Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / ELF / InputSection.h
blob2b91711abba3d1451665dd0abc03aca8372c3e69
1 //===- InputSection.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_ELF_INPUT_SECTION_H
10 #define LLD_ELF_INPUT_SECTION_H
12 #include "Relocations.h"
13 #include "lld/Common/CommonLinkerContext.h"
14 #include "lld/Common/LLVM.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/ADT/CachedHashString.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/TinyPtrVector.h"
20 #include "llvm/Object/ELF.h"
21 #include "llvm/Support/Compiler.h"
23 namespace lld {
24 namespace elf {
26 class InputFile;
27 class Symbol;
29 class Defined;
30 struct Partition;
31 class SyntheticSection;
32 template <class ELFT> class ObjFile;
33 class OutputSection;
35 LLVM_LIBRARY_VISIBILITY extern std::vector<Partition> partitions;
37 // Returned by InputSectionBase::relsOrRelas. At least one member is empty.
38 template <class ELFT> struct RelsOrRelas {
39 ArrayRef<typename ELFT::Rel> rels;
40 ArrayRef<typename ELFT::Rela> relas;
41 bool areRelocsRel() const { return rels.size(); }
44 // This is the base class of all sections that lld handles. Some are sections in
45 // input files, some are sections in the produced output file and some exist
46 // just as a convenience for implementing special ways of combining some
47 // sections.
48 class SectionBase {
49 public:
50 enum Kind { Regular, Synthetic, EHFrame, Merge, Output };
52 Kind kind() const { return (Kind)sectionKind; }
54 uint8_t sectionKind : 3;
56 // The next two bit fields are only used by InputSectionBase, but we
57 // put them here so the struct packs better.
59 uint8_t bss : 1;
61 // Set for sections that should not be folded by ICF.
62 uint8_t keepUnique : 1;
64 uint8_t partition = 1;
65 uint32_t type;
66 StringRef name;
68 // The 1-indexed partition that this section is assigned to by the garbage
69 // collector, or 0 if this section is dead. Normally there is only one
70 // partition, so this will either be 0 or 1.
71 elf::Partition &getPartition() const;
73 // These corresponds to the fields in Elf_Shdr.
74 uint64_t flags;
75 uint32_t addralign;
76 uint32_t entsize;
77 uint32_t link;
78 uint32_t info;
80 OutputSection *getOutputSection();
81 const OutputSection *getOutputSection() const {
82 return const_cast<SectionBase *>(this)->getOutputSection();
85 // Translate an offset in the input section to an offset in the output
86 // section.
87 uint64_t getOffset(uint64_t offset) const;
89 uint64_t getVA(uint64_t offset = 0) const;
91 bool isLive() const { return partition != 0; }
92 void markLive() { partition = 1; }
93 void markDead() { partition = 0; }
95 protected:
96 constexpr SectionBase(Kind sectionKind, StringRef name, uint64_t flags,
97 uint32_t entsize, uint32_t addralign, uint32_t type,
98 uint32_t info, uint32_t link)
99 : sectionKind(sectionKind), bss(false), keepUnique(false), type(type),
100 name(name), flags(flags), addralign(addralign), entsize(entsize),
101 link(link), info(info) {}
104 struct RISCVRelaxAux;
106 // This corresponds to a section of an input file.
107 class InputSectionBase : public SectionBase {
108 public:
109 template <class ELFT>
110 InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
111 StringRef name, Kind sectionKind);
113 InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
114 uint64_t entsize, uint32_t link, uint32_t info,
115 uint32_t addralign, ArrayRef<uint8_t> data, StringRef name,
116 Kind sectionKind);
118 static bool classof(const SectionBase *s) { return s->kind() != Output; }
120 // The file which contains this section. Its dynamic type is always
121 // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as
122 // its static type.
123 InputFile *file;
125 // Input sections are part of an output section. Special sections
126 // like .eh_frame and merge sections are first combined into a
127 // synthetic section that is then added to an output section. In all
128 // cases this points one level up.
129 SectionBase *parent = nullptr;
131 // Section index of the relocation section if exists.
132 uint32_t relSecIdx = 0;
134 template <class ELFT> ObjFile<ELFT> *getFile() const {
135 return cast_or_null<ObjFile<ELFT>>(file);
138 // Used by --optimize-bb-jumps and RISC-V linker relaxation temporarily to
139 // indicate the number of bytes which is not counted in the size. This should
140 // be reset to zero after uses.
141 uint32_t bytesDropped = 0;
143 mutable bool compressed = false;
145 // Whether the section needs to be padded with a NOP filler due to
146 // deleteFallThruJmpInsn.
147 bool nopFiller = false;
149 void drop_back(unsigned num) {
150 assert(bytesDropped + num < 256);
151 bytesDropped += num;
154 void push_back(uint64_t num) {
155 assert(bytesDropped >= num);
156 bytesDropped -= num;
159 mutable const uint8_t *content_;
160 uint64_t size;
162 void trim() {
163 if (bytesDropped) {
164 size -= bytesDropped;
165 bytesDropped = 0;
169 ArrayRef<uint8_t> content() const {
170 return ArrayRef<uint8_t>(content_, size);
172 ArrayRef<uint8_t> contentMaybeDecompress() const {
173 if (compressed)
174 decompress();
175 return content();
178 // The next member in the section group if this section is in a group. This is
179 // used by --gc-sections.
180 InputSectionBase *nextInSectionGroup = nullptr;
182 template <class ELFT> RelsOrRelas<ELFT> relsOrRelas() const;
184 // InputSections that are dependent on us (reverse dependency for GC)
185 llvm::TinyPtrVector<InputSection *> dependentSections;
187 // Returns the size of this section (even if this is a common or BSS.)
188 size_t getSize() const;
190 InputSection *getLinkOrderDep() const;
192 // Get the function symbol that encloses this offset from within the
193 // section.
194 Defined *getEnclosingFunction(uint64_t offset);
196 // Returns a source location string. Used to construct an error message.
197 std::string getLocation(uint64_t offset);
198 std::string getSrcMsg(const Symbol &sym, uint64_t offset);
199 std::string getObjMsg(uint64_t offset);
201 // Each section knows how to relocate itself. These functions apply
202 // relocations, assuming that Buf points to this section's copy in
203 // the mmap'ed output buffer.
204 template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd);
205 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type,
206 int64_t A, uint64_t P, const Symbol &Sym,
207 RelExpr Expr);
209 // The native ELF reloc data type is not very convenient to handle.
210 // So we convert ELF reloc records to our own records in Relocations.cpp.
211 // This vector contains such "cooked" relocations.
212 SmallVector<Relocation, 0> relocations;
214 void addReloc(const Relocation &r) { relocations.push_back(r); }
215 MutableArrayRef<Relocation> relocs() { return relocations; }
216 ArrayRef<Relocation> relocs() const { return relocations; }
218 union {
219 // These are modifiers to jump instructions that are necessary when basic
220 // block sections are enabled. Basic block sections creates opportunities
221 // to relax jump instructions at basic block boundaries after reordering the
222 // basic blocks.
223 JumpInstrMod *jumpInstrMod = nullptr;
225 // Auxiliary information for RISC-V linker relaxation. RISC-V does not use
226 // jumpInstrMod.
227 RISCVRelaxAux *relaxAux;
229 // The compressed content size when `compressed` is true.
230 size_t compressedSize;
233 // A function compiled with -fsplit-stack calling a function
234 // compiled without -fsplit-stack needs its prologue adjusted. Find
235 // such functions and adjust their prologues. This is very similar
236 // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
237 // information.
238 template <typename ELFT>
239 void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end);
242 template <typename T> llvm::ArrayRef<T> getDataAs() const {
243 size_t s = content().size();
244 assert(s % sizeof(T) == 0);
245 return llvm::ArrayRef<T>((const T *)content().data(), s / sizeof(T));
248 protected:
249 template <typename ELFT>
250 void parseCompressedHeader();
251 void decompress() const;
254 // SectionPiece represents a piece of splittable section contents.
255 // We allocate a lot of these and binary search on them. This means that they
256 // have to be as compact as possible, which is why we don't store the size (can
257 // be found by looking at the next one).
258 struct SectionPiece {
259 SectionPiece() = default;
260 SectionPiece(size_t off, uint32_t hash, bool live)
261 : inputOff(off), live(live), hash(hash >> 1) {}
263 uint32_t inputOff;
264 uint32_t live : 1;
265 uint32_t hash : 31;
266 uint64_t outputOff = 0;
269 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
271 // This corresponds to a SHF_MERGE section of an input file.
272 class MergeInputSection : public InputSectionBase {
273 public:
274 template <class ELFT>
275 MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
276 StringRef name);
277 MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize,
278 ArrayRef<uint8_t> data, StringRef name);
280 static bool classof(const SectionBase *s) { return s->kind() == Merge; }
281 void splitIntoPieces();
283 // Translate an offset in the input section to an offset in the parent
284 // MergeSyntheticSection.
285 uint64_t getParentOffset(uint64_t offset) const;
287 // Splittable sections are handled as a sequence of data
288 // rather than a single large blob of data.
289 SmallVector<SectionPiece, 0> pieces;
291 // Returns I'th piece's data. This function is very hot when
292 // string merging is enabled, so we want to inline.
293 LLVM_ATTRIBUTE_ALWAYS_INLINE
294 llvm::CachedHashStringRef getData(size_t i) const {
295 size_t begin = pieces[i].inputOff;
296 size_t end =
297 (pieces.size() - 1 == i) ? content().size() : pieces[i + 1].inputOff;
298 return {toStringRef(content().slice(begin, end - begin)), pieces[i].hash};
301 // Returns the SectionPiece at a given input section offset.
302 SectionPiece &getSectionPiece(uint64_t offset);
303 const SectionPiece &getSectionPiece(uint64_t offset) const {
304 return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
307 SyntheticSection *getParent() const {
308 return cast_or_null<SyntheticSection>(parent);
311 private:
312 void splitStrings(StringRef s, size_t size);
313 void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
316 struct EhSectionPiece {
317 EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
318 unsigned firstRelocation)
319 : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}
321 ArrayRef<uint8_t> data() const {
322 return {sec->content().data() + this->inputOff, size};
325 size_t inputOff;
326 ssize_t outputOff = -1;
327 InputSectionBase *sec;
328 uint32_t size;
329 unsigned firstRelocation;
332 // This corresponds to a .eh_frame section of an input file.
333 class EhInputSection : public InputSectionBase {
334 public:
335 template <class ELFT>
336 EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
337 StringRef name);
338 static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
339 template <class ELFT> void split();
340 template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);
342 // Splittable sections are handled as a sequence of data
343 // rather than a single large blob of data.
344 SmallVector<EhSectionPiece, 0> cies, fdes;
346 SyntheticSection *getParent() const;
347 uint64_t getParentOffset(uint64_t offset) const;
350 // This is a section that is added directly to an output section
351 // instead of needing special combination via a synthetic section. This
352 // includes all input sections with the exceptions of SHF_MERGE and
353 // .eh_frame. It also includes the synthetic sections themselves.
354 class InputSection : public InputSectionBase {
355 public:
356 InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t addralign,
357 ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
358 template <class ELFT>
359 InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
360 StringRef name);
362 static bool classof(const SectionBase *s) {
363 return s->kind() == SectionBase::Regular ||
364 s->kind() == SectionBase::Synthetic;
367 // Write this section to a mmap'ed file, assuming Buf is pointing to
368 // beginning of the output section.
369 template <class ELFT> void writeTo(uint8_t *buf);
371 OutputSection *getParent() const {
372 return reinterpret_cast<OutputSection *>(parent);
375 // This variable has two usages. Initially, it represents an index in the
376 // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
377 // sections. After assignAddresses is called, it represents the offset from
378 // the beginning of the output section this section was assigned to.
379 uint64_t outSecOff = 0;
381 InputSectionBase *getRelocatedSection() const;
383 template <class ELFT, class RelTy>
384 void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
386 // Points to the canonical section. If ICF folds two sections, repl pointer of
387 // one section points to the other.
388 InputSection *repl = this;
390 // Used by ICF.
391 uint32_t eqClass[2] = {0, 0};
393 // Called by ICF to merge two input sections.
394 void replace(InputSection *other);
396 static InputSection discarded;
398 private:
399 template <class ELFT, class RelTy> void copyRelocations(uint8_t *buf);
401 template <class ELFT, class RelTy, class RelIt>
402 void copyRelocations(uint8_t *buf, llvm::iterator_range<RelIt> rels);
404 template <class ELFT> void copyShtGroup(uint8_t *buf);
407 static_assert(sizeof(InputSection) <= 160, "InputSection is too big");
409 class SyntheticSection : public InputSection {
410 public:
411 SyntheticSection(uint64_t flags, uint32_t type, uint32_t addralign,
412 StringRef name)
413 : InputSection(nullptr, flags, type, addralign, {}, name,
414 InputSectionBase::Synthetic) {}
416 virtual ~SyntheticSection() = default;
417 virtual size_t getSize() const = 0;
418 virtual bool updateAllocSize() { return false; }
419 // If the section has the SHF_ALLOC flag and the size may be changed if
420 // thunks are added, update the section size.
421 virtual bool isNeeded() const { return true; }
422 virtual void finalizeContents() {}
423 virtual void writeTo(uint8_t *buf) = 0;
425 static bool classof(const SectionBase *sec) {
426 return sec->kind() == InputSectionBase::Synthetic;
430 inline bool isDebugSection(const InputSectionBase &sec) {
431 return (sec.flags & llvm::ELF::SHF_ALLOC) == 0 &&
432 sec.name.starts_with(".debug");
435 // The set of TOC entries (.toc + addend) for which we should not apply
436 // toc-indirect to toc-relative relaxation. const Symbol * refers to the
437 // STT_SECTION symbol associated to the .toc input section.
438 extern llvm::DenseSet<std::pair<const Symbol *, uint64_t>> ppc64noTocRelax;
440 } // namespace elf
442 std::string toString(const elf::InputSectionBase *);
443 } // namespace lld
445 #endif