1 //===- Relocations.cpp ----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
23 // ELF defines a large number of complex relocations.
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
28 // - create GOT/PLT entries
29 // - create new relocations in .dynsym to let the dynamic linker resolve
30 // them at runtime (since ELF supports dynamic linking, not all
31 // relocations can be resolved at link-time)
32 // - create COPY relocs and reserve space in .bss
33 // - replace expensive relocs (in terms of runtime cost) with cheap ones
34 // - error out infeasible combinations such as PIC and non-relative relocs
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
41 //===----------------------------------------------------------------------===//
43 #include "Relocations.h"
45 #include "InputFiles.h"
46 #include "LinkerScript.h"
47 #include "OutputSections.h"
48 #include "SymbolTable.h"
50 #include "SyntheticSections.h"
53 #include "lld/Common/ErrorHandler.h"
54 #include "lld/Common/Memory.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Demangle/Demangle.h"
58 #include "llvm/Support/Endian.h"
62 using namespace llvm::ELF
;
63 using namespace llvm::object
;
64 using namespace llvm::support::endian
;
66 using namespace lld::elf
;
68 static std::optional
<std::string
> getLinkerScriptLocation(const Symbol
&sym
) {
69 for (SectionCommand
*cmd
: script
->sectionCommands
)
70 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
))
71 if (assign
->sym
== &sym
)
72 return assign
->location
;
76 static std::string
getDefinedLocation(const Symbol
&sym
) {
77 const char msg
[] = "\n>>> defined in ";
79 return msg
+ toString(sym
.file
);
80 if (std::optional
<std::string
> loc
= getLinkerScriptLocation(sym
))
85 // Construct a message in the following format.
87 // >>> defined in /home/alice/src/foo.o
88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89 // >>> /home/alice/src/bar.o:(.text+0x1)
90 static std::string
getLocation(InputSectionBase
&s
, const Symbol
&sym
,
92 std::string msg
= getDefinedLocation(sym
) + "\n>>> referenced by ";
93 std::string src
= s
.getSrcMsg(sym
, off
);
95 msg
+= src
+ "\n>>> ";
96 return msg
+ s
.getObjMsg(off
);
99 void elf::reportRangeError(uint8_t *loc
, const Relocation
&rel
, const Twine
&v
,
100 int64_t min
, uint64_t max
) {
101 ErrorPlace errPlace
= getErrorPlace(loc
);
104 if (!rel
.sym
->isSection())
105 hint
= "; references '" + lld::toString(*rel
.sym
) + '\'';
106 else if (auto *d
= dyn_cast
<Defined
>(rel
.sym
))
107 hint
= ("; references section '" + d
->section
->name
+ "'").str();
109 if (!errPlace
.srcLoc
.empty())
110 hint
+= "\n>>> referenced by " + errPlace
.srcLoc
;
111 if (rel
.sym
&& !rel
.sym
->isSection())
112 hint
+= getDefinedLocation(*rel
.sym
);
114 if (errPlace
.isec
&& errPlace
.isec
->name
.starts_with(".debug"))
115 hint
+= "; consider recompiling with -fdebug-types-section to reduce size "
118 errorOrWarn(errPlace
.loc
+ "relocation " + lld::toString(rel
.type
) +
119 " out of range: " + v
.str() + " is not in [" + Twine(min
).str() +
120 ", " + Twine(max
).str() + "]" + hint
);
123 void elf::reportRangeError(uint8_t *loc
, int64_t v
, int n
, const Symbol
&sym
,
125 ErrorPlace errPlace
= getErrorPlace(loc
);
127 if (!sym
.getName().empty())
129 "; references '" + lld::toString(sym
) + '\'' + getDefinedLocation(sym
);
130 errorOrWarn(errPlace
.loc
+ msg
+ " is out of range: " + Twine(v
) +
131 " is not in [" + Twine(llvm::minIntN(n
)) + ", " +
132 Twine(llvm::maxIntN(n
)) + "]" + hint
);
135 // Build a bitmask with one bit set for each 64 subset of RelExpr.
136 static constexpr uint64_t buildMask() { return 0; }
138 template <typename
... Tails
>
139 static constexpr uint64_t buildMask(int head
, Tails
... tails
) {
140 return (0 <= head
&& head
< 64 ? uint64_t(1) << head
: 0) |
144 // Return true if `Expr` is one of `Exprs`.
145 // There are more than 64 but less than 128 RelExprs, so we divide the set of
146 // exprs into [0, 64) and [64, 128) and represent each range as a constant
147 // 64-bit mask. Then we decide which mask to test depending on the value of
148 // expr and use a simple shift and bitwise-and to test for membership.
149 template <RelExpr
... Exprs
> static bool oneof(RelExpr expr
) {
150 assert(0 <= expr
&& (int)expr
< 128 &&
151 "RelExpr is too large for 128-bit mask!");
154 return (uint64_t(1) << (expr
- 64)) & buildMask((Exprs
- 64)...);
155 return (uint64_t(1) << expr
) & buildMask(Exprs
...);
158 static RelType
getMipsPairType(RelType type
, bool isLocal
) {
163 // In case of global symbol, the R_MIPS_GOT16 relocation does not
164 // have a pair. Each global symbol has a unique entry in the GOT
165 // and a corresponding instruction with help of the R_MIPS_GOT16
166 // relocation loads an address of the symbol. In case of local
167 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
168 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
169 // relocations handle low 16 bits of the address. That allows
170 // to allocate only one GOT entry for every 64 KBytes of local data.
171 return isLocal
? R_MIPS_LO16
: R_MIPS_NONE
;
172 case R_MICROMIPS_GOT16
:
173 return isLocal
? R_MICROMIPS_LO16
: R_MIPS_NONE
;
175 return R_MIPS_PCLO16
;
176 case R_MICROMIPS_HI16
:
177 return R_MICROMIPS_LO16
;
183 // True if non-preemptable symbol always has the same value regardless of where
184 // the DSO is loaded.
185 static bool isAbsolute(const Symbol
&sym
) {
186 if (sym
.isUndefWeak())
188 if (const auto *dr
= dyn_cast
<Defined
>(&sym
))
189 return dr
->section
== nullptr; // Absolute symbol.
193 static bool isAbsoluteValue(const Symbol
&sym
) {
194 return isAbsolute(sym
) || sym
.isTls();
197 // Returns true if Expr refers a PLT entry.
198 static bool needsPlt(RelExpr expr
) {
199 return oneof
<R_PLT
, R_PLT_PC
, R_PLT_GOTPLT
, R_LOONGARCH_PLT_PAGE_PC
,
200 R_PPC32_PLTREL
, R_PPC64_CALL_PLT
>(expr
);
203 bool lld::elf::needsGot(RelExpr expr
) {
204 return oneof
<R_GOT
, R_GOT_OFF
, R_MIPS_GOT_LOCAL_PAGE
, R_MIPS_GOT_OFF
,
205 R_MIPS_GOT_OFF32
, R_AARCH64_GOT_PAGE_PC
, R_GOT_PC
, R_GOTPLT
,
206 R_AARCH64_GOT_PAGE
, R_LOONGARCH_GOT
, R_LOONGARCH_GOT_PAGE_PC
>(
210 // True if this expression is of the form Sym - X, where X is a position in the
211 // file (PC, or GOT for example).
212 static bool isRelExpr(RelExpr expr
) {
213 return oneof
<R_PC
, R_GOTREL
, R_GOTPLTREL
, R_MIPS_GOTREL
, R_PPC64_CALL
,
214 R_PPC64_RELAX_TOC
, R_AARCH64_PAGE_PC
, R_RELAX_GOT_PC
,
215 R_RISCV_PC_INDIRECT
, R_PPC64_RELAX_GOT_PC
, R_LOONGARCH_PAGE_PC
>(
219 static RelExpr
toPlt(RelExpr expr
) {
221 case R_LOONGARCH_PAGE_PC
:
222 return R_LOONGARCH_PLT_PAGE_PC
;
224 return R_PPC64_CALL_PLT
;
234 static RelExpr
fromPlt(RelExpr expr
) {
235 // We decided not to use a plt. Optimize a reference to the plt to a
236 // reference to the symbol itself.
241 case R_LOONGARCH_PLT_PAGE_PC
:
242 return R_LOONGARCH_PAGE_PC
;
243 case R_PPC64_CALL_PLT
:
254 // Returns true if a given shared symbol is in a read-only segment in a DSO.
255 template <class ELFT
> static bool isReadOnly(SharedSymbol
&ss
) {
256 using Elf_Phdr
= typename
ELFT::Phdr
;
258 // Determine if the symbol is read-only by scanning the DSO's program headers.
259 const auto &file
= cast
<SharedFile
>(*ss
.file
);
260 for (const Elf_Phdr
&phdr
:
261 check(file
.template getObj
<ELFT
>().program_headers()))
262 if ((phdr
.p_type
== ELF::PT_LOAD
|| phdr
.p_type
== ELF::PT_GNU_RELRO
) &&
263 !(phdr
.p_flags
& ELF::PF_W
) && ss
.value
>= phdr
.p_vaddr
&&
264 ss
.value
< phdr
.p_vaddr
+ phdr
.p_memsz
)
269 // Returns symbols at the same offset as a given symbol, including SS itself.
271 // If two or more symbols are at the same offset, and at least one of
272 // them are copied by a copy relocation, all of them need to be copied.
273 // Otherwise, they would refer to different places at runtime.
274 template <class ELFT
>
275 static SmallSet
<SharedSymbol
*, 4> getSymbolsAt(SharedSymbol
&ss
) {
276 using Elf_Sym
= typename
ELFT::Sym
;
278 const auto &file
= cast
<SharedFile
>(*ss
.file
);
280 SmallSet
<SharedSymbol
*, 4> ret
;
281 for (const Elf_Sym
&s
: file
.template getGlobalELFSyms
<ELFT
>()) {
282 if (s
.st_shndx
== SHN_UNDEF
|| s
.st_shndx
== SHN_ABS
||
283 s
.getType() == STT_TLS
|| s
.st_value
!= ss
.value
)
285 StringRef name
= check(s
.getName(file
.getStringTable()));
286 Symbol
*sym
= symtab
.find(name
);
287 if (auto *alias
= dyn_cast_or_null
<SharedSymbol
>(sym
))
291 // The loop does not check SHT_GNU_verneed, so ret does not contain
292 // non-default version symbols. If ss has a non-default version, ret won't
293 // contain ss. Just add ss unconditionally. If a non-default version alias is
294 // separately copy relocated, it and ss will have different addresses.
295 // Fortunately this case is impractical and fails with GNU ld as well.
300 // When a symbol is copy relocated or we create a canonical plt entry, it is
301 // effectively a defined symbol. In the case of copy relocation the symbol is
302 // in .bss and in the case of a canonical plt entry it is in .plt. This function
303 // replaces the existing symbol with a Defined pointing to the appropriate
305 static void replaceWithDefined(Symbol
&sym
, SectionBase
&sec
, uint64_t value
,
308 Defined(sym
.file
, StringRef(), sym
.binding
, sym
.stOther
, sym
.type
, value
,
312 sym
.verdefIndex
= old
.verdefIndex
;
313 sym
.exportDynamic
= true;
314 sym
.isUsedInRegularObj
= true;
315 // A copy relocated alias may need a GOT entry.
316 sym
.flags
.store(old
.flags
.load(std::memory_order_relaxed
) & NEEDS_GOT
,
317 std::memory_order_relaxed
);
320 // Reserve space in .bss or .bss.rel.ro for copy relocation.
322 // The copy relocation is pretty much a hack. If you use a copy relocation
323 // in your program, not only the symbol name but the symbol's size, RW/RO
324 // bit and alignment become part of the ABI. In addition to that, if the
325 // symbol has aliases, the aliases become part of the ABI. That's subtle,
326 // but if you violate that implicit ABI, that can cause very counter-
327 // intuitive consequences.
329 // So, what is the copy relocation? It's for linking non-position
330 // independent code to DSOs. In an ideal world, all references to data
331 // exported by DSOs should go indirectly through GOT. But if object files
332 // are compiled as non-PIC, all data references are direct. There is no
333 // way for the linker to transform the code to use GOT, as machine
334 // instructions are already set in stone in object files. This is where
335 // the copy relocation takes a role.
337 // A copy relocation instructs the dynamic linker to copy data from a DSO
338 // to a specified address (which is usually in .bss) at load-time. If the
339 // static linker (that's us) finds a direct data reference to a DSO
340 // symbol, it creates a copy relocation, so that the symbol can be
341 // resolved as if it were in .bss rather than in a DSO.
343 // As you can see in this function, we create a copy relocation for the
344 // dynamic linker, and the relocation contains not only symbol name but
345 // various other information about the symbol. So, such attributes become a
348 // Note for application developers: I can give you a piece of advice if
349 // you are writing a shared library. You probably should export only
350 // functions from your library. You shouldn't export variables.
352 // As an example what can happen when you export variables without knowing
353 // the semantics of copy relocations, assume that you have an exported
354 // variable of type T. It is an ABI-breaking change to add new members at
355 // end of T even though doing that doesn't change the layout of the
356 // existing members. That's because the space for the new members are not
357 // reserved in .bss unless you recompile the main program. That means they
358 // are likely to overlap with other data that happens to be laid out next
359 // to the variable in .bss. This kind of issue is sometimes very hard to
360 // debug. What's a solution? Instead of exporting a variable V from a DSO,
361 // define an accessor getV().
362 template <class ELFT
> static void addCopyRelSymbol(SharedSymbol
&ss
) {
363 // Copy relocation against zero-sized symbol doesn't make sense.
364 uint64_t symSize
= ss
.getSize();
365 if (symSize
== 0 || ss
.alignment
== 0)
366 fatal("cannot create a copy relocation for symbol " + toString(ss
));
368 // See if this symbol is in a read-only segment. If so, preserve the symbol's
369 // memory protection by reserving space in the .bss.rel.ro section.
370 bool isRO
= isReadOnly
<ELFT
>(ss
);
372 make
<BssSection
>(isRO
? ".bss.rel.ro" : ".bss", symSize
, ss
.alignment
);
373 OutputSection
*osec
= (isRO
? in
.bssRelRo
: in
.bss
)->getParent();
375 // At this point, sectionBases has been migrated to sections. Append sec to
377 if (osec
->commands
.empty() ||
378 !isa
<InputSectionDescription
>(osec
->commands
.back()))
379 osec
->commands
.push_back(make
<InputSectionDescription
>(""));
380 auto *isd
= cast
<InputSectionDescription
>(osec
->commands
.back());
381 isd
->sections
.push_back(sec
);
382 osec
->commitSection(sec
);
384 // Look through the DSO's dynamic symbol table for aliases and create a
385 // dynamic symbol for each one. This causes the copy relocation to correctly
386 // interpose any aliases.
387 for (SharedSymbol
*sym
: getSymbolsAt
<ELFT
>(ss
))
388 replaceWithDefined(*sym
, *sec
, 0, sym
->size
);
390 mainPart
->relaDyn
->addSymbolReloc(target
->copyRel
, *sec
, 0, ss
);
393 // .eh_frame sections are mergeable input sections, so their input
394 // offsets are not linearly mapped to output section. For each input
395 // offset, we need to find a section piece containing the offset and
396 // add the piece's base address to the input offset to compute the
397 // output offset. That isn't cheap.
399 // This class is to speed up the offset computation. When we process
400 // relocations, we access offsets in the monotonically increasing
401 // order. So we can optimize for that access pattern.
403 // For sections other than .eh_frame, this class doesn't do anything.
407 OffsetGetter() = default;
408 explicit OffsetGetter(InputSectionBase
&sec
) {
409 if (auto *eh
= dyn_cast
<EhInputSection
>(&sec
)) {
417 // Translates offsets in input sections to offsets in output sections.
418 // Given offset must increase monotonically. We assume that Piece is
419 // sorted by inputOff.
420 uint64_t get(uint64_t off
) {
424 while (j
!= fdes
.end() && j
->inputOff
<= off
)
427 if (j
== fdes
.begin() || j
[-1].inputOff
+ j
[-1].size
<= off
) {
428 while (i
!= cies
.end() && i
->inputOff
<= off
)
430 if (i
== cies
.begin() || i
[-1].inputOff
+ i
[-1].size
<= off
)
431 fatal(".eh_frame: relocation is not in any piece");
435 // Offset -1 means that the piece is dead (i.e. garbage collected).
436 if (it
[-1].outputOff
== -1)
438 return it
[-1].outputOff
+ (off
- it
[-1].inputOff
);
442 ArrayRef
<EhSectionPiece
> cies
, fdes
;
443 ArrayRef
<EhSectionPiece
>::iterator i
, j
;
446 // This class encapsulates states needed to scan relocations for one
448 class RelocationScanner
{
450 template <class ELFT
> void scanSection(InputSectionBase
&s
);
453 InputSectionBase
*sec
;
456 // End of relocations, used by Mips/PPC64.
457 const void *end
= nullptr;
459 template <class RelTy
> RelType
getMipsN32RelType(RelTy
*&rel
) const;
460 template <class ELFT
, class RelTy
>
461 int64_t computeMipsAddend(const RelTy
&rel
, RelExpr expr
, bool isLocal
) const;
462 bool isStaticLinkTimeConstant(RelExpr e
, RelType type
, const Symbol
&sym
,
463 uint64_t relOff
) const;
464 void processAux(RelExpr expr
, RelType type
, uint64_t offset
, Symbol
&sym
,
465 int64_t addend
) const;
466 template <class ELFT
, class RelTy
> void scanOne(RelTy
*&i
);
467 template <class ELFT
, class RelTy
> void scan(ArrayRef
<RelTy
> rels
);
471 // MIPS has an odd notion of "paired" relocations to calculate addends.
472 // For example, if a relocation is of R_MIPS_HI16, there must be a
473 // R_MIPS_LO16 relocation after that, and an addend is calculated using
474 // the two relocations.
475 template <class ELFT
, class RelTy
>
476 int64_t RelocationScanner::computeMipsAddend(const RelTy
&rel
, RelExpr expr
,
477 bool isLocal
) const {
478 if (expr
== R_MIPS_GOTREL
&& isLocal
)
479 return sec
->getFile
<ELFT
>()->mipsGp0
;
481 // The ABI says that the paired relocation is used only for REL.
482 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
486 RelType type
= rel
.getType(config
->isMips64EL
);
487 uint32_t pairTy
= getMipsPairType(type
, isLocal
);
488 if (pairTy
== R_MIPS_NONE
)
491 const uint8_t *buf
= sec
->content().data();
492 uint32_t symIndex
= rel
.getSymbol(config
->isMips64EL
);
494 // To make things worse, paired relocations might not be contiguous in
495 // the relocation table, so we need to do linear search. *sigh*
496 for (const RelTy
*ri
= &rel
; ri
!= static_cast<const RelTy
*>(end
); ++ri
)
497 if (ri
->getType(config
->isMips64EL
) == pairTy
&&
498 ri
->getSymbol(config
->isMips64EL
) == symIndex
)
499 return target
->getImplicitAddend(buf
+ ri
->r_offset
, pairTy
);
501 warn("can't find matching " + toString(pairTy
) + " relocation for " +
506 // Custom error message if Sym is defined in a discarded section.
507 template <class ELFT
>
508 static std::string
maybeReportDiscarded(Undefined
&sym
) {
509 auto *file
= dyn_cast_or_null
<ObjFile
<ELFT
>>(sym
.file
);
510 if (!file
|| !sym
.discardedSecIdx
)
512 ArrayRef
<typename
ELFT::Shdr
> objSections
=
513 file
->template getELFShdrs
<ELFT
>();
516 if (sym
.type
== ELF::STT_SECTION
) {
517 msg
= "relocation refers to a discarded section: ";
519 file
->getObj().getSectionName(objSections
[sym
.discardedSecIdx
]), file
);
521 msg
= "relocation refers to a symbol in a discarded section: " +
524 msg
+= "\n>>> defined in " + toString(file
);
526 Elf_Shdr_Impl
<ELFT
> elfSec
= objSections
[sym
.discardedSecIdx
- 1];
527 if (elfSec
.sh_type
!= SHT_GROUP
)
530 // If the discarded section is a COMDAT.
531 StringRef signature
= file
->getShtGroupSignature(objSections
, elfSec
);
532 if (const InputFile
*prevailing
=
533 symtab
.comdatGroups
.lookup(CachedHashStringRef(signature
))) {
534 msg
+= "\n>>> section group signature: " + signature
.str() +
535 "\n>>> prevailing definition is in " + toString(prevailing
);
536 if (sym
.nonPrevailing
) {
537 msg
+= "\n>>> or the symbol in the prevailing group had STB_WEAK "
538 "binding and the symbol in a non-prevailing group had STB_GLOBAL "
539 "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding "
540 "signature is not supported";
547 // Undefined diagnostics are collected in a vector and emitted once all of
548 // them are known, so that some postprocessing on the list of undefined symbols
549 // can happen before lld emits diagnostics.
550 struct UndefinedDiag
{
553 InputSectionBase
*sec
;
556 std::vector
<Loc
> locs
;
560 std::vector
<UndefinedDiag
> undefs
;
561 std::mutex relocMutex
;
564 // Check whether the definition name def is a mangled function name that matches
565 // the reference name ref.
566 static bool canSuggestExternCForCXX(StringRef ref
, StringRef def
) {
567 llvm::ItaniumPartialDemangler d
;
568 std::string name
= def
.str();
569 if (d
.partialDemangle(name
.c_str()))
571 char *buf
= d
.getFunctionName(nullptr, nullptr);
574 bool ret
= ref
== buf
;
579 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
580 // the suggested symbol, which is either in the symbol table, or in the same
582 static const Symbol
*getAlternativeSpelling(const Undefined
&sym
,
583 std::string
&pre_hint
,
584 std::string
&post_hint
) {
585 DenseMap
<StringRef
, const Symbol
*> map
;
586 if (sym
.file
&& sym
.file
->kind() == InputFile::ObjKind
) {
587 auto *file
= cast
<ELFFileBase
>(sym
.file
);
588 // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
589 // will give an error. Don't suggest an alternative spelling.
590 if (file
&& sym
.discardedSecIdx
!= 0 &&
591 file
->getSections()[sym
.discardedSecIdx
] == &InputSection::discarded
)
594 // Build a map of local defined symbols.
595 for (const Symbol
*s
: sym
.file
->getSymbols())
596 if (s
->isLocal() && s
->isDefined() && !s
->getName().empty())
597 map
.try_emplace(s
->getName(), s
);
600 auto suggest
= [&](StringRef newName
) -> const Symbol
* {
601 // If defined locally.
602 if (const Symbol
*s
= map
.lookup(newName
))
605 // If in the symbol table and not undefined.
606 if (const Symbol
*s
= symtab
.find(newName
))
607 if (!s
->isUndefined())
613 // This loop enumerates all strings of Levenshtein distance 1 as typo
614 // correction candidates and suggests the one that exists as a non-undefined
616 StringRef name
= sym
.getName();
617 for (size_t i
= 0, e
= name
.size(); i
!= e
+ 1; ++i
) {
618 // Insert a character before name[i].
619 std::string newName
= (name
.substr(0, i
) + "0" + name
.substr(i
)).str();
620 for (char c
= '0'; c
<= 'z'; ++c
) {
622 if (const Symbol
*s
= suggest(newName
))
628 // Substitute name[i].
629 newName
= std::string(name
);
630 for (char c
= '0'; c
<= 'z'; ++c
) {
632 if (const Symbol
*s
= suggest(newName
))
636 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
639 newName
[i
] = name
[i
+ 1];
640 newName
[i
+ 1] = name
[i
];
641 if (const Symbol
*s
= suggest(newName
))
646 newName
= (name
.substr(0, i
) + name
.substr(i
+ 1)).str();
647 if (const Symbol
*s
= suggest(newName
))
651 // Case mismatch, e.g. Foo vs FOO.
653 if (name
.equals_insensitive(it
.first
))
655 for (Symbol
*sym
: symtab
.getSymbols())
656 if (!sym
->isUndefined() && name
.equals_insensitive(sym
->getName()))
659 // The reference may be a mangled name while the definition is not. Suggest a
660 // missing extern "C".
661 if (name
.starts_with("_Z")) {
662 std::string buf
= name
.str();
663 llvm::ItaniumPartialDemangler d
;
664 if (!d
.partialDemangle(buf
.c_str()))
665 if (char *buf
= d
.getFunctionName(nullptr, nullptr)) {
666 const Symbol
*s
= suggest(buf
);
669 pre_hint
= ": extern \"C\" ";
674 const Symbol
*s
= nullptr;
676 if (canSuggestExternCForCXX(name
, it
.first
)) {
681 for (Symbol
*sym
: symtab
.getSymbols())
682 if (canSuggestExternCForCXX(name
, sym
->getName())) {
687 pre_hint
= " to declare ";
688 post_hint
= " as extern \"C\"?";
696 static void reportUndefinedSymbol(const UndefinedDiag
&undef
,
697 bool correctSpelling
) {
698 Undefined
&sym
= *undef
.sym
;
700 auto visibility
= [&]() -> std::string
{
701 switch (sym
.visibility()) {
714 switch (config
->ekind
) {
716 msg
= maybeReportDiscarded
<ELF32LE
>(sym
);
719 msg
= maybeReportDiscarded
<ELF32BE
>(sym
);
722 msg
= maybeReportDiscarded
<ELF64LE
>(sym
);
725 msg
= maybeReportDiscarded
<ELF64BE
>(sym
);
728 llvm_unreachable("");
731 msg
= "undefined " + visibility() + "symbol: " + toString(sym
);
733 const size_t maxUndefReferences
= 3;
735 for (UndefinedDiag::Loc l
: undef
.locs
) {
736 if (i
>= maxUndefReferences
)
738 InputSectionBase
&sec
= *l
.sec
;
739 uint64_t offset
= l
.offset
;
741 msg
+= "\n>>> referenced by ";
742 std::string src
= sec
.getSrcMsg(sym
, offset
);
744 msg
+= src
+ "\n>>> ";
745 msg
+= sec
.getObjMsg(offset
);
749 if (i
< undef
.locs
.size())
750 msg
+= ("\n>>> referenced " + Twine(undef
.locs
.size() - i
) + " more times")
753 if (correctSpelling
) {
754 std::string pre_hint
= ": ", post_hint
;
755 if (const Symbol
*corrected
=
756 getAlternativeSpelling(sym
, pre_hint
, post_hint
)) {
757 msg
+= "\n>>> did you mean" + pre_hint
+ toString(*corrected
) + post_hint
;
759 msg
+= "\n>>> defined in: " + toString(corrected
->file
);
763 if (sym
.getName().starts_with("_ZTV"))
765 "\n>>> the vtable symbol may be undefined because the class is missing "
766 "its key function (see https://lld.llvm.org/missingkeyfunction)";
767 if (config
->gcSections
&& config
->zStartStopGC
&&
768 sym
.getName().starts_with("__start_")) {
769 msg
+= "\n>>> the encapsulation symbol needs to be retained under "
770 "--gc-sections properly; consider -z nostart-stop-gc "
771 "(see https://lld.llvm.org/ELF/start-stop-gc)";
777 error(msg
, ErrorTag::SymbolNotFound
, {sym
.getName()});
780 void elf::reportUndefinedSymbols() {
781 // Find the first "undefined symbol" diagnostic for each diagnostic, and
782 // collect all "referenced from" lines at the first diagnostic.
783 DenseMap
<Symbol
*, UndefinedDiag
*> firstRef
;
784 for (UndefinedDiag
&undef
: undefs
) {
785 assert(undef
.locs
.size() == 1);
786 if (UndefinedDiag
*canon
= firstRef
.lookup(undef
.sym
)) {
787 canon
->locs
.push_back(undef
.locs
[0]);
790 firstRef
[undef
.sym
] = &undef
;
793 // Enable spell corrector for the first 2 diagnostics.
794 for (const auto &[i
, undef
] : llvm::enumerate(undefs
))
795 if (!undef
.locs
.empty())
796 reportUndefinedSymbol(undef
, i
< 2);
800 // Report an undefined symbol if necessary.
801 // Returns true if the undefined symbol will produce an error message.
802 static bool maybeReportUndefined(Undefined
&sym
, InputSectionBase
&sec
,
804 std::lock_guard
<std::mutex
> lock(relocMutex
);
805 // If versioned, issue an error (even if the symbol is weak) because we don't
806 // know the defining filename which is required to construct a Verneed entry.
807 if (sym
.hasVersionSuffix
) {
808 undefs
.push_back({&sym
, {{&sec
, offset
}}, false});
814 bool canBeExternal
= !sym
.isLocal() && sym
.visibility() == STV_DEFAULT
;
815 if (config
->unresolvedSymbols
== UnresolvedPolicy::Ignore
&& canBeExternal
)
818 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
819 // which references a switch table in a discarded .rodata/.text section. The
820 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
821 // spec says references from outside the group to a STB_LOCAL symbol are not
822 // allowed. Work around the bug.
824 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
825 // because .LC0-.LTOC is not representable if the two labels are in different
827 if (sym
.discardedSecIdx
!= 0 && (sec
.name
== ".got2" || sec
.name
== ".toc"))
831 (config
->unresolvedSymbols
== UnresolvedPolicy::Warn
&& canBeExternal
) ||
832 config
->noinhibitExec
;
833 undefs
.push_back({&sym
, {{&sec
, offset
}}, isWarning
});
837 // MIPS N32 ABI treats series of successive relocations with the same offset
838 // as a single relocation. The similar approach used by N64 ABI, but this ABI
839 // packs all relocations into the single relocation record. Here we emulate
840 // this for the N32 ABI. Iterate over relocation with the same offset and put
841 // theirs types into the single bit-set.
842 template <class RelTy
>
843 RelType
RelocationScanner::getMipsN32RelType(RelTy
*&rel
) const {
845 uint64_t offset
= rel
->r_offset
;
848 while (rel
!= static_cast<const RelTy
*>(end
) && rel
->r_offset
== offset
)
849 type
|= (rel
++)->getType(config
->isMips64EL
) << (8 * n
++);
853 template <bool shard
= false>
854 static void addRelativeReloc(InputSectionBase
&isec
, uint64_t offsetInSec
,
855 Symbol
&sym
, int64_t addend
, RelExpr expr
,
857 Partition
&part
= isec
.getPartition();
859 if (sym
.isTagged()) {
860 std::lock_guard
<std::mutex
> lock(relocMutex
);
861 part
.relaDyn
->addRelativeReloc(target
->relativeRel
, isec
, offsetInSec
, sym
,
863 // With MTE globals, we always want to derive the address tag by `ldg`-ing
864 // the symbol. When we have a RELATIVE relocation though, we no longer have
865 // a reference to the symbol. Because of this, when we have an addend that
866 // puts the result of the RELATIVE relocation out-of-bounds of the symbol
867 // (e.g. the addend is outside of [0, sym.getSize()]), the AArch64 MemtagABI
868 // says we should store the offset to the start of the symbol in the target
869 // field. This is described in further detail in:
870 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative
871 if (addend
< 0 || static_cast<uint64_t>(addend
) >= sym
.getSize())
872 isec
.relocations
.push_back({expr
, type
, offsetInSec
, addend
, &sym
});
876 // Add a relative relocation. If relrDyn section is enabled, and the
877 // relocation offset is guaranteed to be even, add the relocation to
878 // the relrDyn section, otherwise add it to the relaDyn section.
879 // relrDyn sections don't support odd offsets. Also, relrDyn sections
880 // don't store the addend values, so we must write it to the relocated
882 if (part
.relrDyn
&& isec
.addralign
>= 2 && offsetInSec
% 2 == 0) {
883 isec
.addReloc({expr
, type
, offsetInSec
, addend
, &sym
});
885 part
.relrDyn
->relocsVec
[parallel::getThreadIndex()].push_back(
886 {&isec
, offsetInSec
});
888 part
.relrDyn
->relocs
.push_back({&isec
, offsetInSec
});
891 part
.relaDyn
->addRelativeReloc
<shard
>(target
->relativeRel
, isec
, offsetInSec
,
892 sym
, addend
, type
, expr
);
895 template <class PltSection
, class GotPltSection
>
896 static void addPltEntry(PltSection
&plt
, GotPltSection
&gotPlt
,
897 RelocationBaseSection
&rel
, RelType type
, Symbol
&sym
) {
899 gotPlt
.addEntry(sym
);
900 rel
.addReloc({type
, &gotPlt
, sym
.getGotPltOffset(),
901 sym
.isPreemptible
? DynamicReloc::AgainstSymbol
902 : DynamicReloc::AddendOnlyWithTargetVA
,
906 void elf::addGotEntry(Symbol
&sym
) {
907 in
.got
->addEntry(sym
);
908 uint64_t off
= sym
.getGotOffset();
910 // If preemptible, emit a GLOB_DAT relocation.
911 if (sym
.isPreemptible
) {
912 mainPart
->relaDyn
->addReloc({target
->gotRel
, in
.got
.get(), off
,
913 DynamicReloc::AgainstSymbol
, sym
, 0, R_ABS
});
917 // Otherwise, the value is either a link-time constant or the load base
919 if (!config
->isPic
|| isAbsolute(sym
))
920 in
.got
->addConstant({R_ABS
, target
->symbolicRel
, off
, 0, &sym
});
922 addRelativeReloc(*in
.got
, off
, sym
, 0, R_ABS
, target
->symbolicRel
);
925 static void addTpOffsetGotEntry(Symbol
&sym
) {
926 in
.got
->addEntry(sym
);
927 uint64_t off
= sym
.getGotOffset();
928 if (!sym
.isPreemptible
&& !config
->isPic
) {
929 in
.got
->addConstant({R_TPREL
, target
->symbolicRel
, off
, 0, &sym
});
932 mainPart
->relaDyn
->addAddendOnlyRelocIfNonPreemptible(
933 target
->tlsGotRel
, *in
.got
, off
, sym
, target
->symbolicRel
);
936 // Return true if we can define a symbol in the executable that
937 // contains the value/function of a symbol defined in a shared
939 static bool canDefineSymbolInExecutable(Symbol
&sym
) {
940 // If the symbol has default visibility the symbol defined in the
941 // executable will preempt it.
942 // Note that we want the visibility of the shared symbol itself, not
943 // the visibility of the symbol in the output file we are producing.
944 if (!sym
.dsoProtected
)
947 // If we are allowed to break address equality of functions, defining
948 // a plt entry will allow the program to call the function in the
949 // .so, but the .so and the executable will no agree on the address
950 // of the function. Similar logic for objects.
951 return ((sym
.isFunc() && config
->ignoreFunctionAddressEquality
) ||
952 (sym
.isObject() && config
->ignoreDataAddressEquality
));
955 // Returns true if a given relocation can be computed at link-time.
956 // This only handles relocation types expected in processAux.
958 // For instance, we know the offset from a relocation to its target at
959 // link-time if the relocation is PC-relative and refers a
960 // non-interposable function in the same executable. This function
961 // will return true for such relocation.
963 // If this function returns false, that means we need to emit a
964 // dynamic relocation so that the relocation will be fixed at load-time.
965 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e
, RelType type
,
967 uint64_t relOff
) const {
968 // These expressions always compute a constant
969 if (oneof
<R_GOTPLT
, R_GOT_OFF
, R_RELAX_HINT
, R_MIPS_GOT_LOCAL_PAGE
,
970 R_MIPS_GOTREL
, R_MIPS_GOT_OFF
, R_MIPS_GOT_OFF32
, R_MIPS_GOT_GP_PC
,
971 R_AARCH64_GOT_PAGE_PC
, R_GOT_PC
, R_GOTONLY_PC
, R_GOTPLTONLY_PC
,
972 R_PLT_PC
, R_PLT_GOTPLT
, R_PPC32_PLTREL
, R_PPC64_CALL_PLT
,
973 R_PPC64_RELAX_TOC
, R_RISCV_ADD
, R_AARCH64_GOT_PAGE
,
974 R_LOONGARCH_PLT_PAGE_PC
, R_LOONGARCH_GOT
, R_LOONGARCH_GOT_PAGE_PC
>(
978 // These never do, except if the entire file is position dependent or if
979 // only the low bits are used.
980 if (e
== R_GOT
|| e
== R_PLT
)
981 return target
->usesOnlyLowPageBits(type
) || !config
->isPic
;
983 if (sym
.isPreemptible
)
988 // The size of a non preemptible symbol is a constant.
992 // For the target and the relocation, we want to know if they are
993 // absolute or relative.
994 bool absVal
= isAbsoluteValue(sym
);
995 bool relE
= isRelExpr(e
);
1000 if (!absVal
&& !relE
)
1001 return target
->usesOnlyLowPageBits(type
);
1003 assert(absVal
&& relE
);
1005 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
1006 // in PIC mode. This is a little strange, but it allows us to link function
1007 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
1008 // Normally such a call will be guarded with a comparison, which will load a
1009 // zero from the GOT.
1010 if (sym
.isUndefWeak())
1013 // We set the final symbols values for linker script defined symbols later.
1014 // They always can be computed as a link time constant.
1015 if (sym
.scriptDefined
)
1018 error("relocation " + toString(type
) + " cannot refer to absolute symbol: " +
1019 toString(sym
) + getLocation(*sec
, sym
, relOff
));
1023 // The reason we have to do this early scan is as follows
1024 // * To mmap the output file, we need to know the size
1025 // * For that, we need to know how many dynamic relocs we will have.
1026 // It might be possible to avoid this by outputting the file with write:
1027 // * Write the allocated output sections, computing addresses.
1028 // * Apply relocations, recording which ones require a dynamic reloc.
1029 // * Write the dynamic relocations.
1030 // * Write the rest of the file.
1031 // This would have some drawbacks. For example, we would only know if .rela.dyn
1032 // is needed after applying relocations. If it is, it will go after rw and rx
1033 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1034 // complicates things for the dynamic linker and means we would have to reserve
1035 // space for the extra PT_LOAD even if we end up not using it.
1036 void RelocationScanner::processAux(RelExpr expr
, RelType type
, uint64_t offset
,
1037 Symbol
&sym
, int64_t addend
) const {
1038 // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT
1040 const bool isIfunc
= sym
.isGnuIFunc();
1041 if (!sym
.isPreemptible
&& (!isIfunc
|| config
->zIfuncNoplt
)) {
1042 if (expr
!= R_GOT_PC
) {
1043 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1044 // stub type. It should be ignored if optimized to R_PC.
1045 if (config
->emachine
== EM_PPC
&& expr
== R_PPC32_PLTREL
)
1047 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1048 // call __tls_get_addr even if the symbol is non-preemptible.
1049 if (!(config
->emachine
== EM_HEXAGON
&&
1050 (type
== R_HEX_GD_PLT_B22_PCREL
||
1051 type
== R_HEX_GD_PLT_B22_PCREL_X
||
1052 type
== R_HEX_GD_PLT_B32_PCREL_X
)))
1053 expr
= fromPlt(expr
);
1054 } else if (!isAbsoluteValue(sym
)) {
1056 target
->adjustGotPcExpr(type
, addend
, sec
->content().data() + offset
);
1057 // If the target adjusted the expression to R_RELAX_GOT_PC, we may end up
1058 // needing the GOT if we can't relax everything.
1059 if (expr
== R_RELAX_GOT_PC
)
1060 in
.got
->hasGotOffRel
.store(true, std::memory_order_relaxed
);
1064 // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1065 // direct relocation on through.
1066 if (LLVM_UNLIKELY(isIfunc
) && config
->zIfuncNoplt
) {
1067 std::lock_guard
<std::mutex
> lock(relocMutex
);
1068 sym
.exportDynamic
= true;
1069 mainPart
->relaDyn
->addSymbolReloc(type
, *sec
, offset
, sym
, addend
, type
);
1073 if (needsGot(expr
)) {
1074 if (config
->emachine
== EM_MIPS
) {
1075 // MIPS ABI has special rules to process GOT entries and doesn't
1076 // require relocation entries for them. A special case is TLS
1077 // relocations. In that case dynamic loader applies dynamic
1078 // relocations to initialize TLS GOT entries.
1079 // See "Global Offset Table" in Chapter 5 in the following document
1080 // for detailed description:
1081 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1082 in
.mipsGot
->addEntry(*sec
->file
, sym
, addend
, expr
);
1083 } else if (!sym
.isTls() || config
->emachine
!= EM_LOONGARCH
) {
1084 // Many LoongArch TLS relocs reuse the R_LOONGARCH_GOT type, in which
1085 // case the NEEDS_GOT flag shouldn't get set.
1086 sym
.setFlags(NEEDS_GOT
);
1088 } else if (needsPlt(expr
)) {
1089 sym
.setFlags(NEEDS_PLT
);
1090 } else if (LLVM_UNLIKELY(isIfunc
)) {
1091 sym
.setFlags(HAS_DIRECT_RELOC
);
1094 // If the relocation is known to be a link-time constant, we know no dynamic
1095 // relocation will be created, pass the control to relocateAlloc() or
1096 // relocateNonAlloc() to resolve it.
1098 // The behavior of an undefined weak reference is implementation defined. For
1099 // non-link-time constants, we resolve relocations statically (let
1100 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1101 // relocations for -pie and -shared.
1103 // The general expectation of -no-pie static linking is that there is no
1104 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1105 // -shared matches the spirit of its -z undefs default. -pie has freedom on
1106 // choices, and we choose dynamic relocations to be consistent with the
1107 // handling of GOT-generating relocations.
1108 if (isStaticLinkTimeConstant(expr
, type
, sym
, offset
) ||
1109 (!config
->isPic
&& sym
.isUndefWeak())) {
1110 sec
->addReloc({expr
, type
, offset
, addend
, &sym
});
1114 // Use a simple -z notext rule that treats all sections except .eh_frame as
1115 // writable. GNU ld does not produce dynamic relocations in .eh_frame (and our
1116 // SectionBase::getOffset would incorrectly adjust the offset).
1118 // For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel
1119 // conversion. We still emit a dynamic relocation.
1120 bool canWrite
= (sec
->flags
& SHF_WRITE
) ||
1122 (isa
<EhInputSection
>(sec
) && config
->emachine
!= EM_MIPS
));
1124 RelType rel
= target
->getDynRel(type
);
1125 if (oneof
<R_GOT
, R_LOONGARCH_GOT
>(expr
) ||
1126 (rel
== target
->symbolicRel
&& !sym
.isPreemptible
)) {
1127 addRelativeReloc
<true>(*sec
, offset
, sym
, addend
, expr
, type
);
1129 } else if (rel
!= 0) {
1130 if (config
->emachine
== EM_MIPS
&& rel
== target
->symbolicRel
)
1131 rel
= target
->relativeRel
;
1132 std::lock_guard
<std::mutex
> lock(relocMutex
);
1133 sec
->getPartition().relaDyn
->addSymbolReloc(rel
, *sec
, offset
, sym
,
1136 // MIPS ABI turns using of GOT and dynamic relocations inside out.
1137 // While regular ABI uses dynamic relocations to fill up GOT entries
1138 // MIPS ABI requires dynamic linker to fills up GOT entries using
1139 // specially sorted dynamic symbol table. This affects even dynamic
1140 // relocations against symbols which do not require GOT entries
1141 // creation explicitly, i.e. do not have any GOT-relocations. So if
1142 // a preemptible symbol has a dynamic relocation we anyway have
1143 // to create a GOT entry for it.
1144 // If a non-preemptible symbol has a dynamic relocation against it,
1145 // dynamic linker takes it st_value, adds offset and writes down
1146 // result of the dynamic relocation. In case of preemptible symbol
1147 // dynamic linker performs symbol resolution, writes the symbol value
1148 // to the GOT entry and reads the GOT entry when it needs to perform
1149 // a dynamic relocation.
1150 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1151 if (config
->emachine
== EM_MIPS
)
1152 in
.mipsGot
->addEntry(*sec
->file
, sym
, addend
, expr
);
1157 // When producing an executable, we can perform copy relocations (for
1158 // STT_OBJECT) and canonical PLT (for STT_FUNC).
1159 if (!config
->shared
) {
1160 if (!canDefineSymbolInExecutable(sym
)) {
1161 errorOrWarn("cannot preempt symbol: " + toString(sym
) +
1162 getLocation(*sec
, sym
, offset
));
1166 if (sym
.isObject()) {
1167 // Produce a copy relocation.
1168 if (auto *ss
= dyn_cast
<SharedSymbol
>(&sym
)) {
1169 if (!config
->zCopyreloc
)
1170 error("unresolvable relocation " + toString(type
) +
1171 " against symbol '" + toString(*ss
) +
1172 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1173 getLocation(*sec
, sym
, offset
));
1174 sym
.setFlags(NEEDS_COPY
);
1176 sec
->addReloc({expr
, type
, offset
, addend
, &sym
});
1180 // This handles a non PIC program call to function in a shared library. In
1181 // an ideal world, we could just report an error saying the relocation can
1182 // overflow at runtime. In the real world with glibc, crt1.o has a
1183 // R_X86_64_PC32 pointing to libc.so.
1185 // The general idea on how to handle such cases is to create a PLT entry and
1186 // use that as the function value.
1188 // For the static linking part, we just return a plt expr and everything
1189 // else will use the PLT entry as the address.
1191 // The remaining problem is making sure pointer equality still works. We
1192 // need the help of the dynamic linker for that. We let it know that we have
1193 // a direct reference to a so symbol by creating an undefined symbol with a
1194 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1195 // the value of the symbol we created. This is true even for got entries, so
1196 // pointer equality is maintained. To avoid an infinite loop, the only entry
1197 // that points to the real function is a dedicated got entry used by the
1198 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1199 // R_386_JMP_SLOT, etc).
1201 // For position independent executable on i386, the plt entry requires ebx
1202 // to be set. This causes two problems:
1203 // * If some code has a direct reference to a function, it was probably
1204 // compiled without -fPIE/-fPIC and doesn't maintain ebx.
1205 // * If a library definition gets preempted to the executable, it will have
1206 // the wrong ebx value.
1208 if (config
->pie
&& config
->emachine
== EM_386
)
1209 errorOrWarn("symbol '" + toString(sym
) +
1210 "' cannot be preempted; recompile with -fPIE" +
1211 getLocation(*sec
, sym
, offset
));
1212 sym
.setFlags(NEEDS_COPY
| NEEDS_PLT
);
1213 sec
->addReloc({expr
, type
, offset
, addend
, &sym
});
1218 errorOrWarn("relocation " + toString(type
) + " cannot be used against " +
1219 (sym
.getName().empty() ? "local symbol"
1220 : "symbol '" + toString(sym
) + "'") +
1221 "; recompile with -fPIC" + getLocation(*sec
, sym
, offset
));
1224 // This function is similar to the `handleTlsRelocation`. MIPS does not
1225 // support any relaxations for TLS relocations so by factoring out MIPS
1226 // handling in to the separate function we can simplify the code and do not
1227 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1228 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1229 // without dynamic relocations.
1230 static unsigned handleMipsTlsRelocation(RelType type
, Symbol
&sym
,
1231 InputSectionBase
&c
, uint64_t offset
,
1232 int64_t addend
, RelExpr expr
) {
1233 if (expr
== R_MIPS_TLSLD
) {
1234 in
.mipsGot
->addTlsIndex(*c
.file
);
1235 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1238 if (expr
== R_MIPS_TLSGD
) {
1239 in
.mipsGot
->addDynTlsEntry(*c
.file
, sym
);
1240 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1246 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1247 // require the generation of a pair of GOT entries that have associated dynamic
1248 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1249 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1250 // symbol in TLS block.
1252 // Returns the number of relocations processed.
1253 static unsigned handleTlsRelocation(RelType type
, Symbol
&sym
,
1254 InputSectionBase
&c
, uint64_t offset
,
1255 int64_t addend
, RelExpr expr
) {
1256 if (expr
== R_TPREL
|| expr
== R_TPREL_NEG
) {
1257 if (config
->shared
) {
1258 errorOrWarn("relocation " + toString(type
) + " against " + toString(sym
) +
1259 " cannot be used with -shared" + getLocation(c
, sym
, offset
));
1265 if (config
->emachine
== EM_MIPS
)
1266 return handleMipsTlsRelocation(type
, sym
, c
, offset
, addend
, expr
);
1268 if (oneof
<R_AARCH64_TLSDESC_PAGE
, R_TLSDESC
, R_TLSDESC_CALL
, R_TLSDESC_PC
,
1269 R_TLSDESC_GOTPLT
>(expr
) &&
1271 if (expr
!= R_TLSDESC_CALL
) {
1272 sym
.setFlags(NEEDS_TLSDESC
);
1273 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1278 // ARM, Hexagon, LoongArch and RISC-V do not support GD/LD to IE/LE
1280 // For PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1281 // relaxation as well.
1282 bool toExecRelax
= !config
->shared
&& config
->emachine
!= EM_ARM
&&
1283 config
->emachine
!= EM_HEXAGON
&&
1284 config
->emachine
!= EM_LOONGARCH
&&
1285 config
->emachine
!= EM_RISCV
&&
1286 !c
.file
->ppc64DisableTLSRelax
;
1288 // If we are producing an executable and the symbol is non-preemptable, it
1289 // must be defined and the code sequence can be relaxed to use Local-Exec.
1291 // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1292 // we can omit the DTPMOD dynamic relocations and resolve them at link time
1293 // because them are always 1. This may be necessary for static linking as
1294 // DTPMOD may not be expected at load time.
1295 bool isLocalInExecutable
= !sym
.isPreemptible
&& !config
->shared
;
1297 // Local Dynamic is for access to module local TLS variables, while still
1298 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1299 // module index, with a special value of 0 for the current module. GOT[e1] is
1300 // unused. There only needs to be one module index entry.
1301 if (oneof
<R_TLSLD_GOT
, R_TLSLD_GOTPLT
, R_TLSLD_PC
, R_TLSLD_HINT
>(expr
)) {
1302 // Local-Dynamic relocs can be relaxed to Local-Exec.
1304 c
.addReloc({target
->adjustTlsExpr(type
, R_RELAX_TLS_LD_TO_LE
), type
,
1305 offset
, addend
, &sym
});
1306 return target
->getTlsGdRelaxSkip(type
);
1308 if (expr
== R_TLSLD_HINT
)
1310 ctx
.needsTlsLd
.store(true, std::memory_order_relaxed
);
1311 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1315 // Local-Dynamic relocs can be relaxed to Local-Exec.
1316 if (expr
== R_DTPREL
) {
1318 expr
= target
->adjustTlsExpr(type
, R_RELAX_TLS_LD_TO_LE
);
1319 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1323 // Local-Dynamic sequence where offset of tls variable relative to dynamic
1324 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
1325 if (expr
== R_TLSLD_GOT_OFF
) {
1326 sym
.setFlags(NEEDS_GOT_DTPREL
);
1327 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1331 if (oneof
<R_AARCH64_TLSDESC_PAGE
, R_TLSDESC
, R_TLSDESC_CALL
, R_TLSDESC_PC
,
1332 R_TLSDESC_GOTPLT
, R_TLSGD_GOT
, R_TLSGD_GOTPLT
, R_TLSGD_PC
,
1333 R_LOONGARCH_TLSGD_PAGE_PC
>(expr
)) {
1335 sym
.setFlags(NEEDS_TLSGD
);
1336 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1340 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
1341 // depending on the symbol being locally defined or not.
1342 if (sym
.isPreemptible
) {
1343 sym
.setFlags(NEEDS_TLSGD_TO_IE
);
1344 c
.addReloc({target
->adjustTlsExpr(type
, R_RELAX_TLS_GD_TO_IE
), type
,
1345 offset
, addend
, &sym
});
1347 c
.addReloc({target
->adjustTlsExpr(type
, R_RELAX_TLS_GD_TO_LE
), type
,
1348 offset
, addend
, &sym
});
1350 return target
->getTlsGdRelaxSkip(type
);
1353 if (oneof
<R_GOT
, R_GOTPLT
, R_GOT_PC
, R_AARCH64_GOT_PAGE_PC
,
1354 R_LOONGARCH_GOT_PAGE_PC
, R_GOT_OFF
, R_TLSIE_HINT
>(expr
)) {
1355 ctx
.hasTlsIe
.store(true, std::memory_order_relaxed
);
1356 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
1358 if (toExecRelax
&& isLocalInExecutable
) {
1359 c
.addReloc({R_RELAX_TLS_IE_TO_LE
, type
, offset
, addend
, &sym
});
1360 } else if (expr
!= R_TLSIE_HINT
) {
1361 sym
.setFlags(NEEDS_TLSIE
);
1362 // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1363 if (expr
== R_GOT
&& config
->isPic
&& !target
->usesOnlyLowPageBits(type
))
1364 addRelativeReloc
<true>(c
, offset
, sym
, addend
, expr
, type
);
1366 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1374 template <class ELFT
, class RelTy
> void RelocationScanner::scanOne(RelTy
*&i
) {
1375 const RelTy
&rel
= *i
;
1376 uint32_t symIndex
= rel
.getSymbol(config
->isMips64EL
);
1377 Symbol
&sym
= sec
->getFile
<ELFT
>()->getSymbol(symIndex
);
1379 if (config
->mipsN32Abi
) {
1380 type
= getMipsN32RelType(i
);
1382 type
= rel
.getType(config
->isMips64EL
);
1385 // Get an offset in an output section this relocation is applied to.
1386 uint64_t offset
= getter
.get(rel
.r_offset
);
1387 if (offset
== uint64_t(-1))
1390 RelExpr expr
= target
->getRelExpr(type
, sym
, sec
->content().data() + offset
);
1391 int64_t addend
= RelTy::IsRela
1392 ? getAddend
<ELFT
>(rel
)
1393 : target
->getImplicitAddend(
1394 sec
->content().data() + rel
.r_offset
, type
);
1395 if (LLVM_UNLIKELY(config
->emachine
== EM_MIPS
))
1396 addend
+= computeMipsAddend
<ELFT
>(rel
, expr
, sym
.isLocal());
1397 else if (config
->emachine
== EM_PPC64
&& config
->isPic
&& type
== R_PPC64_TOC
)
1398 addend
+= getPPC64TocBase();
1400 // Ignore R_*_NONE and other marker relocations.
1404 // Error if the target symbol is undefined. Symbol index 0 may be used by
1405 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1406 if (sym
.isUndefined() && symIndex
!= 0 &&
1407 maybeReportUndefined(cast
<Undefined
>(sym
), *sec
, offset
))
1410 if (config
->emachine
== EM_PPC64
) {
1411 // We can separate the small code model relocations into 2 categories:
1412 // 1) Those that access the compiler generated .toc sections.
1413 // 2) Those that access the linker allocated got entries.
1414 // lld allocates got entries to symbols on demand. Since we don't try to
1415 // sort the got entries in any way, we don't have to track which objects
1416 // have got-based small code model relocs. The .toc sections get placed
1417 // after the end of the linker allocated .got section and we do sort those
1418 // so sections addressed with small code model relocations come first.
1419 if (type
== R_PPC64_TOC16
|| type
== R_PPC64_TOC16_DS
)
1420 sec
->file
->ppc64SmallCodeModelTocRelocs
= true;
1422 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1423 // InputSectionBase::relocateAlloc().
1424 if (type
== R_PPC64_TOC16_LO
&& sym
.isSection() && isa
<Defined
>(sym
) &&
1425 cast
<Defined
>(sym
).section
->name
== ".toc")
1426 ppc64noTocRelax
.insert({&sym
, addend
});
1428 if ((type
== R_PPC64_TLSGD
&& expr
== R_TLSDESC_CALL
) ||
1429 (type
== R_PPC64_TLSLD
&& expr
== R_TLSLD_HINT
)) {
1431 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1433 getLocation(*sec
, sym
, offset
));
1437 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1438 // so we can discern it later from the toc-case.
1439 if (i
->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC
)
1444 // If the relocation does not emit a GOT or GOTPLT entry but its computation
1445 // uses their addresses, we need GOT or GOTPLT to be created.
1447 // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1448 if (oneof
<R_GOTPLTONLY_PC
, R_GOTPLTREL
, R_GOTPLT
, R_PLT_GOTPLT
,
1449 R_TLSDESC_GOTPLT
, R_TLSGD_GOTPLT
>(expr
)) {
1450 in
.gotPlt
->hasGotPltOffRel
.store(true, std::memory_order_relaxed
);
1451 } else if (oneof
<R_GOTONLY_PC
, R_GOTREL
, R_PPC32_PLTREL
, R_PPC64_TOCBASE
,
1452 R_PPC64_RELAX_TOC
>(expr
)) {
1453 in
.got
->hasGotOffRel
.store(true, std::memory_order_relaxed
);
1456 // Process TLS relocations, including relaxing TLS relocations. Note that
1457 // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1459 if (unsigned processed
=
1460 handleTlsRelocation(type
, sym
, *sec
, offset
, addend
, expr
)) {
1466 processAux(expr
, type
, offset
, sym
, addend
);
1469 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1470 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1471 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1472 // instructions are generated by very old IBM XL compilers. Work around the
1473 // issue by disabling GD/LD to IE/LE relaxation.
1474 template <class RelTy
>
1475 static void checkPPC64TLSRelax(InputSectionBase
&sec
, ArrayRef
<RelTy
> rels
) {
1476 // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1477 if (!sec
.file
|| sec
.file
->ppc64DisableTLSRelax
)
1479 bool hasGDLD
= false;
1480 for (const RelTy
&rel
: rels
) {
1481 RelType type
= rel
.getType(false);
1485 return; // Found a marker
1486 case R_PPC64_GOT_TLSGD16
:
1487 case R_PPC64_GOT_TLSGD16_HA
:
1488 case R_PPC64_GOT_TLSGD16_HI
:
1489 case R_PPC64_GOT_TLSGD16_LO
:
1490 case R_PPC64_GOT_TLSLD16
:
1491 case R_PPC64_GOT_TLSLD16_HA
:
1492 case R_PPC64_GOT_TLSLD16_HI
:
1493 case R_PPC64_GOT_TLSLD16_LO
:
1499 sec
.file
->ppc64DisableTLSRelax
= true;
1500 warn(toString(sec
.file
) +
1501 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1502 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1506 template <class ELFT
, class RelTy
>
1507 void RelocationScanner::scan(ArrayRef
<RelTy
> rels
) {
1508 // Not all relocations end up in Sec->Relocations, but a lot do.
1509 sec
->relocations
.reserve(rels
.size());
1511 if (config
->emachine
== EM_PPC64
)
1512 checkPPC64TLSRelax
<RelTy
>(*sec
, rels
);
1514 // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1515 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1516 // script), the relocations may be unordered.
1517 SmallVector
<RelTy
, 0> storage
;
1518 if (isa
<EhInputSection
>(sec
))
1519 rels
= sortRels(rels
, storage
);
1521 end
= static_cast<const void *>(rels
.end());
1522 for (auto i
= rels
.begin(); i
!= end
;)
1525 // Sort relocations by offset for more efficient searching for
1526 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1527 if (config
->emachine
== EM_RISCV
||
1528 (config
->emachine
== EM_PPC64
&& sec
->name
== ".toc"))
1529 llvm::stable_sort(sec
->relocs(),
1530 [](const Relocation
&lhs
, const Relocation
&rhs
) {
1531 return lhs
.offset
< rhs
.offset
;
1535 template <class ELFT
> void RelocationScanner::scanSection(InputSectionBase
&s
) {
1537 getter
= OffsetGetter(s
);
1538 const RelsOrRelas
<ELFT
> rels
= s
.template relsOrRelas
<ELFT
>();
1539 if (rels
.areRelocsRel())
1540 scan
<ELFT
>(rels
.rels
);
1542 scan
<ELFT
>(rels
.relas
);
1545 template <class ELFT
> void elf::scanRelocations() {
1546 // Scan all relocations. Each relocation goes through a series of tests to
1547 // determine if it needs special treatment, such as creating GOT, PLT,
1548 // copy relocations, etc. Note that relocations for non-alloc sections are
1549 // directly processed by InputSection::relocateNonAlloc.
1551 // Deterministic parallellism needs sorting relocations which is unsuitable
1552 // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable
1554 bool serial
= !config
->zCombreloc
|| config
->emachine
== EM_MIPS
||
1555 config
->emachine
== EM_PPC64
;
1556 parallel::TaskGroup tg
;
1557 for (ELFFileBase
*f
: ctx
.objectFiles
) {
1559 RelocationScanner scanner
;
1560 for (InputSectionBase
*s
: f
->getSections()) {
1561 if (s
&& s
->kind() == SectionBase::Regular
&& s
->isLive() &&
1562 (s
->flags
& SHF_ALLOC
) &&
1563 !(s
->type
== SHT_ARM_EXIDX
&& config
->emachine
== EM_ARM
))
1564 scanner
.template scanSection
<ELFT
>(*s
);
1567 tg
.spawn(fn
, serial
);
1571 RelocationScanner scanner
;
1572 for (Partition
&part
: partitions
) {
1573 for (EhInputSection
*sec
: part
.ehFrame
->sections
)
1574 scanner
.template scanSection
<ELFT
>(*sec
);
1575 if (part
.armExidx
&& part
.armExidx
->isLive())
1576 for (InputSection
*sec
: part
.armExidx
->exidxSections
)
1578 scanner
.template scanSection
<ELFT
>(*sec
);
1583 static bool handleNonPreemptibleIfunc(Symbol
&sym
, uint16_t flags
) {
1584 // Handle a reference to a non-preemptible ifunc. These are special in a
1587 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1588 // a fixed value. But assuming that all references to the ifunc are
1589 // GOT-generating or PLT-generating, the handling of an ifunc is
1590 // relatively straightforward. We create a PLT entry in Iplt, which is
1591 // usually at the end of .plt, which makes an indirect call using a
1592 // matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1593 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1594 // which is usually at the end of .rela.plt. Unlike most relocations in
1595 // .rela.plt, which may be evaluated lazily without -z now, dynamic
1596 // loaders evaluate IRELATIVE relocs eagerly, which means that for
1597 // IRELATIVE relocs only, GOT-generating relocations can point directly to
1598 // .got.plt without requiring a separate GOT entry.
1600 // - Despite the fact that an ifunc does not have a fixed value, compilers
1601 // that are not passed -fPIC will assume that they do, and will emit
1602 // direct (non-GOT-generating, non-PLT-generating) relocations to the
1603 // symbol. This means that if a direct relocation to the symbol is
1604 // seen, the linker must set a value for the symbol, and this value must
1605 // be consistent no matter what type of reference is made to the symbol.
1606 // This can be done by creating a PLT entry for the symbol in the way
1607 // described above and making it canonical, that is, making all references
1608 // point to the PLT entry instead of the resolver. In lld we also store
1609 // the address of the PLT entry in the dynamic symbol table, which means
1610 // that the symbol will also have the same value in other modules.
1611 // Because the value loaded from the GOT needs to be consistent with
1612 // the value computed using a direct relocation, a non-preemptible ifunc
1613 // may end up with two GOT entries, one in .got.plt that points to the
1614 // address returned by the resolver and is used only by the PLT entry,
1615 // and another in .got that points to the PLT entry and is used by
1616 // GOT-generating relocations.
1618 // - The fact that these symbols do not have a fixed value makes them an
1619 // exception to the general rule that a statically linked executable does
1620 // not require any form of dynamic relocation. To handle these relocations
1621 // correctly, the IRELATIVE relocations are stored in an array which a
1622 // statically linked executable's startup code must enumerate using the
1623 // linker-defined symbols __rela?_iplt_{start,end}.
1624 if (!sym
.isGnuIFunc() || sym
.isPreemptible
|| config
->zIfuncNoplt
)
1626 // Skip unreferenced non-preemptible ifunc.
1627 if (!(flags
& (NEEDS_GOT
| NEEDS_PLT
| HAS_DIRECT_RELOC
)))
1630 sym
.isInIplt
= true;
1632 // Create an Iplt and the associated IRELATIVE relocation pointing to the
1633 // original section/value pairs. For non-GOT non-PLT relocation case below, we
1634 // may alter section/value, so create a copy of the symbol to make
1635 // section/value fixed.
1636 auto *directSym
= makeDefined(cast
<Defined
>(sym
));
1637 directSym
->allocateAux();
1638 addPltEntry(*in
.iplt
, *in
.igotPlt
, *in
.relaIplt
, target
->iRelativeRel
,
1641 symAux
.back().pltIdx
= symAux
[directSym
->auxIdx
].pltIdx
;
1643 if (flags
& HAS_DIRECT_RELOC
) {
1644 // Change the value to the IPLT and redirect all references to it.
1645 auto &d
= cast
<Defined
>(sym
);
1646 d
.section
= in
.iplt
.get();
1647 d
.value
= d
.getPltIdx() * target
->ipltEntrySize
;
1649 // It's important to set the symbol type here so that dynamic loaders
1650 // don't try to call the PLT as if it were an ifunc resolver.
1653 if (flags
& NEEDS_GOT
)
1655 } else if (flags
& NEEDS_GOT
) {
1656 // Redirect GOT accesses to point to the Igot.
1657 sym
.gotInIgot
= true;
1662 void elf::postScanRelocations() {
1663 auto fn
= [](Symbol
&sym
) {
1664 auto flags
= sym
.flags
.load(std::memory_order_relaxed
);
1665 if (handleNonPreemptibleIfunc(sym
, flags
))
1668 if (sym
.isTagged() && sym
.isDefined())
1669 mainPart
->memtagDescriptors
->addSymbol(sym
);
1671 if (!sym
.needsDynReloc())
1675 if (flags
& NEEDS_GOT
)
1677 if (flags
& NEEDS_PLT
)
1678 addPltEntry(*in
.plt
, *in
.gotPlt
, *in
.relaPlt
, target
->pltRel
, sym
);
1679 if (flags
& NEEDS_COPY
) {
1680 if (sym
.isObject()) {
1681 invokeELFT(addCopyRelSymbol
, cast
<SharedSymbol
>(sym
));
1682 // NEEDS_COPY is cleared for sym and its aliases so that in
1683 // later iterations aliases won't cause redundant copies.
1684 assert(!sym
.hasFlag(NEEDS_COPY
));
1686 assert(sym
.isFunc() && sym
.hasFlag(NEEDS_PLT
));
1687 if (!sym
.isDefined()) {
1688 replaceWithDefined(sym
, *in
.plt
,
1689 target
->pltHeaderSize
+
1690 target
->pltEntrySize
* sym
.getPltIdx(),
1692 sym
.setFlags(NEEDS_COPY
);
1693 if (config
->emachine
== EM_PPC
) {
1694 // PPC32 canonical PLT entries are at the beginning of .glink
1695 cast
<Defined
>(sym
).value
= in
.plt
->headerSize
;
1696 in
.plt
->headerSize
+= 16;
1697 cast
<PPC32GlinkSection
>(*in
.plt
).canonical_plts
.push_back(&sym
);
1705 bool isLocalInExecutable
= !sym
.isPreemptible
&& !config
->shared
;
1706 GotSection
*got
= in
.got
.get();
1708 if (flags
& NEEDS_TLSDESC
) {
1709 got
->addTlsDescEntry(sym
);
1710 mainPart
->relaDyn
->addAddendOnlyRelocIfNonPreemptible(
1711 target
->tlsDescRel
, *got
, got
->getTlsDescOffset(sym
), sym
,
1712 target
->tlsDescRel
);
1714 if (flags
& NEEDS_TLSGD
) {
1715 got
->addDynTlsEntry(sym
);
1716 uint64_t off
= got
->getGlobalDynOffset(sym
);
1717 if (isLocalInExecutable
)
1718 // Write one to the GOT slot.
1719 got
->addConstant({R_ADDEND
, target
->symbolicRel
, off
, 1, &sym
});
1721 mainPart
->relaDyn
->addSymbolReloc(target
->tlsModuleIndexRel
, *got
, off
,
1724 // If the symbol is preemptible we need the dynamic linker to write
1726 uint64_t offsetOff
= off
+ config
->wordsize
;
1727 if (sym
.isPreemptible
)
1728 mainPart
->relaDyn
->addSymbolReloc(target
->tlsOffsetRel
, *got
, offsetOff
,
1731 got
->addConstant({R_ABS
, target
->tlsOffsetRel
, offsetOff
, 0, &sym
});
1733 if (flags
& NEEDS_TLSGD_TO_IE
) {
1735 mainPart
->relaDyn
->addSymbolReloc(target
->tlsGotRel
, *got
,
1736 sym
.getGotOffset(), sym
);
1738 if (flags
& NEEDS_GOT_DTPREL
) {
1741 {R_ABS
, target
->tlsOffsetRel
, sym
.getGotOffset(), 0, &sym
});
1744 if ((flags
& NEEDS_TLSIE
) && !(flags
& NEEDS_TLSGD_TO_IE
))
1745 addTpOffsetGotEntry(sym
);
1748 GotSection
*got
= in
.got
.get();
1749 if (ctx
.needsTlsLd
.load(std::memory_order_relaxed
) && got
->addTlsIndex()) {
1750 static Undefined
dummy(nullptr, "", STB_LOCAL
, 0, 0);
1752 mainPart
->relaDyn
->addReloc(
1753 {target
->tlsModuleIndexRel
, got
, got
->getTlsIndexOff()});
1756 {R_ADDEND
, target
->symbolicRel
, got
->getTlsIndexOff(), 1, &dummy
});
1759 assert(symAux
.size() == 1);
1760 for (Symbol
*sym
: symtab
.getSymbols())
1763 // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1764 // handling. They don't need regular PLT.
1765 for (ELFFileBase
*file
: ctx
.objectFiles
)
1766 for (Symbol
*sym
: file
->getLocalSymbols())
1770 static bool mergeCmp(const InputSection
*a
, const InputSection
*b
) {
1771 // std::merge requires a strict weak ordering.
1772 if (a
->outSecOff
< b
->outSecOff
)
1775 // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection.
1776 if (a
->outSecOff
== b
->outSecOff
&& a
!= b
) {
1777 auto *ta
= dyn_cast
<ThunkSection
>(a
);
1778 auto *tb
= dyn_cast
<ThunkSection
>(b
);
1780 // Check if Thunk is immediately before any specific Target
1781 // InputSection for example Mips LA25 Thunks.
1782 if (ta
&& ta
->getTargetInputSection() == b
)
1785 // Place Thunk Sections without specific targets before
1786 // non-Thunk Sections.
1787 if (ta
&& !tb
&& !ta
->getTargetInputSection())
1794 // Call Fn on every executable InputSection accessed via the linker script
1795 // InputSectionDescription::Sections.
1796 static void forEachInputSectionDescription(
1797 ArrayRef
<OutputSection
*> outputSections
,
1798 llvm::function_ref
<void(OutputSection
*, InputSectionDescription
*)> fn
) {
1799 for (OutputSection
*os
: outputSections
) {
1800 if (!(os
->flags
& SHF_ALLOC
) || !(os
->flags
& SHF_EXECINSTR
))
1802 for (SectionCommand
*bc
: os
->commands
)
1803 if (auto *isd
= dyn_cast
<InputSectionDescription
>(bc
))
1808 // Thunk Implementation
1810 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1811 // of code that the linker inserts inbetween a caller and a callee. The thunks
1812 // are added at link time rather than compile time as the decision on whether
1813 // a thunk is needed, such as the caller and callee being out of range, can only
1814 // be made at link time.
1816 // It is straightforward to tell given the current state of the program when a
1817 // thunk is needed for a particular call. The more difficult part is that
1818 // the thunk needs to be placed in the program such that the caller can reach
1819 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1820 // the program alters addresses, which can mean more thunks etc.
1822 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1823 // The decision to have a ThunkSection act as a container means that we can
1824 // more easily handle the most common case of a single block of contiguous
1825 // Thunks by inserting just a single ThunkSection.
1827 // The implementation of Thunks in lld is split across these areas
1828 // Relocations.cpp : Framework for creating and placing thunks
1829 // Thunks.cpp : The code generated for each supported thunk
1830 // Target.cpp : Target specific hooks that the framework uses to decide when
1832 // Synthetic.cpp : Implementation of ThunkSection
1833 // Writer.cpp : Iteratively call framework until no more Thunks added
1835 // Thunk placement requirements:
1836 // Mips LA25 thunks. These must be placed immediately before the callee section
1837 // We can assume that the caller is in range of the Thunk. These are modelled
1838 // by Thunks that return the section they must precede with
1839 // getTargetInputSection().
1841 // ARM interworking and range extension thunks. These thunks must be placed
1842 // within range of the caller. All implemented ARM thunks can always reach the
1843 // callee as they use an indirect jump via a register that has no range
1846 // Thunk placement algorithm:
1847 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1848 // getTargetInputSection().
1850 // For thunks that must be placed within range of the caller there are many
1851 // possible choices given that the maximum range from the caller is usually
1852 // much larger than the average InputSection size. Desirable properties include:
1853 // - Maximize reuse of thunks by multiple callers
1854 // - Minimize number of ThunkSections to simplify insertion
1855 // - Handle impact of already added Thunks on addresses
1856 // - Simple to understand and implement
1858 // In lld for the first pass, we pre-create one or more ThunkSections per
1859 // InputSectionDescription at Target specific intervals. A ThunkSection is
1860 // placed so that the estimated end of the ThunkSection is within range of the
1861 // start of the InputSectionDescription or the previous ThunkSection. For
1863 // InputSectionDescription
1873 // The intention is that we can add a Thunk to a ThunkSection that is well
1874 // spaced enough to service a number of callers without having to do a lot
1875 // of work. An important principle is that it is not an error if a Thunk cannot
1876 // be placed in a pre-created ThunkSection; when this happens we create a new
1877 // ThunkSection placed next to the caller. This allows us to handle the vast
1878 // majority of thunks simply, but also handle rare cases where the branch range
1879 // is smaller than the target specific spacing.
1881 // The algorithm is expected to create all the thunks that are needed in a
1882 // single pass, with a small number of programs needing a second pass due to
1883 // the insertion of thunks in the first pass increasing the offset between
1884 // callers and callees that were only just in range.
1886 // A consequence of allowing new ThunkSections to be created outside of the
1887 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1888 // range in pass K, are out of range in some pass > K due to the insertion of
1889 // more Thunks in between the caller and callee. When this happens we retarget
1890 // the relocation back to the original target and create another Thunk.
1892 // Remove ThunkSections that are empty, this should only be the initial set
1893 // precreated on pass 0.
1895 // Insert the Thunks for OutputSection OS into their designated place
1896 // in the Sections vector, and recalculate the InputSection output section
1898 // This may invalidate any output section offsets stored outside of InputSection
1899 void ThunkCreator::mergeThunks(ArrayRef
<OutputSection
*> outputSections
) {
1900 forEachInputSectionDescription(
1901 outputSections
, [&](OutputSection
*os
, InputSectionDescription
*isd
) {
1902 if (isd
->thunkSections
.empty())
1905 // Remove any zero sized precreated Thunks.
1906 llvm::erase_if(isd
->thunkSections
,
1907 [](const std::pair
<ThunkSection
*, uint32_t> &ts
) {
1908 return ts
.first
->getSize() == 0;
1911 // ISD->ThunkSections contains all created ThunkSections, including
1912 // those inserted in previous passes. Extract the Thunks created this
1913 // pass and order them in ascending outSecOff.
1914 std::vector
<ThunkSection
*> newThunks
;
1915 for (std::pair
<ThunkSection
*, uint32_t> ts
: isd
->thunkSections
)
1916 if (ts
.second
== pass
)
1917 newThunks
.push_back(ts
.first
);
1918 llvm::stable_sort(newThunks
,
1919 [](const ThunkSection
*a
, const ThunkSection
*b
) {
1920 return a
->outSecOff
< b
->outSecOff
;
1923 // Merge sorted vectors of Thunks and InputSections by outSecOff
1924 SmallVector
<InputSection
*, 0> tmp
;
1925 tmp
.reserve(isd
->sections
.size() + newThunks
.size());
1927 std::merge(isd
->sections
.begin(), isd
->sections
.end(),
1928 newThunks
.begin(), newThunks
.end(), std::back_inserter(tmp
),
1931 isd
->sections
= std::move(tmp
);
1935 static int64_t getPCBias(RelType type
) {
1936 if (config
->emachine
!= EM_ARM
)
1939 case R_ARM_THM_JUMP19
:
1940 case R_ARM_THM_JUMP24
:
1941 case R_ARM_THM_CALL
:
1948 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1949 // is in range of Src. An ISD maps to a range of InputSections described by a
1950 // linker script section pattern such as { .text .text.* }.
1951 ThunkSection
*ThunkCreator::getISDThunkSec(OutputSection
*os
,
1953 InputSectionDescription
*isd
,
1954 const Relocation
&rel
,
1956 // See the comment in getThunk for -pcBias below.
1957 const int64_t pcBias
= getPCBias(rel
.type
);
1958 for (std::pair
<ThunkSection
*, uint32_t> tp
: isd
->thunkSections
) {
1959 ThunkSection
*ts
= tp
.first
;
1960 uint64_t tsBase
= os
->addr
+ ts
->outSecOff
- pcBias
;
1961 uint64_t tsLimit
= tsBase
+ ts
->getSize();
1962 if (target
->inBranchRange(rel
.type
, src
,
1963 (src
> tsLimit
) ? tsBase
: tsLimit
))
1967 // No suitable ThunkSection exists. This can happen when there is a branch
1968 // with lower range than the ThunkSection spacing or when there are too
1969 // many Thunks. Create a new ThunkSection as close to the InputSection as
1970 // possible. Error if InputSection is so large we cannot place ThunkSection
1971 // anywhere in Range.
1972 uint64_t thunkSecOff
= isec
->outSecOff
;
1973 if (!target
->inBranchRange(rel
.type
, src
,
1974 os
->addr
+ thunkSecOff
+ rel
.addend
)) {
1975 thunkSecOff
= isec
->outSecOff
+ isec
->getSize();
1976 if (!target
->inBranchRange(rel
.type
, src
,
1977 os
->addr
+ thunkSecOff
+ rel
.addend
))
1978 fatal("InputSection too large for range extension thunk " +
1979 isec
->getObjMsg(src
- (os
->addr
+ isec
->outSecOff
)));
1981 return addThunkSection(os
, isd
, thunkSecOff
);
1984 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1985 // precedes its Target.
1986 ThunkSection
*ThunkCreator::getISThunkSec(InputSection
*isec
) {
1987 ThunkSection
*ts
= thunkedSections
.lookup(isec
);
1991 // Find InputSectionRange within Target Output Section (TOS) that the
1992 // InputSection (IS) that we need to precede is in.
1993 OutputSection
*tos
= isec
->getParent();
1994 for (SectionCommand
*bc
: tos
->commands
) {
1995 auto *isd
= dyn_cast
<InputSectionDescription
>(bc
);
1996 if (!isd
|| isd
->sections
.empty())
1999 InputSection
*first
= isd
->sections
.front();
2000 InputSection
*last
= isd
->sections
.back();
2002 if (isec
->outSecOff
< first
->outSecOff
|| last
->outSecOff
< isec
->outSecOff
)
2005 ts
= addThunkSection(tos
, isd
, isec
->outSecOff
);
2006 thunkedSections
[isec
] = ts
;
2013 // Create one or more ThunkSections per OS that can be used to place Thunks.
2014 // We attempt to place the ThunkSections using the following desirable
2016 // - Within range of the maximum number of callers
2017 // - Minimise the number of ThunkSections
2019 // We follow a simple but conservative heuristic to place ThunkSections at
2020 // offsets that are multiples of a Target specific branch range.
2021 // For an InputSectionDescription that is smaller than the range, a single
2022 // ThunkSection at the end of the range will do.
2024 // For an InputSectionDescription that is more than twice the size of the range,
2025 // we place the last ThunkSection at range bytes from the end of the
2026 // InputSectionDescription in order to increase the likelihood that the
2027 // distance from a thunk to its target will be sufficiently small to
2028 // allow for the creation of a short thunk.
2029 void ThunkCreator::createInitialThunkSections(
2030 ArrayRef
<OutputSection
*> outputSections
) {
2031 uint32_t thunkSectionSpacing
= target
->getThunkSectionSpacing();
2033 forEachInputSectionDescription(
2034 outputSections
, [&](OutputSection
*os
, InputSectionDescription
*isd
) {
2035 if (isd
->sections
.empty())
2038 uint32_t isdBegin
= isd
->sections
.front()->outSecOff
;
2040 isd
->sections
.back()->outSecOff
+ isd
->sections
.back()->getSize();
2041 uint32_t lastThunkLowerBound
= -1;
2042 if (isdEnd
- isdBegin
> thunkSectionSpacing
* 2)
2043 lastThunkLowerBound
= isdEnd
- thunkSectionSpacing
;
2046 uint32_t prevIsecLimit
= isdBegin
;
2047 uint32_t thunkUpperBound
= isdBegin
+ thunkSectionSpacing
;
2049 for (const InputSection
*isec
: isd
->sections
) {
2050 isecLimit
= isec
->outSecOff
+ isec
->getSize();
2051 if (isecLimit
> thunkUpperBound
) {
2052 addThunkSection(os
, isd
, prevIsecLimit
);
2053 thunkUpperBound
= prevIsecLimit
+ thunkSectionSpacing
;
2055 if (isecLimit
> lastThunkLowerBound
)
2057 prevIsecLimit
= isecLimit
;
2059 addThunkSection(os
, isd
, isecLimit
);
2063 ThunkSection
*ThunkCreator::addThunkSection(OutputSection
*os
,
2064 InputSectionDescription
*isd
,
2066 auto *ts
= make
<ThunkSection
>(os
, off
);
2067 ts
->partition
= os
->partition
;
2068 if ((config
->fixCortexA53Errata843419
|| config
->fixCortexA8
) &&
2069 !isd
->sections
.empty()) {
2070 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
2071 // thunks we disturb the base addresses of sections placed after the thunks
2072 // this makes patches we have generated redundant, and may cause us to
2073 // generate more patches as different instructions are now in sensitive
2074 // locations. When we generate more patches we may force more branches to
2075 // go out of range, causing more thunks to be generated. In pathological
2076 // cases this can cause the address dependent content pass not to converge.
2077 // We fix this by rounding up the size of the ThunkSection to 4KiB, this
2078 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2079 // which means that adding Thunks to the section does not invalidate
2080 // errata patches for following code.
2081 // Rounding up the size to 4KiB has consequences for code-size and can
2082 // trip up linker script defined assertions. For example the linux kernel
2083 // has an assertion that what LLD represents as an InputSectionDescription
2084 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2085 // We use the heuristic of rounding up the size when both of the following
2086 // conditions are true:
2087 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2088 // accounts for the case where no single InputSectionDescription is
2089 // larger than the OutputSection size. This is conservative but simple.
2090 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2091 // any assertion failures that an InputSectionDescription is < 4 KiB
2093 uint64_t isdSize
= isd
->sections
.back()->outSecOff
+
2094 isd
->sections
.back()->getSize() -
2095 isd
->sections
.front()->outSecOff
;
2096 if (os
->size
> target
->getThunkSectionSpacing() && isdSize
> 4096)
2097 ts
->roundUpSizeForErrata
= true;
2099 isd
->thunkSections
.push_back({ts
, pass
});
2103 static bool isThunkSectionCompatible(InputSection
*source
,
2104 SectionBase
*target
) {
2105 // We can't reuse thunks in different loadable partitions because they might
2106 // not be loaded. But partition 1 (the main partition) will always be loaded.
2107 if (source
->partition
!= target
->partition
)
2108 return target
->partition
== 1;
2112 std::pair
<Thunk
*, bool> ThunkCreator::getThunk(InputSection
*isec
,
2113 Relocation
&rel
, uint64_t src
) {
2114 std::vector
<Thunk
*> *thunkVec
= nullptr;
2115 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2116 // out in the relocation addend. We compensate for the PC bias so that
2117 // an Arm and Thumb relocation to the same destination get the same keyAddend,
2118 // which is usually 0.
2119 const int64_t pcBias
= getPCBias(rel
.type
);
2120 const int64_t keyAddend
= rel
.addend
+ pcBias
;
2122 // We use a ((section, offset), addend) pair to find the thunk position if
2123 // possible so that we create only one thunk for aliased symbols or ICFed
2124 // sections. There may be multiple relocations sharing the same (section,
2125 // offset + addend) pair. We may revert the relocation back to its original
2126 // non-Thunk target, so we cannot fold offset + addend.
2127 if (auto *d
= dyn_cast
<Defined
>(rel
.sym
))
2128 if (!d
->isInPlt() && d
->section
)
2129 thunkVec
= &thunkedSymbolsBySectionAndAddend
[{{d
->section
, d
->value
},
2132 thunkVec
= &thunkedSymbols
[{rel
.sym
, keyAddend
}];
2134 // Check existing Thunks for Sym to see if they can be reused
2135 for (Thunk
*t
: *thunkVec
)
2136 if (isThunkSectionCompatible(isec
, t
->getThunkTargetSym()->section
) &&
2137 t
->isCompatibleWith(*isec
, rel
) &&
2138 target
->inBranchRange(rel
.type
, src
,
2139 t
->getThunkTargetSym()->getVA(-pcBias
)))
2140 return std::make_pair(t
, false);
2142 // No existing compatible Thunk in range, create a new one
2143 Thunk
*t
= addThunk(*isec
, rel
);
2144 thunkVec
->push_back(t
);
2145 return std::make_pair(t
, true);
2148 // Return true if the relocation target is an in range Thunk.
2149 // Return false if the relocation is not to a Thunk. If the relocation target
2150 // was originally to a Thunk, but is no longer in range we revert the
2151 // relocation back to its original non-Thunk target.
2152 bool ThunkCreator::normalizeExistingThunk(Relocation
&rel
, uint64_t src
) {
2153 if (Thunk
*t
= thunks
.lookup(rel
.sym
)) {
2154 if (target
->inBranchRange(rel
.type
, src
, rel
.sym
->getVA(rel
.addend
)))
2156 rel
.sym
= &t
->destination
;
2157 rel
.addend
= t
->addend
;
2158 if (rel
.sym
->isInPlt())
2159 rel
.expr
= toPlt(rel
.expr
);
2164 // Process all relocations from the InputSections that have been assigned
2165 // to InputSectionDescriptions and redirect through Thunks if needed. The
2166 // function should be called iteratively until it returns false.
2169 // All InputSections that may need a Thunk are reachable from
2170 // OutputSectionCommands.
2172 // All OutputSections have an address and all InputSections have an offset
2173 // within the OutputSection.
2175 // The offsets between caller (relocation place) and callee
2176 // (relocation target) will not be modified outside of createThunks().
2179 // If return value is true then ThunkSections have been inserted into
2180 // OutputSections. All relocations that needed a Thunk based on the information
2181 // available to createThunks() on entry have been redirected to a Thunk. Note
2182 // that adding Thunks changes offsets between caller and callee so more Thunks
2185 // If return value is false then no more Thunks are needed, and createThunks has
2186 // made no changes. If the target requires range extension thunks, currently
2187 // ARM, then any future change in offset between caller and callee risks a
2188 // relocation out of range error.
2189 bool ThunkCreator::createThunks(uint32_t pass
,
2190 ArrayRef
<OutputSection
*> outputSections
) {
2192 bool addressesChanged
= false;
2194 if (pass
== 0 && target
->getThunkSectionSpacing())
2195 createInitialThunkSections(outputSections
);
2197 // Create all the Thunks and insert them into synthetic ThunkSections. The
2198 // ThunkSections are later inserted back into InputSectionDescriptions.
2199 // We separate the creation of ThunkSections from the insertion of the
2200 // ThunkSections as ThunkSections are not always inserted into the same
2201 // InputSectionDescription as the caller.
2202 forEachInputSectionDescription(
2203 outputSections
, [&](OutputSection
*os
, InputSectionDescription
*isd
) {
2204 for (InputSection
*isec
: isd
->sections
)
2205 for (Relocation
&rel
: isec
->relocs()) {
2206 uint64_t src
= isec
->getVA(rel
.offset
);
2208 // If we are a relocation to an existing Thunk, check if it is
2209 // still in range. If not then Rel will be altered to point to its
2210 // original target so another Thunk can be generated.
2211 if (pass
> 0 && normalizeExistingThunk(rel
, src
))
2214 if (!target
->needsThunk(rel
.expr
, rel
.type
, isec
->file
, src
,
2215 *rel
.sym
, rel
.addend
))
2220 std::tie(t
, isNew
) = getThunk(isec
, rel
, src
);
2223 // Find or create a ThunkSection for the new Thunk
2225 if (auto *tis
= t
->getTargetInputSection())
2226 ts
= getISThunkSec(tis
);
2228 ts
= getISDThunkSec(os
, isec
, isd
, rel
, src
);
2230 thunks
[t
->getThunkTargetSym()] = t
;
2233 // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2234 rel
.sym
= t
->getThunkTargetSym();
2235 rel
.expr
= fromPlt(rel
.expr
);
2237 // On AArch64 and PPC, a jump/call relocation may be encoded as
2238 // STT_SECTION + non-zero addend, clear the addend after
2240 if (config
->emachine
!= EM_MIPS
)
2241 rel
.addend
= -getPCBias(rel
.type
);
2244 for (auto &p
: isd
->thunkSections
)
2245 addressesChanged
|= p
.first
->assignOffsets();
2248 for (auto &p
: thunkedSections
)
2249 addressesChanged
|= p
.second
->assignOffsets();
2251 // Merge all created synthetic ThunkSections back into OutputSection
2252 mergeThunks(outputSections
);
2253 return addressesChanged
;
2256 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2257 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2259 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2260 bool elf::hexagonNeedsTLSSymbol(ArrayRef
<OutputSection
*> outputSections
) {
2261 bool needTlsSymbol
= false;
2262 forEachInputSectionDescription(
2263 outputSections
, [&](OutputSection
*os
, InputSectionDescription
*isd
) {
2264 for (InputSection
*isec
: isd
->sections
)
2265 for (Relocation
&rel
: isec
->relocs())
2266 if (rel
.sym
->type
== llvm::ELF::STT_TLS
&& rel
.expr
== R_PLT_PC
) {
2267 needTlsSymbol
= true;
2271 return needTlsSymbol
;
2274 void elf::hexagonTLSSymbolUpdate(ArrayRef
<OutputSection
*> outputSections
) {
2275 Symbol
*sym
= symtab
.find("__tls_get_addr");
2278 bool needEntry
= true;
2279 forEachInputSectionDescription(
2280 outputSections
, [&](OutputSection
*os
, InputSectionDescription
*isd
) {
2281 for (InputSection
*isec
: isd
->sections
)
2282 for (Relocation
&rel
: isec
->relocs())
2283 if (rel
.sym
->type
== llvm::ELF::STT_TLS
&& rel
.expr
== R_PLT_PC
) {
2286 addPltEntry(*in
.plt
, *in
.gotPlt
, *in
.relaPlt
, target
->pltRel
,
2295 template void elf::scanRelocations
<ELF32LE
>();
2296 template void elf::scanRelocations
<ELF32BE
>();
2297 template void elf::scanRelocations
<ELF64LE
>();
2298 template void elf::scanRelocations
<ELF64BE
>();