedSize` member and remove the header from `rawData`.
207 template <typename ELFT
> void InputSectionBase::parseCompressedHeader() {
208 flags
&= ~(uint64_t)SHF_COMPRESSED
;
211 if (content().size() < sizeof(typename
ELFT::Chdr
)) {
212 error(toString(this) + ": corrupted compressed section");
216 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(content().data());
217 if (hdr
->ch_type
== ELFCOMPRESS_ZLIB
) {
218 if (!compression::zlib::isAvailable())
219 error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is "
220 "not built with zlib support");
221 } else if (hdr
->ch_type
== ELFCOMPRESS_ZSTD
) {
222 if (!compression::zstd::isAvailable())
223 error(toString(this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is "
224 "not built with zstd support");
226 error(toString(this) + ": unsupported compression type (" +
227 Twine(hdr
->ch_type
) + ")");
232 compressedSize
= size
;
234 addralign
= std::max
<uint32_t>(hdr
->ch_addralign
, 1);
237 InputSection
*InputSectionBase::getLinkOrderDep() const {
238 assert(flags
& SHF_LINK_ORDER
);
241 return cast
<InputSection
>(file
->getSections()[link
]);
244 // Find a function symbol that encloses a given location.
245 Defined
*InputSectionBase::getEnclosingFunction(uint64_t offset
) {
246 for (Symbol
*b
: file
->getSymbols())
247 if (Defined
*d
= dyn_cast
<Defined
>(b
))
248 if (d
->section
== this && d
->type
== STT_FUNC
&& d
->value
<= offset
&&
249 offset
< d
->value
+ d
->size
)
254 // Returns an object file location string. Used to construct an error message.
255 std::string
InputSectionBase::getLocation(uint64_t offset
) {
256 std::string secAndOffset
=
257 (name
+ "+0x" + Twine::utohexstr(offset
) + ")").str();
259 // We don't have file for synthetic sections.
261 return (config
->outputFile
+ ":(" + secAndOffset
).str();
263 std::string filename
= toString(file
);
264 if (Defined
*d
= getEnclosingFunction(offset
))
265 return filename
+ ":(function " + toString(*d
) + ": " + secAndOffset
;
267 return filename
+ ":(" + secAndOffset
;
270 // This function is intended to be used for constructing an error message.
271 // The returned message looks like this:
273 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
275 // Returns an empty string if there's no way to get line info.
276 std::string
InputSectionBase::getSrcMsg(const Symbol
&sym
, uint64_t offset
) {
277 return file
->getSrcMsg(sym
, *this, offset
);
280 // Returns a filename string along with an optional section name. This
281 // function is intended to be used for constructing an error
282 // message. The returned message looks like this:
284 // path/to/foo.o:(function bar)
288 // path/to/foo.o:(function bar) in archive path/to/bar.a
289 std::string
InputSectionBase::getObjMsg(uint64_t off
) {
290 std::string filename
= std::string(file
->getName());
293 if (!file
->archiveName
.empty())
294 archive
= (" in archive " + file
->archiveName
).str();
296 // Find a symbol that encloses a given location. getObjMsg may be called
297 // before ObjFile::initSectionsAndLocalSyms where local symbols are
299 for (Symbol
*b
: file
->getSymbols())
300 if (auto *d
= dyn_cast_or_null
<Defined
>(b
))
301 if (d
->section
== this && d
->value
<= off
&& off
< d
->value
+ d
->size
)
302 return filename
+ ":(" + toString(*d
) + ")" + archive
;
304 // If there's no symbol, print out the offset in the section.
305 return (filename
+ ":(" + name
+ "+0x" + utohexstr(off
) + ")" + archive
)
309 InputSection
InputSection::discarded(nullptr, 0, 0, 0, ArrayRef
<uint8_t>(), "");
311 InputSection::InputSection(InputFile
*f
, uint64_t flags
, uint32_t type
,
312 uint32_t addralign
, ArrayRef
<uint8_t> data
,
313 StringRef name
, Kind k
)
314 : InputSectionBase(f
, flags
, type
,
315 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign
, data
,
318 template <class ELFT
>
319 InputSection::InputSection(ObjFile
<ELFT
> &f
, const typename
ELFT::Shdr
&header
,
321 : InputSectionBase(f
, header
, name
, InputSectionBase::Regular
) {}
323 // Copy SHT_GROUP section contents. Used only for the -r option.
324 template <class ELFT
> void InputSection::copyShtGroup(uint8_t *buf
) {
325 // ELFT::Word is the 32-bit integral type in the target endianness.
326 using u32
= typename
ELFT::Word
;
327 ArrayRef
<u32
> from
= getDataAs
<u32
>();
328 auto *to
= reinterpret_cast<u32
*>(buf
);
330 // The first entry is not a section number but a flag.
333 // Adjust section numbers because section numbers in an input object files are
334 // different in the output. We also need to handle combined or discarded
336 ArrayRef
<InputSectionBase
*> sections
= file
->getSections();
337 DenseSet
<uint32_t> seen
;
338 for (uint32_t idx
: from
.slice(1)) {
339 OutputSection
*osec
= sections
[idx
]->getOutputSection();
340 if (osec
&& seen
.insert(osec
->sectionIndex
).second
)
341 *to
++ = osec
->sectionIndex
;
345 InputSectionBase
*InputSection::getRelocatedSection() const {
346 if (!file
|| (type
!= SHT_RELA
&& type
!= SHT_REL
))
348 ArrayRef
<InputSectionBase
*> sections
= file
->getSections();
349 return sections
[info
];
352 template <class ELFT
, class RelTy
>
353 void InputSection::copyRelocations(uint8_t *buf
) {
354 if (config
->relax
&& !config
->relocatable
&& config
->emachine
== EM_RISCV
) {
355 // On RISC-V, relaxation might change relocations: copy from internal ones
356 // that are updated by relaxation.
357 InputSectionBase
*sec
= getRelocatedSection();
358 copyRelocations
<ELFT
, RelTy
>(buf
, llvm::make_range(sec
->relocations
.begin(),
359 sec
->relocations
.end()));
361 // Convert the raw relocations in the input section into Relocation objects
362 // suitable to be used by copyRelocations below.
364 const ObjFile
<ELFT
> &file
;
365 Relocation
operator()(const RelTy
&rel
) const {
366 // RelExpr is not used so set to a dummy value.
367 return Relocation
{R_NONE
, rel
.getType(config
->isMips64EL
), rel
.r_offset
,
368 getAddend
<ELFT
>(rel
), &file
.getRelocTargetSym(rel
)};
372 using RawRels
= ArrayRef
<RelTy
>;
374 llvm::mapped_iterator
<typename
RawRels::iterator
, MapRel
>;
375 auto mapRel
= MapRel
{*getFile
<ELFT
>()};
376 RawRels rawRels
= getDataAs
<RelTy
>();
377 auto rels
= llvm::make_range(MapRelIter(rawRels
.begin(), mapRel
),
378 MapRelIter(rawRels
.end(), mapRel
));
379 copyRelocations
<ELFT
, RelTy
>(buf
, rels
);
383 // This is used for -r and --emit-relocs. We can't use memcpy to copy
384 // relocations because we need to update symbol table offset and section index
385 // for each relocation. So we copy relocations one by one.
386 template <class ELFT
, class RelTy
, class RelIt
>
387 void InputSection::copyRelocations(uint8_t *buf
,
388 llvm::iterator_range
<RelIt
> rels
) {
389 const TargetInfo
&target
= *elf::target
;
390 InputSectionBase
*sec
= getRelocatedSection();
391 (void)sec
->contentMaybeDecompress(); // uncompress if needed
393 for (const Relocation
&rel
: rels
) {
394 RelType type
= rel
.type
;
395 const ObjFile
<ELFT
> *file
= getFile
<ELFT
>();
396 Symbol
&sym
= *rel
.sym
;
398 auto *p
= reinterpret_cast<typename
ELFT::Rela
*>(buf
);
399 buf
+= sizeof(RelTy
);
402 p
->r_addend
= rel
.addend
;
404 // Output section VA is zero for -r, so r_offset is an offset within the
405 // section, but for --emit-relocs it is a virtual address.
406 p
->r_offset
= sec
->getVA(rel
.offset
);
407 p
->setSymbolAndType(in
.symTab
->getSymbolIndex(&sym
), type
,
410 if (sym
.type
== STT_SECTION
) {
411 // We combine multiple section symbols into only one per
412 // section. This means we have to update the addend. That is
413 // trivial for Elf_Rela, but for Elf_Rel we have to write to the
414 // section data. We do that by adding to the Relocation vector.
416 // .eh_frame is horribly special and can reference discarded sections. To
417 // avoid having to parse and recreate .eh_frame, we just replace any
418 // relocation in it pointing to discarded sections with R_*_NONE, which
419 // hopefully creates a frame that is ignored at runtime. Also, don't warn
420 // on .gcc_except_table and debug sections.
422 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
423 auto *d
= dyn_cast
<Defined
>(&sym
);
425 if (!isDebugSection(*sec
) && sec
->name
!= ".eh_frame" &&
426 sec
->name
!= ".gcc_except_table" && sec
->name
!= ".got2" &&
427 sec
->name
!= ".toc") {
428 uint32_t secIdx
= cast
<Undefined
>(sym
).discardedSecIdx
;
429 Elf_Shdr_Impl
<ELFT
> sec
= file
->template getELFShdrs
<ELFT
>()[secIdx
];
430 warn("relocation refers to a discarded section: " +
431 CHECK(file
->getObj().getSectionName(sec
), file
) +
432 "\n>>> referenced by " + getObjMsg(p
->r_offset
));
434 p
->setSymbolAndType(0, 0, false);
437 SectionBase
*section
= d
->section
;
438 assert(section
->isLive());
440 int64_t addend
= rel
.addend
;
441 const uint8_t *bufLoc
= sec
->content().begin() + rel
.offset
;
443 addend
= target
.getImplicitAddend(bufLoc
, type
);
445 if (config
->emachine
== EM_MIPS
&&
446 target
.getRelExpr(type
, sym
, bufLoc
) == R_MIPS_GOTREL
) {
447 // Some MIPS relocations depend on "gp" value. By default,
448 // this value has 0x7ff0 offset from a .got section. But
449 // relocatable files produced by a compiler or a linker
450 // might redefine this default value and we must use it
451 // for a calculation of the relocation result. When we
452 // generate EXE or DSO it's trivial. Generating a relocatable
453 // output is more difficult case because the linker does
454 // not calculate relocations in this mode and loses
455 // individual "gp" values used by each input object file.
456 // As a workaround we add the "gp" value to the relocation
457 // addend and save it back to the file.
458 addend
+= sec
->getFile
<ELFT
>()->mipsGp0
;
462 p
->r_addend
= sym
.getVA(addend
) - section
->getOutputSection()->addr
;
463 // For SHF_ALLOC sections relocated by REL, append a relocation to
464 // sec->relocations so that relocateAlloc transitively called by
465 // writeSections will update the implicit addend. Non-SHF_ALLOC sections
466 // utilize relocateNonAlloc to process raw relocations and do not need
467 // this sec->relocations change.
468 else if (config
->relocatable
&& (sec
->flags
& SHF_ALLOC
) &&
469 type
!= target
.noneRel
)
470 sec
->addReloc({R_ABS
, type
, rel
.offset
, addend
, &sym
});
471 } else if (config
->emachine
== EM_PPC
&& type
== R_PPC_PLTREL24
&&
472 p
->r_addend
>= 0x8000 && sec
->file
->ppc32Got2
) {
473 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
474 // indicates that r30 is relative to the input section .got2
475 // (r_addend>=0x8000), after linking, r30 should be relative to the output
476 // section .got2 . To compensate for the shift, adjust r_addend by
477 // ppc32Got->outSecOff.
478 p
->r_addend
+= sec
->file
->ppc32Got2
->outSecOff
;
483 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
484 // references specially. The general rule is that the value of the symbol in
485 // this context is the address of the place P. A further special case is that
486 // branch relocations to an undefined weak reference resolve to the next
488 static uint32_t getARMUndefinedRelativeWeakVA(RelType type
, uint32_t a
,
491 // Unresolved branch relocations to weak references resolve to next
492 // instruction, this will be either 2 or 4 bytes on from P.
493 case R_ARM_THM_JUMP8
:
494 case R_ARM_THM_JUMP11
:
501 case R_ARM_THM_JUMP19
:
502 case R_ARM_THM_JUMP24
:
505 // We don't want an interworking BLX to ARM
507 // Unresolved non branch pc-relative relocations
508 // R_ARM_TARGET2 which can be resolved relatively is not present as it never
509 // targets a weak-reference.
510 case R_ARM_MOVW_PREL_NC
:
511 case R_ARM_MOVT_PREL
:
513 case R_ARM_THM_ALU_PREL_11_0
:
514 case R_ARM_THM_MOVW_PREL_NC
:
515 case R_ARM_THM_MOVT_PREL
:
518 // p + a is unrepresentable as negative immediates can't be encoded.
522 llvm_unreachable("ARM pc-relative relocation expected\n");
525 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
526 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type
, uint64_t p
) {
528 // Unresolved branch relocations to weak references resolve to next
529 // instruction, this is 4 bytes on from P.
530 case R_AARCH64_CALL26
:
531 case R_AARCH64_CONDBR19
:
532 case R_AARCH64_JUMP26
:
533 case R_AARCH64_TSTBR14
:
535 // Unresolved non branch pc-relative relocations
536 case R_AARCH64_PREL16
:
537 case R_AARCH64_PREL32
:
538 case R_AARCH64_PREL64
:
539 case R_AARCH64_ADR_PREL_LO21
:
540 case R_AARCH64_LD_PREL_LO19
:
541 case R_AARCH64_PLT32
:
544 llvm_unreachable("AArch64 pc-relative relocation expected\n");
547 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type
, uint64_t p
) {
552 case R_RISCV_CALL_PLT
:
553 case R_RISCV_RVC_BRANCH
:
554 case R_RISCV_RVC_JUMP
:
562 // ARM SBREL relocations are of the form S + A - B where B is the static base
563 // The ARM ABI defines base to be "addressing origin of the output segment
564 // defining the symbol S". We defined the "addressing origin"/static base to be
565 // the base of the PT_LOAD segment containing the Sym.
566 // The procedure call standard only defines a Read Write Position Independent
567 // RWPI variant so in practice we should expect the static base to be the base
568 // of the RW segment.
569 static uint64_t getARMStaticBase(const Symbol
&sym
) {
570 OutputSection
*os
= sym
.getOutputSection();
571 if (!os
|| !os
->ptLoad
|| !os
->ptLoad
->firstSec
)
572 fatal("SBREL relocation to " + sym
.getName() + " without static base");
573 return os
->ptLoad
->firstSec
->addr
;
576 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
577 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
578 // is calculated using PCREL_HI20's symbol.
580 // This function returns the R_RISCV_PCREL_HI20 relocation from
581 // R_RISCV_PCREL_LO12's symbol and addend.
582 static Relocation
*getRISCVPCRelHi20(const Symbol
*sym
, uint64_t addend
) {
583 const Defined
*d
= cast
<Defined
>(sym
);
585 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
589 InputSection
*isec
= cast
<InputSection
>(d
->section
);
592 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
593 isec
->getObjMsg(d
->value
) + " is ignored");
595 // Relocations are sorted by offset, so we can use std::equal_range to do
600 std::equal_range(isec
->relocs().begin(), isec
->relocs().end(), r
,
601 [](const Relocation
&lhs
, const Relocation
&rhs
) {
602 return lhs
.offset
< rhs
.offset
;
605 for (auto it
= range
.first
; it
!= range
.second
; ++it
)
606 if (it
->type
== R_RISCV_PCREL_HI20
|| it
->type
== R_RISCV_GOT_HI20
||
607 it
->type
== R_RISCV_TLS_GD_HI20
|| it
->type
== R_RISCV_TLS_GOT_HI20
)
610 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " +
611 isec
->getObjMsg(d
->value
) +
612 " without an associated R_RISCV_PCREL_HI20 relocation");
616 // A TLS symbol's virtual address is relative to the TLS segment. Add a
617 // target-specific adjustment to produce a thread-pointer-relative offset.
618 static int64_t getTlsTpOffset(const Symbol
&s
) {
619 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
620 if (&s
== ElfSym::tlsModuleBase
)
623 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
624 // while most others use Variant 1. At run time TP will be aligned to p_align.
626 // Variant 1. TP will be followed by an optional gap (which is the size of 2
627 // pointers on ARM/AArch64, 0 on other targets), followed by alignment
628 // padding, then the static TLS blocks. The alignment padding is added so that
629 // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
631 // Variant 2. Static TLS blocks, followed by alignment padding are placed
632 // before TP. The alignment padding is added so that (TP - padding -
633 // p_memsz) is congruent to p_vaddr modulo p_align.
634 PhdrEntry
*tls
= Out::tlsPhdr
;
635 switch (config
->emachine
) {
639 return s
.getVA(0) + config
->wordsize
* 2 +
640 ((tls
->p_vaddr
- config
->wordsize
* 2) & (tls
->p_align
- 1));
644 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
645 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
646 // data and 0xf000 of the program's TLS segment.
647 return s
.getVA(0) + (tls
->p_vaddr
& (tls
->p_align
- 1)) - 0x7000;
650 return s
.getVA(0) + (tls
->p_vaddr
& (tls
->p_align
- 1));
657 return s
.getVA(0) - tls
->p_memsz
-
658 ((-tls
->p_vaddr
- tls
->p_memsz
) & (tls
->p_align
- 1));
660 llvm_unreachable("unhandled Config->EMachine");
664 uint64_t InputSectionBase::getRelocTargetVA(const InputFile
*file
, RelType type
,
665 int64_t a
, uint64_t p
,
666 const Symbol
&sym
, RelExpr expr
) {
670 case R_RELAX_TLS_LD_TO_LE_ABS
:
671 case R_RELAX_GOT_PC_NOPIC
:
679 return sym
.getVA(a
) - getARMStaticBase(sym
);
681 case R_RELAX_TLS_GD_TO_IE_ABS
:
682 return sym
.getGotVA() + a
;
683 case R_LOONGARCH_GOT
:
684 // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc type
685 // for their page offsets. The arithmetics are different in the TLS case
686 // so we have to duplicate some logic here.
687 if (sym
.hasFlag(NEEDS_TLSGD
) && type
!= R_LARCH_TLS_IE_PC_LO12
)
688 // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value.
689 return in
.got
->getGlobalDynAddr(sym
) + a
;
690 return getRelocTargetVA(file
, type
, a
, p
, sym
, R_GOT
);
692 return in
.got
->getVA() + a
- p
;
693 case R_GOTPLTONLY_PC
:
694 return in
.gotPlt
->getVA() + a
- p
;
696 case R_PPC64_RELAX_TOC
:
697 return sym
.getVA(a
) - in
.got
->getVA();
699 return sym
.getVA(a
) - in
.gotPlt
->getVA();
701 case R_RELAX_TLS_GD_TO_IE_GOTPLT
:
702 return sym
.getGotVA() + a
- in
.gotPlt
->getVA();
703 case R_TLSLD_GOT_OFF
:
705 case R_RELAX_TLS_GD_TO_IE_GOT_OFF
:
706 return sym
.getGotOffset() + a
;
707 case R_AARCH64_GOT_PAGE_PC
:
708 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC
:
709 return getAArch64Page(sym
.getGotVA() + a
) - getAArch64Page(p
);
710 case R_AARCH64_GOT_PAGE
:
711 return sym
.getGotVA() + a
- getAArch64Page(in
.got
->getVA());
713 case R_RELAX_TLS_GD_TO_IE
:
714 return sym
.getGotVA() + a
- p
;
715 case R_LOONGARCH_GOT_PAGE_PC
:
716 if (sym
.hasFlag(NEEDS_TLSGD
))
717 return getLoongArchPageDelta(in
.got
->getGlobalDynAddr(sym
) + a
, p
);
718 return getLoongArchPageDelta(sym
.getGotVA() + a
, p
);
720 return sym
.getVA(a
) - in
.mipsGot
->getGp(file
);
722 return in
.mipsGot
->getGp(file
) + a
;
723 case R_MIPS_GOT_GP_PC
: {
724 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
725 // is _gp_disp symbol. In that case we should use the following
726 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
727 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
728 // microMIPS variants of these relocations use slightly different
729 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
730 // to correctly handle less-significant bit of the microMIPS symbol.
731 uint64_t v
= in
.mipsGot
->getGp(file
) + a
- p
;
732 if (type
== R_MIPS_LO16
|| type
== R_MICROMIPS_LO16
)
734 if (type
== R_MICROMIPS_LO16
|| type
== R_MICROMIPS_HI16
)
738 case R_MIPS_GOT_LOCAL_PAGE
:
739 // If relocation against MIPS local symbol requires GOT entry, this entry
740 // should be initialized by 'page address'. This address is high 16-bits
741 // of sum the symbol's value and the addend.
742 return in
.mipsGot
->getVA() + in
.mipsGot
->getPageEntryOffset(file
, sym
, a
) -
743 in
.mipsGot
->getGp(file
);
745 case R_MIPS_GOT_OFF32
:
746 // In case of MIPS if a GOT relocation has non-zero addend this addend
747 // should be applied to the GOT entry content not to the GOT entry offset.
748 // That is why we use separate expression type.
749 return in
.mipsGot
->getVA() + in
.mipsGot
->getSymEntryOffset(file
, sym
, a
) -
750 in
.mipsGot
->getGp(file
);
752 return in
.mipsGot
->getVA() + in
.mipsGot
->getGlobalDynOffset(file
, sym
) -
753 in
.mipsGot
->getGp(file
);
755 return in
.mipsGot
->getVA() + in
.mipsGot
->getTlsIndexOffset(file
) -
756 in
.mipsGot
->getGp(file
);
757 case R_AARCH64_PAGE_PC
: {
758 uint64_t val
= sym
.isUndefWeak() ? p
+ a
: sym
.getVA(a
);
759 return getAArch64Page(val
) - getAArch64Page(p
);
761 case R_RISCV_PC_INDIRECT
: {
762 if (const Relocation
*hiRel
= getRISCVPCRelHi20(&sym
, a
))
763 return getRelocTargetVA(file
, hiRel
->type
, hiRel
->addend
, sym
.getVA(),
764 *hiRel
->sym
, hiRel
->expr
);
767 case R_LOONGARCH_PAGE_PC
:
768 return getLoongArchPageDelta(sym
.getVA(a
), p
);
772 if (expr
== R_ARM_PCA
)
773 // Some PC relative ARM (Thumb) relocations align down the place.
775 if (sym
.isUndefined()) {
776 // On ARM and AArch64 a branch to an undefined weak resolves to the next
777 // instruction, otherwise the place. On RISC-V, resolve an undefined weak
778 // to the same instruction to cause an infinite loop (making the user
779 // aware of the issue) while ensuring no overflow.
780 // Note: if the symbol is hidden, its binding has been converted to local,
781 // so we just check isUndefined() here.
782 if (config
->emachine
== EM_ARM
)
783 dest
= getARMUndefinedRelativeWeakVA(type
, a
, p
);
784 else if (config
->emachine
== EM_AARCH64
)
785 dest
= getAArch64UndefinedRelativeWeakVA(type
, p
) + a
;
786 else if (config
->emachine
== EM_PPC
)
788 else if (config
->emachine
== EM_RISCV
)
789 dest
= getRISCVUndefinedRelativeWeakVA(type
, p
) + a
;
798 return sym
.getPltVA() + a
;
800 case R_PPC64_CALL_PLT
:
801 return sym
.getPltVA() + a
- p
;
802 case R_LOONGARCH_PLT_PAGE_PC
:
803 return getLoongArchPageDelta(sym
.getPltVA() + a
, p
);
805 return sym
.getPltVA() + a
- in
.gotPlt
->getVA();
807 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
808 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
809 // target VA computation.
810 return sym
.getPltVA() - p
;
812 uint64_t symVA
= sym
.getVA(a
);
813 // If we have an undefined weak symbol, we might get here with a symbol
814 // address of zero. That could overflow, but the code must be unreachable,
815 // so don't bother doing anything at all.
819 // PPC64 V2 ABI describes two entry points to a function. The global entry
820 // point is used for calls where the caller and callee (may) have different
821 // TOC base pointers and r2 needs to be modified to hold the TOC base for
822 // the callee. For local calls the caller and callee share the same
823 // TOC base and so the TOC pointer initialization code should be skipped by
824 // branching to the local entry point.
825 return symVA
- p
+ getPPC64GlobalEntryToLocalEntryOffset(sym
.stOther
);
827 case R_PPC64_TOCBASE
:
828 return getPPC64TocBase() + a
;
830 case R_PPC64_RELAX_GOT_PC
:
831 return sym
.getVA(a
) - p
;
832 case R_RELAX_TLS_GD_TO_LE
:
833 case R_RELAX_TLS_IE_TO_LE
:
834 case R_RELAX_TLS_LD_TO_LE
:
836 // It is not very clear what to return if the symbol is undefined. With
837 // --noinhibit-exec, even a non-weak undefined reference may reach here.
838 // Just return A, which matches R_ABS, and the behavior of some dynamic
840 if (sym
.isUndefined())
842 return getTlsTpOffset(sym
) + a
;
843 case R_RELAX_TLS_GD_TO_LE_NEG
:
845 if (sym
.isUndefined())
847 return -getTlsTpOffset(sym
) + a
;
849 return sym
.getSize() + a
;
851 return in
.got
->getTlsDescAddr(sym
) + a
;
853 return in
.got
->getTlsDescAddr(sym
) + a
- p
;
854 case R_TLSDESC_GOTPLT
:
855 return in
.got
->getTlsDescAddr(sym
) + a
- in
.gotPlt
->getVA();
856 case R_AARCH64_TLSDESC_PAGE
:
857 return getAArch64Page(in
.got
->getTlsDescAddr(sym
) + a
) - getAArch64Page(p
);
859 return in
.got
->getGlobalDynOffset(sym
) + a
;
861 return in
.got
->getGlobalDynAddr(sym
) + a
- in
.gotPlt
->getVA();
863 return in
.got
->getGlobalDynAddr(sym
) + a
- p
;
864 case R_LOONGARCH_TLSGD_PAGE_PC
:
865 return getLoongArchPageDelta(in
.got
->getGlobalDynAddr(sym
) + a
, p
);
867 return in
.got
->getVA() + in
.got
->getTlsIndexOff() + a
- in
.gotPlt
->getVA();
869 return in
.got
->getTlsIndexOff() + a
;
871 return in
.got
->getTlsIndexVA() + a
- p
;
873 llvm_unreachable("invalid expression");
877 // This function applies relocations to sections without SHF_ALLOC bit.
878 // Such sections are never mapped to memory at runtime. Debug sections are
879 // an example. Relocations in non-alloc sections are much easier to
880 // handle than in allocated sections because it will never need complex
881 // treatment such as GOT or PLT (because at runtime no one refers them).
882 // So, we handle relocations for non-alloc sections directly in this
883 // function as a performance optimization.
884 template <class ELFT
, class RelTy
>
885 void InputSection::relocateNonAlloc(uint8_t *buf
, ArrayRef
<RelTy
> rels
) {
886 const unsigned bits
= sizeof(typename
ELFT::uint
) * 8;
887 const TargetInfo
&target
= *elf::target
;
888 const bool isDebug
= isDebugSection(*this);
889 const bool isDebugLocOrRanges
=
890 isDebug
&& (name
== ".debug_loc" || name
== ".debug_ranges");
891 const bool isDebugLine
= isDebug
&& name
== ".debug_line";
892 std::optional
<uint64_t> tombstone
;
893 for (const auto &patAndValue
: llvm::reverse(config
->deadRelocInNonAlloc
))
894 if (patAndValue
.first
.match(this->name
)) {
895 tombstone
= patAndValue
.second
;
899 for (const RelTy
&rel
: rels
) {
900 RelType type
= rel
.getType(config
->isMips64EL
);
902 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
903 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
904 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
905 // need to keep this bug-compatible code for a while.
906 if (config
->emachine
== EM_386
&& type
== R_386_GOTPC
)
909 uint64_t offset
= rel
.r_offset
;
910 uint8_t *bufLoc
= buf
+ offset
;
911 int64_t addend
= getAddend
<ELFT
>(rel
);
913 addend
+= target
.getImplicitAddend(bufLoc
, type
);
915 Symbol
&sym
= getFile
<ELFT
>()->getRelocTargetSym(rel
);
916 RelExpr expr
= target
.getRelExpr(type
, sym
, bufLoc
);
921 (isDebug
&& (type
== target
.symbolicRel
|| expr
== R_DTPREL
))) {
922 // Resolve relocations in .debug_* referencing (discarded symbols or ICF
923 // folded section symbols) to a tombstone value. Resolving to addend is
924 // unsatisfactory because the result address range may collide with a
925 // valid range of low address, or leave multiple CUs claiming ownership of
926 // the same range of code, which may confuse consumers.
928 // To address the problems, we use -1 as a tombstone value for most
929 // .debug_* sections. We have to ignore the addend because we don't want
930 // to resolve an address attribute (which may have a non-zero addend) to
931 // -1+addend (wrap around to a low address).
933 // R_DTPREL type relocations represent an offset into the dynamic thread
934 // vector. The computed value is st_value plus a non-negative offset.
935 // Negative values are invalid, so -1 can be used as the tombstone value.
937 // If the referenced symbol is discarded (made Undefined), or the
938 // section defining the referenced symbol is garbage collected,
939 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded
940 // case. However, resolving a relocation in .debug_line to -1 would stop
941 // debugger users from setting breakpoints on the folded-in function, so
942 // exclude .debug_line.
944 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
945 // (base address selection entry), use 1 (which is used by GNU ld for
948 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
949 // value. Enable -1 in a future release.
950 auto *ds
= dyn_cast
<Defined
>(&sym
);
951 if (!sym
.getOutputSection() || (ds
&& ds
->folded
&& !isDebugLine
)) {
952 // If -z dead-reloc-in-nonalloc= is specified, respect it.
953 const uint64_t value
= tombstone
? SignExtend64
<bits
>(*tombstone
)
954 : (isDebugLocOrRanges
? 1 : 0);
955 target
.relocateNoSym(bufLoc
, type
, value
);
960 // For a relocatable link, content relocated by RELA remains unchanged and
961 // we can stop here, while content relocated by REL referencing STT_SECTION
962 // needs updating implicit addends.
963 if (config
->relocatable
&& (RelTy::IsRela
|| sym
.type
!= STT_SECTION
))
966 if (expr
== R_SIZE
) {
967 target
.relocateNoSym(bufLoc
, type
,
968 SignExtend64
<bits
>(sym
.getSize() + addend
));
972 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
974 if (expr
== R_ABS
|| expr
== R_DTPREL
|| expr
== R_GOTPLTREL
||
975 expr
== R_RISCV_ADD
) {
976 target
.relocateNoSym(bufLoc
, type
, SignExtend64
<bits
>(sym
.getVA(addend
)));
980 std::string msg
= getLocation(offset
) + ": has non-ABS relocation " +
981 toString(type
) + " against symbol '" + toString(sym
) +
988 // If the control reaches here, we found a PC-relative relocation in a
989 // non-ALLOC section. Since non-ALLOC section is not loaded into memory
990 // at runtime, the notion of PC-relative doesn't make sense here. So,
991 // this is a usage error. However, GNU linkers historically accept such
992 // relocations without any errors and relocate them as if they were at
993 // address 0. For bug-compatibility, we accept them with warnings. We
994 // know Steel Bank Common Lisp as of 2018 have this bug.
996 // RELA -r stopped earlier and does not get the warning. Suppress the
997 // warning for REL -r as well
998 // (https://github.com/ClangBuiltLinux/linux/issues/1937).
999 if (RelTy::IsRela
|| !config
->relocatable
)
1001 target
.relocateNoSym(
1003 SignExtend64
<bits
>(sym
.getVA(addend
- offset
- outSecOff
)));
1007 template <class ELFT
>
1008 void InputSectionBase::relocate(uint8_t *buf
, uint8_t *bufEnd
) {
1009 if ((flags
& SHF_EXECINSTR
) && LLVM_UNLIKELY(getFile
<ELFT
>()->splitStack
))
1010 adjustSplitStackFunctionPrologues
<ELFT
>(buf
, bufEnd
);
1012 if (flags
& SHF_ALLOC
) {
1013 target
->relocateAlloc(*this, buf
);
1017 auto *sec
= cast
<InputSection
>(this);
1018 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable
1019 // locations with tombstone values.
1020 const RelsOrRelas
<ELFT
> rels
= sec
->template relsOrRelas
<ELFT
>();
1021 if (rels
.areRelocsRel())
1022 sec
->relocateNonAlloc
<ELFT
>(buf
, rels
.rels
);
1024 sec
->relocateNonAlloc
<ELFT
>(buf
, rels
.relas
);
1027 // For each function-defining prologue, find any calls to __morestack,
1028 // and replace them with calls to __morestack_non_split.
1029 static void switchMorestackCallsToMorestackNonSplit(
1030 DenseSet
<Defined
*> &prologues
,
1031 SmallVector
<Relocation
*, 0> &morestackCalls
) {
1033 // If the target adjusted a function's prologue, all calls to
1034 // __morestack inside that function should be switched to
1035 // __morestack_non_split.
1036 Symbol
*moreStackNonSplit
= symtab
.find("__morestack_non_split");
1037 if (!moreStackNonSplit
) {
1038 error("mixing split-stack objects requires a definition of "
1039 "__morestack_non_split");
1043 // Sort both collections to compare addresses efficiently.
1044 llvm::sort(morestackCalls
, [](const Relocation
*l
, const Relocation
*r
) {
1045 return l
->offset
< r
->offset
;
1047 std::vector
<Defined
*> functions(prologues
.begin(), prologues
.end());
1048 llvm::sort(functions
, [](const Defined
*l
, const Defined
*r
) {
1049 return l
->value
< r
->value
;
1052 auto it
= morestackCalls
.begin();
1053 for (Defined
*f
: functions
) {
1054 // Find the first call to __morestack within the function.
1055 while (it
!= morestackCalls
.end() && (*it
)->offset
< f
->value
)
1057 // Adjust all calls inside the function.
1058 while (it
!= morestackCalls
.end() && (*it
)->offset
< f
->value
+ f
->size
) {
1059 (*it
)->sym
= moreStackNonSplit
;
1065 static bool enclosingPrologueAttempted(uint64_t offset
,
1066 const DenseSet
<Defined
*> &prologues
) {
1067 for (Defined
*f
: prologues
)
1068 if (f
->value
<= offset
&& offset
< f
->value
+ f
->size
)
1073 // If a function compiled for split stack calls a function not
1074 // compiled for split stack, then the caller needs its prologue
1075 // adjusted to ensure that the called function will have enough stack
1076 // available. Find those functions, and adjust their prologues.
1077 template <class ELFT
>
1078 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf
,
1080 DenseSet
<Defined
*> prologues
;
1081 SmallVector
<Relocation
*, 0> morestackCalls
;
1083 for (Relocation
&rel
: relocs()) {
1084 // Ignore calls into the split-stack api.
1085 if (rel
.sym
->getName().starts_with("__morestack")) {
1086 if (rel
.sym
->getName().equals("__morestack"))
1087 morestackCalls
.push_back(&rel
);
1091 // A relocation to non-function isn't relevant. Sometimes
1092 // __morestack is not marked as a function, so this check comes
1093 // after the name check.
1094 if (rel
.sym
->type
!= STT_FUNC
)
1097 // If the callee's-file was compiled with split stack, nothing to do. In
1098 // this context, a "Defined" symbol is one "defined by the binary currently
1099 // being produced". So an "undefined" symbol might be provided by a shared
1100 // library. It is not possible to tell how such symbols were compiled, so be
1102 if (Defined
*d
= dyn_cast
<Defined
>(rel
.sym
))
1103 if (InputSection
*isec
= cast_or_null
<InputSection
>(d
->section
))
1104 if (!isec
|| !isec
->getFile
<ELFT
>() || isec
->getFile
<ELFT
>()->splitStack
)
1107 if (enclosingPrologueAttempted(rel
.offset
, prologues
))
1110 if (Defined
*f
= getEnclosingFunction(rel
.offset
)) {
1111 prologues
.insert(f
);
1112 if (target
->adjustPrologueForCrossSplitStack(buf
+ f
->value
, end
,
1115 if (!getFile
<ELFT
>()->someNoSplitStack
)
1116 error(lld::toString(this) + ": " + f
->getName() +
1117 " (with -fsplit-stack) calls " + rel
.sym
->getName() +
1118 " (without -fsplit-stack), but couldn't adjust its prologue");
1122 if (target
->needsMoreStackNonSplit
)
1123 switchMorestackCallsToMorestackNonSplit(prologues
, morestackCalls
);
1126 template <class ELFT
> void InputSection::writeTo(uint8_t *buf
) {
1127 if (LLVM_UNLIKELY(type
== SHT_NOBITS
))
1129 // If -r or --emit-relocs is given, then an InputSection
1130 // may be a relocation section.
1131 if (LLVM_UNLIKELY(type
== SHT_RELA
)) {
1132 copyRelocations
<ELFT
, typename
ELFT::Rela
>(buf
);
1135 if (LLVM_UNLIKELY(type
== SHT_REL
)) {
1136 copyRelocations
<ELFT
, typename
ELFT::Rel
>(buf
);
1140 // If -r is given, we may have a SHT_GROUP section.
1141 if (LLVM_UNLIKELY(type
== SHT_GROUP
)) {
1142 copyShtGroup
<ELFT
>(buf
);
1146 // If this is a compressed section, uncompress section contents directly
1149 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(content_
);
1150 auto compressed
= ArrayRef
<uint8_t>(content_
, compressedSize
)
1151 .slice(sizeof(typename
ELFT::Chdr
));
1152 size_t size
= this->size
;
1153 if (Error e
= hdr
->ch_type
== ELFCOMPRESS_ZLIB
1154 ? compression::zlib::decompress(compressed
, buf
, size
)
1155 : compression::zstd::decompress(compressed
, buf
, size
))
1156 fatal(toString(this) +
1157 ": decompress failed: " + llvm::toString(std::move(e
)));
1158 uint8_t *bufEnd
= buf
+ size
;
1159 relocate
<ELFT
>(buf
, bufEnd
);
1163 // Copy section contents from source object file to output file
1164 // and then apply relocations.
1165 memcpy(buf
, content().data(), content().size());
1166 relocate
<ELFT
>(buf
, buf
+ content().size());
1169 void InputSection::replace(InputSection
*other
) {
1170 addralign
= std::max(addralign
, other
->addralign
);
1172 // When a section is replaced with another section that was allocated to
1173 // another partition, the replacement section (and its associated sections)
1174 // need to be placed in the main partition so that both partitions will be
1175 // able to access it.
1176 if (partition
!= other
->partition
) {
1178 for (InputSection
*isec
: dependentSections
)
1179 isec
->partition
= 1;
1186 template <class ELFT
>
1187 EhInputSection::EhInputSection(ObjFile
<ELFT
> &f
,
1188 const typename
ELFT::Shdr
&header
,
1190 : InputSectionBase(f
, header
, name
, InputSectionBase::EHFrame
) {}
1192 SyntheticSection
*EhInputSection::getParent() const {
1193 return cast_or_null
<SyntheticSection
>(parent
);
1196 // .eh_frame is a sequence of CIE or FDE records.
1197 // This function splits an input section into records and returns them.
1198 template <class ELFT
> void EhInputSection::split() {
1199 const RelsOrRelas
<ELFT
> rels
= relsOrRelas
<ELFT
>();
1200 // getReloc expects the relocations to be sorted by r_offset. See the comment
1202 if (rels
.areRelocsRel()) {
1203 SmallVector
<typename
ELFT::Rel
, 0> storage
;
1204 split
<ELFT
>(sortRels(rels
.rels
, storage
));
1206 SmallVector
<typename
ELFT::Rela
, 0> storage
;
1207 split
<ELFT
>(sortRels(rels
.relas
, storage
));
1211 template <class ELFT
, class RelTy
>
1212 void EhInputSection::split(ArrayRef
<RelTy
> rels
) {
1213 ArrayRef
<uint8_t> d
= content();
1214 const char *msg
= nullptr;
1216 while (!d
.empty()) {
1218 msg
= "CIE/FDE too small";
1221 uint64_t size
= endian::read32
<ELFT::TargetEndianness
>(d
.data());
1222 if (size
== 0) // ZERO terminator
1224 uint32_t id
= endian::read32
<ELFT::TargetEndianness
>(d
.data() + 4);
1226 if (LLVM_UNLIKELY(size
> d
.size())) {
1227 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
1228 // but we do not support that format yet.
1229 msg
= size
== UINT32_MAX
+ uint64_t(4)
1230 ? "CIE/FDE too large"
1231 : "CIE/FDE ends past the end of the section";
1235 // Find the first relocation that points to [off,off+size). Relocations
1236 // have been sorted by r_offset.
1237 const uint64_t off
= d
.data() - content().data();
1238 while (relI
!= rels
.size() && rels
[relI
].r_offset
< off
)
1240 unsigned firstRel
= -1;
1241 if (relI
!= rels
.size() && rels
[relI
].r_offset
< off
+ size
)
1243 (id
== 0 ? cies
: fdes
).emplace_back(off
, this, size
, firstRel
);
1247 errorOrWarn("corrupted .eh_frame: " + Twine(msg
) + "\n>>> defined in " +
1248 getObjMsg(d
.data() - content().data()));
1251 // Return the offset in an output section for a given input offset.
1252 uint64_t EhInputSection::getParentOffset(uint64_t offset
) const {
1253 auto it
= partition_point(
1254 fdes
, [=](EhSectionPiece p
) { return p
.inputOff
<= offset
; });
1255 if (it
== fdes
.begin() || it
[-1].inputOff
+ it
[-1].size
<= offset
) {
1256 it
= partition_point(
1257 cies
, [=](EhSectionPiece p
) { return p
.inputOff
<= offset
; });
1258 if (it
== cies
.begin()) // invalid piece
1261 if (it
[-1].outputOff
== -1) // invalid piece
1262 return offset
- it
[-1].inputOff
;
1263 return it
[-1].outputOff
+ (offset
- it
[-1].inputOff
);
1266 static size_t findNull(StringRef s
, size_t entSize
) {
1267 for (unsigned i
= 0, n
= s
.size(); i
!= n
; i
+= entSize
) {
1268 const char *b
= s
.begin() + i
;
1269 if (std::all_of(b
, b
+ entSize
, [](char c
) { return c
== 0; }))
1272 llvm_unreachable("");
1275 // Split SHF_STRINGS section. Such section is a sequence of
1276 // null-terminated strings.
1277 void MergeInputSection::splitStrings(StringRef s
, size_t entSize
) {
1278 const bool live
= !(flags
& SHF_ALLOC
) || !config
->gcSections
;
1279 const char *p
= s
.data(), *end
= s
.data() + s
.size();
1280 if (!std::all_of(end
- entSize
, end
, [](char c
) { return c
== 0; }))
1281 fatal(toString(this) + ": string is not null terminated");
1283 // Optimize the common case.
1285 size_t size
= strlen(p
);
1286 pieces
.emplace_back(p
- s
.begin(), xxh3_64bits(StringRef(p
, size
)), live
);
1291 size_t size
= findNull(StringRef(p
, end
- p
), entSize
);
1292 pieces
.emplace_back(p
- s
.begin(), xxh3_64bits(StringRef(p
, size
)), live
);
1293 p
+= size
+ entSize
;
1298 // Split non-SHF_STRINGS section. Such section is a sequence of
1299 // fixed size records.
1300 void MergeInputSection::splitNonStrings(ArrayRef
<uint8_t> data
,
1302 size_t size
= data
.size();
1303 assert((size
% entSize
) == 0);
1304 const bool live
= !(flags
& SHF_ALLOC
) || !config
->gcSections
;
1306 pieces
.resize_for_overwrite(size
/ entSize
);
1307 for (size_t i
= 0, j
= 0; i
!= size
; i
+= entSize
, j
++)
1308 pieces
[j
] = {i
, (uint32_t)xxh3_64bits(data
.slice(i
, entSize
)), live
};
1311 template <class ELFT
>
1312 MergeInputSection::MergeInputSection(ObjFile
<ELFT
> &f
,
1313 const typename
ELFT::Shdr
&header
,
1315 : InputSectionBase(f
, header
, name
, InputSectionBase::Merge
) {}
1317 MergeInputSection::MergeInputSection(uint64_t flags
, uint32_t type
,
1318 uint64_t entsize
, ArrayRef
<uint8_t> data
,
1320 : InputSectionBase(nullptr, flags
, type
, entsize
, /*Link*/ 0, /*Info*/ 0,
1321 /*Alignment*/ entsize
, data
, name
, SectionBase::Merge
) {}
1323 // This function is called after we obtain a complete list of input sections
1324 // that need to be linked. This is responsible to split section contents
1325 // into small chunks for further processing.
1327 // Note that this function is called from parallelForEach. This must be
1328 // thread-safe (i.e. no memory allocation from the pools).
1329 void MergeInputSection::splitIntoPieces() {
1330 assert(pieces
.empty());
1332 if (flags
& SHF_STRINGS
)
1333 splitStrings(toStringRef(contentMaybeDecompress()), entsize
);
1335 splitNonStrings(contentMaybeDecompress(), entsize
);
1338 SectionPiece
&MergeInputSection::getSectionPiece(uint64_t offset
) {
1339 if (content().size() <= offset
)
1340 fatal(toString(this) + ": offset is outside the section");
1341 return partition_point(
1342 pieces
, [=](SectionPiece p
) { return p
.inputOff
<= offset
; })[-1];
1345 // Return the offset in an output section for a given input offset.
1346 uint64_t MergeInputSection::getParentOffset(uint64_t offset
) const {
1347 const SectionPiece
&piece
= getSectionPiece(offset
);
1348 return piece
.outputOff
+ (offset
- piece
.inputOff
);
1351 template InputSection::InputSection(ObjFile
<ELF32LE
> &, const ELF32LE::Shdr
&,
1353 template InputSection::InputSection(ObjFile
<ELF32BE
> &, const ELF32BE::Shdr
&,
1355 template InputSection::InputSection(ObjFile
<ELF64LE
> &, const ELF64LE::Shdr
&,
1357 template InputSection::InputSection(ObjFile
<ELF64BE
> &, const ELF64BE::Shdr
&,
1360 template void InputSection::writeTo
<ELF32LE
>(uint8_t *);
1361 template void InputSection::writeTo
<ELF32BE
>(uint8_t *);
1362 template void InputSection::writeTo
<ELF64LE
>(uint8_t *);
1363 template void InputSection::writeTo
<ELF64BE
>(uint8_t *);
1365 template RelsOrRelas
<ELF32LE
> InputSectionBase::relsOrRelas
<ELF32LE
>() const;
1366 template RelsOrRelas
<ELF32BE
> InputSectionBase::relsOrRelas
<ELF32BE
>() const;
1367 template RelsOrRelas
<ELF64LE
> InputSectionBase::relsOrRelas
<ELF64LE
>() const;
1368 template RelsOrRelas
<ELF64BE
> InputSectionBase::relsOrRelas
<ELF64BE
>() const;
1370 template MergeInputSection::MergeInputSection(ObjFile
<ELF32LE
> &,
1371 const ELF32LE::Shdr
&, StringRef
);
1372 template MergeInputSection::MergeInputSection(ObjFile
<ELF32BE
> &,
1373 const ELF32BE::Shdr
&, StringRef
);
1374 template MergeInputSection::MergeInputSection(ObjFile
<ELF64LE
> &,
1375 const ELF64LE::Shdr
&, StringRef
);
1376 template MergeInputSection::MergeInputSection(ObjFile
<ELF64BE
> &,
1377 const ELF64BE::Shdr
&, StringRef
);
1379 template EhInputSection::EhInputSection(ObjFile
<ELF32LE
> &,
1380 const ELF32LE::Shdr
&, StringRef
);
1381 template EhInputSection::EhInputSection(ObjFile
<ELF32BE
> &,
1382 const ELF32BE::Shdr
&, StringRef
);
1383 template EhInputSection::EhInputSection(ObjFile
<ELF64LE
> &,
1384 const ELF64LE::Shdr
&, StringRef
);
1385 template EhInputSection::EhInputSection(ObjFile
<ELF64BE
> &,
1386 const ELF64BE::Shdr
&, StringRef
);
1388 template void EhInputSection::split
<ELF32LE
>();
1389 template void EhInputSection::split
<ELF32BE
>();
1390 template void EhInputSection::split
<ELF64LE
>();
1391 template void EhInputSection::split
<ELF64BE
>();