Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / ELF / OutputSections.cpp
blob2dc425927109403e9bc63e691c3c82ebac80b21e
1 //===- OutputSections.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "OutputSections.h"
10 #include "Config.h"
11 #include "InputFiles.h"
12 #include "LinkerScript.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/Arrays.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB
20 #include "llvm/Support/Compression.h"
21 #include "llvm/Support/Parallel.h"
22 #include "llvm/Support/Path.h"
23 #include "llvm/Support/TimeProfiler.h"
24 #if LLVM_ENABLE_ZLIB
25 #include <zlib.h>
26 #endif
27 #if LLVM_ENABLE_ZSTD
28 #include <zstd.h>
29 #endif
31 using namespace llvm;
32 using namespace llvm::dwarf;
33 using namespace llvm::object;
34 using namespace llvm::support::endian;
35 using namespace llvm::ELF;
36 using namespace lld;
37 using namespace lld::elf;
39 uint8_t *Out::bufferStart;
40 PhdrEntry *Out::tlsPhdr;
41 OutputSection *Out::elfHeader;
42 OutputSection *Out::programHeaders;
43 OutputSection *Out::preinitArray;
44 OutputSection *Out::initArray;
45 OutputSection *Out::finiArray;
47 SmallVector<OutputSection *, 0> elf::outputSections;
49 uint32_t OutputSection::getPhdrFlags() const {
50 uint32_t ret = 0;
51 if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE))
52 ret |= PF_R;
53 if (flags & SHF_WRITE)
54 ret |= PF_W;
55 if (flags & SHF_EXECINSTR)
56 ret |= PF_X;
57 return ret;
60 template <class ELFT>
61 void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) {
62 shdr->sh_entsize = entsize;
63 shdr->sh_addralign = addralign;
64 shdr->sh_type = type;
65 shdr->sh_offset = offset;
66 shdr->sh_flags = flags;
67 shdr->sh_info = info;
68 shdr->sh_link = link;
69 shdr->sh_addr = addr;
70 shdr->sh_size = size;
71 shdr->sh_name = shName;
74 OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags)
75 : SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type,
76 /*Info*/ 0, /*Link*/ 0) {}
78 // We allow sections of types listed below to merged into a
79 // single progbits section. This is typically done by linker
80 // scripts. Merging nobits and progbits will force disk space
81 // to be allocated for nobits sections. Other ones don't require
82 // any special treatment on top of progbits, so there doesn't
83 // seem to be a harm in merging them.
85 // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow
86 // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*).
87 static bool canMergeToProgbits(unsigned type) {
88 return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY ||
89 type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY ||
90 type == SHT_NOTE ||
91 (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64);
94 // Record that isec will be placed in the OutputSection. isec does not become
95 // permanent until finalizeInputSections() is called. The function should not be
96 // used after finalizeInputSections() is called. If you need to add an
97 // InputSection post finalizeInputSections(), then you must do the following:
99 // 1. Find or create an InputSectionDescription to hold InputSection.
100 // 2. Add the InputSection to the InputSectionDescription::sections.
101 // 3. Call commitSection(isec).
102 void OutputSection::recordSection(InputSectionBase *isec) {
103 partition = isec->partition;
104 isec->parent = this;
105 if (commands.empty() || !isa<InputSectionDescription>(commands.back()))
106 commands.push_back(make<InputSectionDescription>(""));
107 auto *isd = cast<InputSectionDescription>(commands.back());
108 isd->sectionBases.push_back(isec);
111 // Update fields (type, flags, alignment, etc) according to the InputSection
112 // isec. Also check whether the InputSection flags and type are consistent with
113 // other InputSections.
114 void OutputSection::commitSection(InputSection *isec) {
115 if (LLVM_UNLIKELY(type != isec->type)) {
116 if (hasInputSections || typeIsSet) {
117 if (typeIsSet || !canMergeToProgbits(type) ||
118 !canMergeToProgbits(isec->type)) {
119 // The (NOLOAD) changes the section type to SHT_NOBITS, the intention is
120 // that the contents at that address is provided by some other means.
121 // Some projects (e.g.
122 // https://github.com/ClangBuiltLinux/linux/issues/1597) rely on the
123 // behavior. Other types get an error.
124 if (type != SHT_NOBITS) {
125 errorOrWarn("section type mismatch for " + isec->name + "\n>>> " +
126 toString(isec) + ": " +
127 getELFSectionTypeName(config->emachine, isec->type) +
128 "\n>>> output section " + name + ": " +
129 getELFSectionTypeName(config->emachine, type));
132 if (!typeIsSet)
133 type = SHT_PROGBITS;
134 } else {
135 type = isec->type;
138 if (!hasInputSections) {
139 // If IS is the first section to be added to this section,
140 // initialize type, entsize and flags from isec.
141 hasInputSections = true;
142 entsize = isec->entsize;
143 flags = isec->flags;
144 } else {
145 // Otherwise, check if new type or flags are compatible with existing ones.
146 if ((flags ^ isec->flags) & SHF_TLS)
147 error("incompatible section flags for " + name + "\n>>> " +
148 toString(isec) + ": 0x" + utohexstr(isec->flags) +
149 "\n>>> output section " + name + ": 0x" + utohexstr(flags));
152 isec->parent = this;
153 uint64_t andMask =
154 config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0;
155 uint64_t orMask = ~andMask;
156 uint64_t andFlags = (flags & isec->flags) & andMask;
157 uint64_t orFlags = (flags | isec->flags) & orMask;
158 flags = andFlags | orFlags;
159 if (nonAlloc)
160 flags &= ~(uint64_t)SHF_ALLOC;
162 addralign = std::max(addralign, isec->addralign);
164 // If this section contains a table of fixed-size entries, sh_entsize
165 // holds the element size. If it contains elements of different size we
166 // set sh_entsize to 0.
167 if (entsize != isec->entsize)
168 entsize = 0;
171 static MergeSyntheticSection *createMergeSynthetic(StringRef name,
172 uint32_t type,
173 uint64_t flags,
174 uint32_t addralign) {
175 if ((flags & SHF_STRINGS) && config->optimize >= 2)
176 return make<MergeTailSection>(name, type, flags, addralign);
177 return make<MergeNoTailSection>(name, type, flags, addralign);
180 // This function scans over the InputSectionBase list sectionBases to create
181 // InputSectionDescription::sections.
183 // It removes MergeInputSections from the input section array and adds
184 // new synthetic sections at the location of the first input section
185 // that it replaces. It then finalizes each synthetic section in order
186 // to compute an output offset for each piece of each input section.
187 void OutputSection::finalizeInputSections() {
188 std::vector<MergeSyntheticSection *> mergeSections;
189 for (SectionCommand *cmd : commands) {
190 auto *isd = dyn_cast<InputSectionDescription>(cmd);
191 if (!isd)
192 continue;
193 isd->sections.reserve(isd->sectionBases.size());
194 for (InputSectionBase *s : isd->sectionBases) {
195 MergeInputSection *ms = dyn_cast<MergeInputSection>(s);
196 if (!ms) {
197 isd->sections.push_back(cast<InputSection>(s));
198 continue;
201 // We do not want to handle sections that are not alive, so just remove
202 // them instead of trying to merge.
203 if (!ms->isLive())
204 continue;
206 auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) {
207 // While we could create a single synthetic section for two different
208 // values of Entsize, it is better to take Entsize into consideration.
210 // With a single synthetic section no two pieces with different Entsize
211 // could be equal, so we may as well have two sections.
213 // Using Entsize in here also allows us to propagate it to the synthetic
214 // section.
216 // SHF_STRINGS section with different alignments should not be merged.
217 return sec->flags == ms->flags && sec->entsize == ms->entsize &&
218 (sec->addralign == ms->addralign || !(sec->flags & SHF_STRINGS));
220 if (i == mergeSections.end()) {
221 MergeSyntheticSection *syn =
222 createMergeSynthetic(s->name, ms->type, ms->flags, ms->addralign);
223 mergeSections.push_back(syn);
224 i = std::prev(mergeSections.end());
225 syn->entsize = ms->entsize;
226 isd->sections.push_back(syn);
228 (*i)->addSection(ms);
231 // sectionBases should not be used from this point onwards. Clear it to
232 // catch misuses.
233 isd->sectionBases.clear();
235 // Some input sections may be removed from the list after ICF.
236 for (InputSection *s : isd->sections)
237 commitSection(s);
239 for (auto *ms : mergeSections)
240 ms->finalizeContents();
243 static void sortByOrder(MutableArrayRef<InputSection *> in,
244 llvm::function_ref<int(InputSectionBase *s)> order) {
245 std::vector<std::pair<int, InputSection *>> v;
246 for (InputSection *s : in)
247 v.emplace_back(order(s), s);
248 llvm::stable_sort(v, less_first());
250 for (size_t i = 0; i < v.size(); ++i)
251 in[i] = v[i].second;
254 uint64_t elf::getHeaderSize() {
255 if (config->oFormatBinary)
256 return 0;
257 return Out::elfHeader->size + Out::programHeaders->size;
260 void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) {
261 assert(isLive());
262 for (SectionCommand *b : commands)
263 if (auto *isd = dyn_cast<InputSectionDescription>(b))
264 sortByOrder(isd->sections, order);
267 static void nopInstrFill(uint8_t *buf, size_t size) {
268 if (size == 0)
269 return;
270 unsigned i = 0;
271 if (size == 0)
272 return;
273 std::vector<std::vector<uint8_t>> nopFiller = *target->nopInstrs;
274 unsigned num = size / nopFiller.back().size();
275 for (unsigned c = 0; c < num; ++c) {
276 memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size());
277 i += nopFiller.back().size();
279 unsigned remaining = size - i;
280 if (!remaining)
281 return;
282 assert(nopFiller[remaining - 1].size() == remaining);
283 memcpy(buf + i, nopFiller[remaining - 1].data(), remaining);
286 // Fill [Buf, Buf + Size) with Filler.
287 // This is used for linker script "=fillexp" command.
288 static void fill(uint8_t *buf, size_t size,
289 const std::array<uint8_t, 4> &filler) {
290 size_t i = 0;
291 for (; i + 4 < size; i += 4)
292 memcpy(buf + i, filler.data(), 4);
293 memcpy(buf + i, filler.data(), size - i);
296 #if LLVM_ENABLE_ZLIB
297 static SmallVector<uint8_t, 0> deflateShard(ArrayRef<uint8_t> in, int level,
298 int flush) {
299 // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate
300 // data with no zlib header or trailer.
301 z_stream s = {};
302 deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
303 s.next_in = const_cast<uint8_t *>(in.data());
304 s.avail_in = in.size();
306 // Allocate a buffer of half of the input size, and grow it by 1.5x if
307 // insufficient.
308 SmallVector<uint8_t, 0> out;
309 size_t pos = 0;
310 out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64));
311 do {
312 if (pos == out.size())
313 out.resize_for_overwrite(out.size() * 3 / 2);
314 s.next_out = out.data() + pos;
315 s.avail_out = out.size() - pos;
316 (void)deflate(&s, flush);
317 pos = s.next_out - out.data();
318 } while (s.avail_out == 0);
319 assert(s.avail_in == 0);
321 out.truncate(pos);
322 deflateEnd(&s);
323 return out;
325 #endif
327 // Compress section contents if this section contains debug info.
328 template <class ELFT> void OutputSection::maybeCompress() {
329 using Elf_Chdr = typename ELFT::Chdr;
330 (void)sizeof(Elf_Chdr);
332 // Compress only DWARF debug sections.
333 if (config->compressDebugSections == DebugCompressionType::None ||
334 (flags & SHF_ALLOC) || !name.starts_with(".debug_") || size == 0)
335 return;
337 llvm::TimeTraceScope timeScope("Compress debug sections");
338 compressed.uncompressedSize = size;
339 auto buf = std::make_unique<uint8_t[]>(size);
340 // Write uncompressed data to a temporary zero-initialized buffer.
342 parallel::TaskGroup tg;
343 writeTo<ELFT>(buf.get(), tg);
346 #if LLVM_ENABLE_ZSTD
347 // Use ZSTD's streaming compression API which permits parallel workers working
348 // on the stream. See http://facebook.github.io/zstd/zstd_manual.html
349 // "Streaming compression - HowTo".
350 if (config->compressDebugSections == DebugCompressionType::Zstd) {
351 // Allocate a buffer of half of the input size, and grow it by 1.5x if
352 // insufficient.
353 compressed.shards = std::make_unique<SmallVector<uint8_t, 0>[]>(1);
354 SmallVector<uint8_t, 0> &out = compressed.shards[0];
355 out.resize_for_overwrite(std::max<size_t>(size / 2, 32));
356 size_t pos = 0;
358 ZSTD_CCtx *cctx = ZSTD_createCCtx();
359 // Ignore error if zstd was not built with ZSTD_MULTITHREAD.
360 (void)ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers,
361 parallel::strategy.compute_thread_count());
362 ZSTD_outBuffer zob = {out.data(), out.size(), 0};
363 ZSTD_EndDirective directive = ZSTD_e_continue;
364 const size_t blockSize = ZSTD_CStreamInSize();
365 do {
366 const size_t n = std::min(static_cast<size_t>(size - pos), blockSize);
367 if (n == size - pos)
368 directive = ZSTD_e_end;
369 ZSTD_inBuffer zib = {buf.get() + pos, n, 0};
370 size_t bytesRemaining = 0;
371 while (zib.pos != zib.size ||
372 (directive == ZSTD_e_end && bytesRemaining != 0)) {
373 if (zob.pos == zob.size) {
374 out.resize_for_overwrite(out.size() * 3 / 2);
375 zob.dst = out.data();
376 zob.size = out.size();
378 bytesRemaining = ZSTD_compressStream2(cctx, &zob, &zib, directive);
379 assert(!ZSTD_isError(bytesRemaining));
381 pos += n;
382 } while (directive != ZSTD_e_end);
383 out.resize(zob.pos);
384 ZSTD_freeCCtx(cctx);
386 size = sizeof(Elf_Chdr) + out.size();
387 flags |= SHF_COMPRESSED;
388 return;
390 #endif
392 #if LLVM_ENABLE_ZLIB
393 // We chose 1 (Z_BEST_SPEED) as the default compression level because it is
394 // the fastest. If -O2 is given, we use level 6 to compress debug info more by
395 // ~15%. We found that level 7 to 9 doesn't make much difference (~1% more
396 // compression) while they take significant amount of time (~2x), so level 6
397 // seems enough.
398 const int level = config->optimize >= 2 ? 6 : Z_BEST_SPEED;
400 // Split input into 1-MiB shards.
401 constexpr size_t shardSize = 1 << 20;
402 auto shardsIn = split(ArrayRef<uint8_t>(buf.get(), size), shardSize);
403 const size_t numShards = shardsIn.size();
405 // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all
406 // shards but the last to flush the output to a byte boundary to be
407 // concatenated with the next shard.
408 auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards);
409 auto shardsAdler = std::make_unique<uint32_t[]>(numShards);
410 parallelFor(0, numShards, [&](size_t i) {
411 shardsOut[i] = deflateShard(shardsIn[i], level,
412 i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH);
413 shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size());
416 // Update section size and combine Alder-32 checksums.
417 uint32_t checksum = 1; // Initial Adler-32 value
418 size = sizeof(Elf_Chdr) + 2; // Elf_Chdir and zlib header
419 for (size_t i = 0; i != numShards; ++i) {
420 size += shardsOut[i].size();
421 checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size());
423 size += 4; // checksum
425 compressed.shards = std::move(shardsOut);
426 compressed.numShards = numShards;
427 compressed.checksum = checksum;
428 flags |= SHF_COMPRESSED;
429 #endif
432 static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) {
433 if (size == 1)
434 *buf = data;
435 else if (size == 2)
436 write16(buf, data);
437 else if (size == 4)
438 write32(buf, data);
439 else if (size == 8)
440 write64(buf, data);
441 else
442 llvm_unreachable("unsupported Size argument");
445 template <class ELFT>
446 void OutputSection::writeTo(uint8_t *buf, parallel::TaskGroup &tg) {
447 llvm::TimeTraceScope timeScope("Write sections", name);
448 if (type == SHT_NOBITS)
449 return;
451 // If --compress-debug-section is specified and if this is a debug section,
452 // we've already compressed section contents. If that's the case,
453 // just write it down.
454 if (compressed.shards) {
455 auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf);
456 chdr->ch_size = compressed.uncompressedSize;
457 chdr->ch_addralign = addralign;
458 buf += sizeof(*chdr);
459 if (config->compressDebugSections == DebugCompressionType::Zstd) {
460 chdr->ch_type = ELFCOMPRESS_ZSTD;
461 memcpy(buf, compressed.shards[0].data(), compressed.shards[0].size());
462 return;
464 chdr->ch_type = ELFCOMPRESS_ZLIB;
466 // Compute shard offsets.
467 auto offsets = std::make_unique<size_t[]>(compressed.numShards);
468 offsets[0] = 2; // zlib header
469 for (size_t i = 1; i != compressed.numShards; ++i)
470 offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size();
472 buf[0] = 0x78; // CMF
473 buf[1] = 0x01; // FLG: best speed
474 parallelFor(0, compressed.numShards, [&](size_t i) {
475 memcpy(buf + offsets[i], compressed.shards[i].data(),
476 compressed.shards[i].size());
479 write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum);
480 return;
483 // Write leading padding.
484 ArrayRef<InputSection *> sections = getInputSections(*this, storage);
485 std::array<uint8_t, 4> filler = getFiller();
486 bool nonZeroFiller = read32(filler.data()) != 0;
487 if (nonZeroFiller)
488 fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler);
490 auto fn = [=](size_t begin, size_t end) {
491 size_t numSections = sections.size();
492 for (size_t i = begin; i != end; ++i) {
493 InputSection *isec = sections[i];
494 if (auto *s = dyn_cast<SyntheticSection>(isec))
495 s->writeTo(buf + isec->outSecOff);
496 else
497 isec->writeTo<ELFT>(buf + isec->outSecOff);
499 // When in Arm BE8 mode, the linker has to convert the big-endian
500 // instructions to little-endian, leaving the data big-endian.
501 if (config->emachine == EM_ARM && !config->isLE && config->armBe8 &&
502 (flags & SHF_EXECINSTR))
503 convertArmInstructionstoBE8(isec, buf + isec->outSecOff);
505 // Fill gaps between sections.
506 if (nonZeroFiller) {
507 uint8_t *start = buf + isec->outSecOff + isec->getSize();
508 uint8_t *end;
509 if (i + 1 == numSections)
510 end = buf + size;
511 else
512 end = buf + sections[i + 1]->outSecOff;
513 if (isec->nopFiller) {
514 assert(target->nopInstrs);
515 nopInstrFill(start, end - start);
516 } else
517 fill(start, end - start, filler);
522 // If there is any BYTE()-family command (rare), write the section content
523 // first then process BYTE to overwrite the filler content. The write is
524 // serial due to the limitation of llvm/Support/Parallel.h.
525 bool written = false;
526 size_t numSections = sections.size();
527 for (SectionCommand *cmd : commands)
528 if (auto *data = dyn_cast<ByteCommand>(cmd)) {
529 if (!std::exchange(written, true))
530 fn(0, numSections);
531 writeInt(buf + data->offset, data->expression().getValue(), data->size);
533 if (written || !numSections)
534 return;
536 // There is no data command. Write content asynchronously to overlap the write
537 // time with other output sections. Note, if a linker script specifies
538 // overlapping output sections (needs --noinhibit-exec or --no-check-sections
539 // to supress the error), the output may be non-deterministic.
540 const size_t taskSizeLimit = 4 << 20;
541 for (size_t begin = 0, i = 0, taskSize = 0;;) {
542 taskSize += sections[i]->getSize();
543 bool done = ++i == numSections;
544 if (done || taskSize >= taskSizeLimit) {
545 tg.spawn([=] { fn(begin, i); });
546 if (done)
547 break;
548 begin = i;
549 taskSize = 0;
554 static void finalizeShtGroup(OutputSection *os, InputSection *section) {
555 // sh_link field for SHT_GROUP sections should contain the section index of
556 // the symbol table.
557 os->link = in.symTab->getParent()->sectionIndex;
559 if (!section)
560 return;
562 // sh_info then contain index of an entry in symbol table section which
563 // provides signature of the section group.
564 ArrayRef<Symbol *> symbols = section->file->getSymbols();
565 os->info = in.symTab->getSymbolIndex(symbols[section->info]);
567 // Some group members may be combined or discarded, so we need to compute the
568 // new size. The content will be rewritten in InputSection::copyShtGroup.
569 DenseSet<uint32_t> seen;
570 ArrayRef<InputSectionBase *> sections = section->file->getSections();
571 for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1))
572 if (OutputSection *osec = sections[read32(&idx)]->getOutputSection())
573 seen.insert(osec->sectionIndex);
574 os->size = (1 + seen.size()) * sizeof(uint32_t);
577 void OutputSection::finalize() {
578 InputSection *first = getFirstInputSection(this);
580 if (flags & SHF_LINK_ORDER) {
581 // We must preserve the link order dependency of sections with the
582 // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
583 // need to translate the InputSection sh_link to the OutputSection sh_link,
584 // all InputSections in the OutputSection have the same dependency.
585 if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first))
586 link = ex->getLinkOrderDep()->getParent()->sectionIndex;
587 else if (first->flags & SHF_LINK_ORDER)
588 if (auto *d = first->getLinkOrderDep())
589 link = d->getParent()->sectionIndex;
592 if (type == SHT_GROUP) {
593 finalizeShtGroup(this, first);
594 return;
597 if (!config->copyRelocs || (type != SHT_RELA && type != SHT_REL))
598 return;
600 // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs.
601 // Normally 'type' was changed by 'first' so 'first' should be non-null.
602 // However, if the output section is .rela.dyn, 'type' can be set by the empty
603 // synthetic .rela.plt and first can be null.
604 if (!first || isa<SyntheticSection>(first))
605 return;
607 link = in.symTab->getParent()->sectionIndex;
608 // sh_info for SHT_REL[A] sections should contain the section header index of
609 // the section to which the relocation applies.
610 InputSectionBase *s = first->getRelocatedSection();
611 info = s->getOutputSection()->sectionIndex;
612 flags |= SHF_INFO_LINK;
615 // Returns true if S is in one of the many forms the compiler driver may pass
616 // crtbegin files.
618 // Gcc uses any of crtbegin[<empty>|S|T].o.
619 // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o.
621 static bool isCrt(StringRef s, StringRef beginEnd) {
622 s = sys::path::filename(s);
623 if (!s.consume_back(".o"))
624 return false;
625 if (s.consume_front("clang_rt."))
626 return s.consume_front(beginEnd);
627 return s.consume_front(beginEnd) && s.size() <= 1;
630 // .ctors and .dtors are sorted by this order:
632 // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1).
633 // 2. The section is named ".ctors" or ".dtors" (priority: 65536).
634 // 3. The section has an optional priority value in the form of ".ctors.N" or
635 // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N).
636 // 4. .ctors/.dtors in crtend (which contains a sentinel value 0).
638 // For 2 and 3, the sections are sorted by priority from high to low, e.g.
639 // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's
640 // internal linker scripts, the sorting is by string comparison which can
641 // achieve the same goal given the optional priority values are of the same
642 // length.
644 // In an ideal world, we don't need this function because .init_array and
645 // .ctors are duplicate features (and .init_array is newer.) However, there
646 // are too many real-world use cases of .ctors, so we had no choice to
647 // support that with this rather ad-hoc semantics.
648 static bool compCtors(const InputSection *a, const InputSection *b) {
649 bool beginA = isCrt(a->file->getName(), "crtbegin");
650 bool beginB = isCrt(b->file->getName(), "crtbegin");
651 if (beginA != beginB)
652 return beginA;
653 bool endA = isCrt(a->file->getName(), "crtend");
654 bool endB = isCrt(b->file->getName(), "crtend");
655 if (endA != endB)
656 return endB;
657 return getPriority(a->name) > getPriority(b->name);
660 // Sorts input sections by the special rules for .ctors and .dtors.
661 // Unfortunately, the rules are different from the one for .{init,fini}_array.
662 // Read the comment above.
663 void OutputSection::sortCtorsDtors() {
664 assert(commands.size() == 1);
665 auto *isd = cast<InputSectionDescription>(commands[0]);
666 llvm::stable_sort(isd->sections, compCtors);
669 // If an input string is in the form of "foo.N" where N is a number, return N
670 // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one
671 // greater than the lowest priority.
672 int elf::getPriority(StringRef s) {
673 size_t pos = s.rfind('.');
674 if (pos == StringRef::npos)
675 return 65536;
676 int v = 65536;
677 if (to_integer(s.substr(pos + 1), v, 10) &&
678 (pos == 6 && (s.starts_with(".ctors") || s.starts_with(".dtors"))))
679 v = 65535 - v;
680 return v;
683 InputSection *elf::getFirstInputSection(const OutputSection *os) {
684 for (SectionCommand *cmd : os->commands)
685 if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
686 if (!isd->sections.empty())
687 return isd->sections[0];
688 return nullptr;
691 ArrayRef<InputSection *>
692 elf::getInputSections(const OutputSection &os,
693 SmallVector<InputSection *, 0> &storage) {
694 ArrayRef<InputSection *> ret;
695 storage.clear();
696 for (SectionCommand *cmd : os.commands) {
697 auto *isd = dyn_cast<InputSectionDescription>(cmd);
698 if (!isd)
699 continue;
700 if (ret.empty()) {
701 ret = isd->sections;
702 } else {
703 if (storage.empty())
704 storage.assign(ret.begin(), ret.end());
705 storage.insert(storage.end(), isd->sections.begin(), isd->sections.end());
708 return storage.empty() ? ret : ArrayRef(storage);
711 // Sorts input sections by section name suffixes, so that .foo.N comes
712 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
713 // We want to keep the original order if the priorities are the same
714 // because the compiler keeps the original initialization order in a
715 // translation unit and we need to respect that.
716 // For more detail, read the section of the GCC's manual about init_priority.
717 void OutputSection::sortInitFini() {
718 // Sort sections by priority.
719 sort([](InputSectionBase *s) { return getPriority(s->name); });
722 std::array<uint8_t, 4> OutputSection::getFiller() {
723 if (filler)
724 return *filler;
725 if (flags & SHF_EXECINSTR)
726 return target->trapInstr;
727 return {0, 0, 0, 0};
730 void OutputSection::checkDynRelAddends(const uint8_t *bufStart) {
731 assert(config->writeAddends && config->checkDynamicRelocs);
732 assert(type == SHT_REL || type == SHT_RELA);
733 SmallVector<InputSection *, 0> storage;
734 ArrayRef<InputSection *> sections = getInputSections(*this, storage);
735 parallelFor(0, sections.size(), [&](size_t i) {
736 // When linking with -r or --emit-relocs we might also call this function
737 // for input .rel[a].<sec> sections which we simply pass through to the
738 // output. We skip over those and only look at the synthetic relocation
739 // sections created during linking.
740 const auto *sec = dyn_cast<RelocationBaseSection>(sections[i]);
741 if (!sec)
742 return;
743 for (const DynamicReloc &rel : sec->relocs) {
744 int64_t addend = rel.addend;
745 const OutputSection *relOsec = rel.inputSec->getOutputSection();
746 assert(relOsec != nullptr && "missing output section for relocation");
747 // Some targets have NOBITS synthetic sections with dynamic relocations
748 // with non-zero addends. Skip such sections.
749 if (is_contained({EM_PPC, EM_PPC64}, config->emachine) &&
750 (rel.inputSec == in.ppc64LongBranchTarget.get() ||
751 rel.inputSec == in.igotPlt.get()))
752 continue;
753 const uint8_t *relocTarget =
754 bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec);
755 // For SHT_NOBITS the written addend is always zero.
756 int64_t writtenAddend =
757 relOsec->type == SHT_NOBITS
759 : target->getImplicitAddend(relocTarget, rel.type);
760 if (addend != writtenAddend)
761 internalLinkerError(
762 getErrorLocation(relocTarget),
763 "wrote incorrect addend value 0x" + utohexstr(writtenAddend) +
764 " instead of 0x" + utohexstr(addend) +
765 " for dynamic relocation " + toString(rel.type) +
766 " at offset 0x" + utohexstr(rel.getOffset()) +
767 (rel.sym ? " against symbol " + toString(*rel.sym) : ""));
772 template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
773 template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
774 template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
775 template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);
777 template void OutputSection::writeTo<ELF32LE>(uint8_t *,
778 llvm::parallel::TaskGroup &);
779 template void OutputSection::writeTo<ELF32BE>(uint8_t *,
780 llvm::parallel::TaskGroup &);
781 template void OutputSection::writeTo<ELF64LE>(uint8_t *,
782 llvm::parallel::TaskGroup &);
783 template void OutputSection::writeTo<ELF64BE>(uint8_t *,
784 llvm::parallel::TaskGroup &);
786 template void OutputSection::maybeCompress<ELF32LE>();
787 template void OutputSection::maybeCompress<ELF32BE>();
788 template void OutputSection::maybeCompress<ELF64LE>();
789 template void OutputSection::maybeCompress<ELF64BE>();