Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / ELF / Relocations.cpp
blobf3fb0c71a8b3064516313dd4765f7bbfd50ed41d
1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
23 // ELF defines a large number of complex relocations.
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
28 // - create GOT/PLT entries
29 // - create new relocations in .dynsym to let the dynamic linker resolve
30 // them at runtime (since ELF supports dynamic linking, not all
31 // relocations can be resolved at link-time)
32 // - create COPY relocs and reserve space in .bss
33 // - replace expensive relocs (in terms of runtime cost) with cheap ones
34 // - error out infeasible combinations such as PIC and non-relative relocs
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
41 //===----------------------------------------------------------------------===//
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "InputFiles.h"
46 #include "LinkerScript.h"
47 #include "OutputSections.h"
48 #include "SymbolTable.h"
49 #include "Symbols.h"
50 #include "SyntheticSections.h"
51 #include "Target.h"
52 #include "Thunks.h"
53 #include "lld/Common/ErrorHandler.h"
54 #include "lld/Common/Memory.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Demangle/Demangle.h"
58 #include "llvm/Support/Endian.h"
59 #include <algorithm>
61 using namespace llvm;
62 using namespace llvm::ELF;
63 using namespace llvm::object;
64 using namespace llvm::support::endian;
65 using namespace lld;
66 using namespace lld::elf;
68 static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69 for (SectionCommand *cmd : script->sectionCommands)
70 if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
71 if (assign->sym == &sym)
72 return assign->location;
73 return std::nullopt;
76 static std::string getDefinedLocation(const Symbol &sym) {
77 const char msg[] = "\n>>> defined in ";
78 if (sym.file)
79 return msg + toString(sym.file);
80 if (std::optional<std::string> loc = getLinkerScriptLocation(sym))
81 return msg + *loc;
82 return "";
85 // Construct a message in the following format.
87 // >>> defined in /home/alice/src/foo.o
88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89 // >>> /home/alice/src/bar.o:(.text+0x1)
90 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
91 uint64_t off) {
92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
93 std::string src = s.getSrcMsg(sym, off);
94 if (!src.empty())
95 msg += src + "\n>>> ";
96 return msg + s.getObjMsg(off);
99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
100 int64_t min, uint64_t max) {
101 ErrorPlace errPlace = getErrorPlace(loc);
102 std::string hint;
103 if (rel.sym) {
104 if (!rel.sym->isSection())
105 hint = "; references '" + lld::toString(*rel.sym) + '\'';
106 else if (auto *d = dyn_cast<Defined>(rel.sym))
107 hint = ("; references section '" + d->section->name + "'").str();
109 if (!errPlace.srcLoc.empty())
110 hint += "\n>>> referenced by " + errPlace.srcLoc;
111 if (rel.sym && !rel.sym->isSection())
112 hint += getDefinedLocation(*rel.sym);
114 if (errPlace.isec && errPlace.isec->name.starts_with(".debug"))
115 hint += "; consider recompiling with -fdebug-types-section to reduce size "
116 "of debug sections";
118 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
119 " out of range: " + v.str() + " is not in [" + Twine(min).str() +
120 ", " + Twine(max).str() + "]" + hint);
123 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
124 const Twine &msg) {
125 ErrorPlace errPlace = getErrorPlace(loc);
126 std::string hint;
127 if (!sym.getName().empty())
128 hint =
129 "; references '" + lld::toString(sym) + '\'' + getDefinedLocation(sym);
130 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
131 " is not in [" + Twine(llvm::minIntN(n)) + ", " +
132 Twine(llvm::maxIntN(n)) + "]" + hint);
135 // Build a bitmask with one bit set for each 64 subset of RelExpr.
136 static constexpr uint64_t buildMask() { return 0; }
138 template <typename... Tails>
139 static constexpr uint64_t buildMask(int head, Tails... tails) {
140 return (0 <= head && head < 64 ? uint64_t(1) << head : 0) |
141 buildMask(tails...);
144 // Return true if `Expr` is one of `Exprs`.
145 // There are more than 64 but less than 128 RelExprs, so we divide the set of
146 // exprs into [0, 64) and [64, 128) and represent each range as a constant
147 // 64-bit mask. Then we decide which mask to test depending on the value of
148 // expr and use a simple shift and bitwise-and to test for membership.
149 template <RelExpr... Exprs> static bool oneof(RelExpr expr) {
150 assert(0 <= expr && (int)expr < 128 &&
151 "RelExpr is too large for 128-bit mask!");
153 if (expr >= 64)
154 return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...);
155 return (uint64_t(1) << expr) & buildMask(Exprs...);
158 static RelType getMipsPairType(RelType type, bool isLocal) {
159 switch (type) {
160 case R_MIPS_HI16:
161 return R_MIPS_LO16;
162 case R_MIPS_GOT16:
163 // In case of global symbol, the R_MIPS_GOT16 relocation does not
164 // have a pair. Each global symbol has a unique entry in the GOT
165 // and a corresponding instruction with help of the R_MIPS_GOT16
166 // relocation loads an address of the symbol. In case of local
167 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
168 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
169 // relocations handle low 16 bits of the address. That allows
170 // to allocate only one GOT entry for every 64 KBytes of local data.
171 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
172 case R_MICROMIPS_GOT16:
173 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
174 case R_MIPS_PCHI16:
175 return R_MIPS_PCLO16;
176 case R_MICROMIPS_HI16:
177 return R_MICROMIPS_LO16;
178 default:
179 return R_MIPS_NONE;
183 // True if non-preemptable symbol always has the same value regardless of where
184 // the DSO is loaded.
185 static bool isAbsolute(const Symbol &sym) {
186 if (sym.isUndefWeak())
187 return true;
188 if (const auto *dr = dyn_cast<Defined>(&sym))
189 return dr->section == nullptr; // Absolute symbol.
190 return false;
193 static bool isAbsoluteValue(const Symbol &sym) {
194 return isAbsolute(sym) || sym.isTls();
197 // Returns true if Expr refers a PLT entry.
198 static bool needsPlt(RelExpr expr) {
199 return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_LOONGARCH_PLT_PAGE_PC,
200 R_PPC32_PLTREL, R_PPC64_CALL_PLT>(expr);
203 bool lld::elf::needsGot(RelExpr expr) {
204 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
205 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
206 R_AARCH64_GOT_PAGE, R_LOONGARCH_GOT, R_LOONGARCH_GOT_PAGE_PC>(
207 expr);
210 // True if this expression is of the form Sym - X, where X is a position in the
211 // file (PC, or GOT for example).
212 static bool isRelExpr(RelExpr expr) {
213 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
214 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
215 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC, R_LOONGARCH_PAGE_PC>(
216 expr);
219 static RelExpr toPlt(RelExpr expr) {
220 switch (expr) {
221 case R_LOONGARCH_PAGE_PC:
222 return R_LOONGARCH_PLT_PAGE_PC;
223 case R_PPC64_CALL:
224 return R_PPC64_CALL_PLT;
225 case R_PC:
226 return R_PLT_PC;
227 case R_ABS:
228 return R_PLT;
229 default:
230 return expr;
234 static RelExpr fromPlt(RelExpr expr) {
235 // We decided not to use a plt. Optimize a reference to the plt to a
236 // reference to the symbol itself.
237 switch (expr) {
238 case R_PLT_PC:
239 case R_PPC32_PLTREL:
240 return R_PC;
241 case R_LOONGARCH_PLT_PAGE_PC:
242 return R_LOONGARCH_PAGE_PC;
243 case R_PPC64_CALL_PLT:
244 return R_PPC64_CALL;
245 case R_PLT:
246 return R_ABS;
247 case R_PLT_GOTPLT:
248 return R_GOTPLTREL;
249 default:
250 return expr;
254 // Returns true if a given shared symbol is in a read-only segment in a DSO.
255 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
256 using Elf_Phdr = typename ELFT::Phdr;
258 // Determine if the symbol is read-only by scanning the DSO's program headers.
259 const auto &file = cast<SharedFile>(*ss.file);
260 for (const Elf_Phdr &phdr :
261 check(file.template getObj<ELFT>().program_headers()))
262 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
263 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
264 ss.value < phdr.p_vaddr + phdr.p_memsz)
265 return true;
266 return false;
269 // Returns symbols at the same offset as a given symbol, including SS itself.
271 // If two or more symbols are at the same offset, and at least one of
272 // them are copied by a copy relocation, all of them need to be copied.
273 // Otherwise, they would refer to different places at runtime.
274 template <class ELFT>
275 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
276 using Elf_Sym = typename ELFT::Sym;
278 const auto &file = cast<SharedFile>(*ss.file);
280 SmallSet<SharedSymbol *, 4> ret;
281 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
282 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
283 s.getType() == STT_TLS || s.st_value != ss.value)
284 continue;
285 StringRef name = check(s.getName(file.getStringTable()));
286 Symbol *sym = symtab.find(name);
287 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
288 ret.insert(alias);
291 // The loop does not check SHT_GNU_verneed, so ret does not contain
292 // non-default version symbols. If ss has a non-default version, ret won't
293 // contain ss. Just add ss unconditionally. If a non-default version alias is
294 // separately copy relocated, it and ss will have different addresses.
295 // Fortunately this case is impractical and fails with GNU ld as well.
296 ret.insert(&ss);
297 return ret;
300 // When a symbol is copy relocated or we create a canonical plt entry, it is
301 // effectively a defined symbol. In the case of copy relocation the symbol is
302 // in .bss and in the case of a canonical plt entry it is in .plt. This function
303 // replaces the existing symbol with a Defined pointing to the appropriate
304 // location.
305 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value,
306 uint64_t size) {
307 Symbol old = sym;
308 Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value,
309 size, &sec)
310 .overwrite(sym);
312 sym.verdefIndex = old.verdefIndex;
313 sym.exportDynamic = true;
314 sym.isUsedInRegularObj = true;
315 // A copy relocated alias may need a GOT entry.
316 sym.flags.store(old.flags.load(std::memory_order_relaxed) & NEEDS_GOT,
317 std::memory_order_relaxed);
320 // Reserve space in .bss or .bss.rel.ro for copy relocation.
322 // The copy relocation is pretty much a hack. If you use a copy relocation
323 // in your program, not only the symbol name but the symbol's size, RW/RO
324 // bit and alignment become part of the ABI. In addition to that, if the
325 // symbol has aliases, the aliases become part of the ABI. That's subtle,
326 // but if you violate that implicit ABI, that can cause very counter-
327 // intuitive consequences.
329 // So, what is the copy relocation? It's for linking non-position
330 // independent code to DSOs. In an ideal world, all references to data
331 // exported by DSOs should go indirectly through GOT. But if object files
332 // are compiled as non-PIC, all data references are direct. There is no
333 // way for the linker to transform the code to use GOT, as machine
334 // instructions are already set in stone in object files. This is where
335 // the copy relocation takes a role.
337 // A copy relocation instructs the dynamic linker to copy data from a DSO
338 // to a specified address (which is usually in .bss) at load-time. If the
339 // static linker (that's us) finds a direct data reference to a DSO
340 // symbol, it creates a copy relocation, so that the symbol can be
341 // resolved as if it were in .bss rather than in a DSO.
343 // As you can see in this function, we create a copy relocation for the
344 // dynamic linker, and the relocation contains not only symbol name but
345 // various other information about the symbol. So, such attributes become a
346 // part of the ABI.
348 // Note for application developers: I can give you a piece of advice if
349 // you are writing a shared library. You probably should export only
350 // functions from your library. You shouldn't export variables.
352 // As an example what can happen when you export variables without knowing
353 // the semantics of copy relocations, assume that you have an exported
354 // variable of type T. It is an ABI-breaking change to add new members at
355 // end of T even though doing that doesn't change the layout of the
356 // existing members. That's because the space for the new members are not
357 // reserved in .bss unless you recompile the main program. That means they
358 // are likely to overlap with other data that happens to be laid out next
359 // to the variable in .bss. This kind of issue is sometimes very hard to
360 // debug. What's a solution? Instead of exporting a variable V from a DSO,
361 // define an accessor getV().
362 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
363 // Copy relocation against zero-sized symbol doesn't make sense.
364 uint64_t symSize = ss.getSize();
365 if (symSize == 0 || ss.alignment == 0)
366 fatal("cannot create a copy relocation for symbol " + toString(ss));
368 // See if this symbol is in a read-only segment. If so, preserve the symbol's
369 // memory protection by reserving space in the .bss.rel.ro section.
370 bool isRO = isReadOnly<ELFT>(ss);
371 BssSection *sec =
372 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
373 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
375 // At this point, sectionBases has been migrated to sections. Append sec to
376 // sections.
377 if (osec->commands.empty() ||
378 !isa<InputSectionDescription>(osec->commands.back()))
379 osec->commands.push_back(make<InputSectionDescription>(""));
380 auto *isd = cast<InputSectionDescription>(osec->commands.back());
381 isd->sections.push_back(sec);
382 osec->commitSection(sec);
384 // Look through the DSO's dynamic symbol table for aliases and create a
385 // dynamic symbol for each one. This causes the copy relocation to correctly
386 // interpose any aliases.
387 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
388 replaceWithDefined(*sym, *sec, 0, sym->size);
390 mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss);
393 // .eh_frame sections are mergeable input sections, so their input
394 // offsets are not linearly mapped to output section. For each input
395 // offset, we need to find a section piece containing the offset and
396 // add the piece's base address to the input offset to compute the
397 // output offset. That isn't cheap.
399 // This class is to speed up the offset computation. When we process
400 // relocations, we access offsets in the monotonically increasing
401 // order. So we can optimize for that access pattern.
403 // For sections other than .eh_frame, this class doesn't do anything.
404 namespace {
405 class OffsetGetter {
406 public:
407 OffsetGetter() = default;
408 explicit OffsetGetter(InputSectionBase &sec) {
409 if (auto *eh = dyn_cast<EhInputSection>(&sec)) {
410 cies = eh->cies;
411 fdes = eh->fdes;
412 i = cies.begin();
413 j = fdes.begin();
417 // Translates offsets in input sections to offsets in output sections.
418 // Given offset must increase monotonically. We assume that Piece is
419 // sorted by inputOff.
420 uint64_t get(uint64_t off) {
421 if (cies.empty())
422 return off;
424 while (j != fdes.end() && j->inputOff <= off)
425 ++j;
426 auto it = j;
427 if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) {
428 while (i != cies.end() && i->inputOff <= off)
429 ++i;
430 if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off)
431 fatal(".eh_frame: relocation is not in any piece");
432 it = i;
435 // Offset -1 means that the piece is dead (i.e. garbage collected).
436 if (it[-1].outputOff == -1)
437 return -1;
438 return it[-1].outputOff + (off - it[-1].inputOff);
441 private:
442 ArrayRef<EhSectionPiece> cies, fdes;
443 ArrayRef<EhSectionPiece>::iterator i, j;
446 // This class encapsulates states needed to scan relocations for one
447 // InputSectionBase.
448 class RelocationScanner {
449 public:
450 template <class ELFT> void scanSection(InputSectionBase &s);
452 private:
453 InputSectionBase *sec;
454 OffsetGetter getter;
456 // End of relocations, used by Mips/PPC64.
457 const void *end = nullptr;
459 template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const;
460 template <class ELFT, class RelTy>
461 int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
462 bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
463 uint64_t relOff) const;
464 void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym,
465 int64_t addend) const;
466 template <class ELFT, class RelTy> void scanOne(RelTy *&i);
467 template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels);
469 } // namespace
471 // MIPS has an odd notion of "paired" relocations to calculate addends.
472 // For example, if a relocation is of R_MIPS_HI16, there must be a
473 // R_MIPS_LO16 relocation after that, and an addend is calculated using
474 // the two relocations.
475 template <class ELFT, class RelTy>
476 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr,
477 bool isLocal) const {
478 if (expr == R_MIPS_GOTREL && isLocal)
479 return sec->getFile<ELFT>()->mipsGp0;
481 // The ABI says that the paired relocation is used only for REL.
482 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
483 if (RelTy::IsRela)
484 return 0;
486 RelType type = rel.getType(config->isMips64EL);
487 uint32_t pairTy = getMipsPairType(type, isLocal);
488 if (pairTy == R_MIPS_NONE)
489 return 0;
491 const uint8_t *buf = sec->content().data();
492 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
494 // To make things worse, paired relocations might not be contiguous in
495 // the relocation table, so we need to do linear search. *sigh*
496 for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri)
497 if (ri->getType(config->isMips64EL) == pairTy &&
498 ri->getSymbol(config->isMips64EL) == symIndex)
499 return target->getImplicitAddend(buf + ri->r_offset, pairTy);
501 warn("can't find matching " + toString(pairTy) + " relocation for " +
502 toString(type));
503 return 0;
506 // Custom error message if Sym is defined in a discarded section.
507 template <class ELFT>
508 static std::string maybeReportDiscarded(Undefined &sym) {
509 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
510 if (!file || !sym.discardedSecIdx)
511 return "";
512 ArrayRef<typename ELFT::Shdr> objSections =
513 file->template getELFShdrs<ELFT>();
515 std::string msg;
516 if (sym.type == ELF::STT_SECTION) {
517 msg = "relocation refers to a discarded section: ";
518 msg += CHECK(
519 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
520 } else {
521 msg = "relocation refers to a symbol in a discarded section: " +
522 toString(sym);
524 msg += "\n>>> defined in " + toString(file);
526 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
527 if (elfSec.sh_type != SHT_GROUP)
528 return msg;
530 // If the discarded section is a COMDAT.
531 StringRef signature = file->getShtGroupSignature(objSections, elfSec);
532 if (const InputFile *prevailing =
533 symtab.comdatGroups.lookup(CachedHashStringRef(signature))) {
534 msg += "\n>>> section group signature: " + signature.str() +
535 "\n>>> prevailing definition is in " + toString(prevailing);
536 if (sym.nonPrevailing) {
537 msg += "\n>>> or the symbol in the prevailing group had STB_WEAK "
538 "binding and the symbol in a non-prevailing group had STB_GLOBAL "
539 "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding "
540 "signature is not supported";
543 return msg;
546 namespace {
547 // Undefined diagnostics are collected in a vector and emitted once all of
548 // them are known, so that some postprocessing on the list of undefined symbols
549 // can happen before lld emits diagnostics.
550 struct UndefinedDiag {
551 Undefined *sym;
552 struct Loc {
553 InputSectionBase *sec;
554 uint64_t offset;
556 std::vector<Loc> locs;
557 bool isWarning;
560 std::vector<UndefinedDiag> undefs;
561 std::mutex relocMutex;
564 // Check whether the definition name def is a mangled function name that matches
565 // the reference name ref.
566 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
567 llvm::ItaniumPartialDemangler d;
568 std::string name = def.str();
569 if (d.partialDemangle(name.c_str()))
570 return false;
571 char *buf = d.getFunctionName(nullptr, nullptr);
572 if (!buf)
573 return false;
574 bool ret = ref == buf;
575 free(buf);
576 return ret;
579 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
580 // the suggested symbol, which is either in the symbol table, or in the same
581 // file of sym.
582 static const Symbol *getAlternativeSpelling(const Undefined &sym,
583 std::string &pre_hint,
584 std::string &post_hint) {
585 DenseMap<StringRef, const Symbol *> map;
586 if (sym.file && sym.file->kind() == InputFile::ObjKind) {
587 auto *file = cast<ELFFileBase>(sym.file);
588 // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
589 // will give an error. Don't suggest an alternative spelling.
590 if (file && sym.discardedSecIdx != 0 &&
591 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
592 return nullptr;
594 // Build a map of local defined symbols.
595 for (const Symbol *s : sym.file->getSymbols())
596 if (s->isLocal() && s->isDefined() && !s->getName().empty())
597 map.try_emplace(s->getName(), s);
600 auto suggest = [&](StringRef newName) -> const Symbol * {
601 // If defined locally.
602 if (const Symbol *s = map.lookup(newName))
603 return s;
605 // If in the symbol table and not undefined.
606 if (const Symbol *s = symtab.find(newName))
607 if (!s->isUndefined())
608 return s;
610 return nullptr;
613 // This loop enumerates all strings of Levenshtein distance 1 as typo
614 // correction candidates and suggests the one that exists as a non-undefined
615 // symbol.
616 StringRef name = sym.getName();
617 for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
618 // Insert a character before name[i].
619 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
620 for (char c = '0'; c <= 'z'; ++c) {
621 newName[i] = c;
622 if (const Symbol *s = suggest(newName))
623 return s;
625 if (i == e)
626 break;
628 // Substitute name[i].
629 newName = std::string(name);
630 for (char c = '0'; c <= 'z'; ++c) {
631 newName[i] = c;
632 if (const Symbol *s = suggest(newName))
633 return s;
636 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
637 // common.
638 if (i + 1 < e) {
639 newName[i] = name[i + 1];
640 newName[i + 1] = name[i];
641 if (const Symbol *s = suggest(newName))
642 return s;
645 // Delete name[i].
646 newName = (name.substr(0, i) + name.substr(i + 1)).str();
647 if (const Symbol *s = suggest(newName))
648 return s;
651 // Case mismatch, e.g. Foo vs FOO.
652 for (auto &it : map)
653 if (name.equals_insensitive(it.first))
654 return it.second;
655 for (Symbol *sym : symtab.getSymbols())
656 if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
657 return sym;
659 // The reference may be a mangled name while the definition is not. Suggest a
660 // missing extern "C".
661 if (name.starts_with("_Z")) {
662 std::string buf = name.str();
663 llvm::ItaniumPartialDemangler d;
664 if (!d.partialDemangle(buf.c_str()))
665 if (char *buf = d.getFunctionName(nullptr, nullptr)) {
666 const Symbol *s = suggest(buf);
667 free(buf);
668 if (s) {
669 pre_hint = ": extern \"C\" ";
670 return s;
673 } else {
674 const Symbol *s = nullptr;
675 for (auto &it : map)
676 if (canSuggestExternCForCXX(name, it.first)) {
677 s = it.second;
678 break;
680 if (!s)
681 for (Symbol *sym : symtab.getSymbols())
682 if (canSuggestExternCForCXX(name, sym->getName())) {
683 s = sym;
684 break;
686 if (s) {
687 pre_hint = " to declare ";
688 post_hint = " as extern \"C\"?";
689 return s;
693 return nullptr;
696 static void reportUndefinedSymbol(const UndefinedDiag &undef,
697 bool correctSpelling) {
698 Undefined &sym = *undef.sym;
700 auto visibility = [&]() -> std::string {
701 switch (sym.visibility()) {
702 case STV_INTERNAL:
703 return "internal ";
704 case STV_HIDDEN:
705 return "hidden ";
706 case STV_PROTECTED:
707 return "protected ";
708 default:
709 return "";
713 std::string msg;
714 switch (config->ekind) {
715 case ELF32LEKind:
716 msg = maybeReportDiscarded<ELF32LE>(sym);
717 break;
718 case ELF32BEKind:
719 msg = maybeReportDiscarded<ELF32BE>(sym);
720 break;
721 case ELF64LEKind:
722 msg = maybeReportDiscarded<ELF64LE>(sym);
723 break;
724 case ELF64BEKind:
725 msg = maybeReportDiscarded<ELF64BE>(sym);
726 break;
727 default:
728 llvm_unreachable("");
730 if (msg.empty())
731 msg = "undefined " + visibility() + "symbol: " + toString(sym);
733 const size_t maxUndefReferences = 3;
734 size_t i = 0;
735 for (UndefinedDiag::Loc l : undef.locs) {
736 if (i >= maxUndefReferences)
737 break;
738 InputSectionBase &sec = *l.sec;
739 uint64_t offset = l.offset;
741 msg += "\n>>> referenced by ";
742 std::string src = sec.getSrcMsg(sym, offset);
743 if (!src.empty())
744 msg += src + "\n>>> ";
745 msg += sec.getObjMsg(offset);
746 i++;
749 if (i < undef.locs.size())
750 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
751 .str();
753 if (correctSpelling) {
754 std::string pre_hint = ": ", post_hint;
755 if (const Symbol *corrected =
756 getAlternativeSpelling(sym, pre_hint, post_hint)) {
757 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
758 if (corrected->file)
759 msg += "\n>>> defined in: " + toString(corrected->file);
763 if (sym.getName().starts_with("_ZTV"))
764 msg +=
765 "\n>>> the vtable symbol may be undefined because the class is missing "
766 "its key function (see https://lld.llvm.org/missingkeyfunction)";
767 if (config->gcSections && config->zStartStopGC &&
768 sym.getName().starts_with("__start_")) {
769 msg += "\n>>> the encapsulation symbol needs to be retained under "
770 "--gc-sections properly; consider -z nostart-stop-gc "
771 "(see https://lld.llvm.org/ELF/start-stop-gc)";
774 if (undef.isWarning)
775 warn(msg);
776 else
777 error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
780 void elf::reportUndefinedSymbols() {
781 // Find the first "undefined symbol" diagnostic for each diagnostic, and
782 // collect all "referenced from" lines at the first diagnostic.
783 DenseMap<Symbol *, UndefinedDiag *> firstRef;
784 for (UndefinedDiag &undef : undefs) {
785 assert(undef.locs.size() == 1);
786 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
787 canon->locs.push_back(undef.locs[0]);
788 undef.locs.clear();
789 } else
790 firstRef[undef.sym] = &undef;
793 // Enable spell corrector for the first 2 diagnostics.
794 for (const auto &[i, undef] : llvm::enumerate(undefs))
795 if (!undef.locs.empty())
796 reportUndefinedSymbol(undef, i < 2);
797 undefs.clear();
800 // Report an undefined symbol if necessary.
801 // Returns true if the undefined symbol will produce an error message.
802 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec,
803 uint64_t offset) {
804 std::lock_guard<std::mutex> lock(relocMutex);
805 // If versioned, issue an error (even if the symbol is weak) because we don't
806 // know the defining filename which is required to construct a Verneed entry.
807 if (sym.hasVersionSuffix) {
808 undefs.push_back({&sym, {{&sec, offset}}, false});
809 return true;
811 if (sym.isWeak())
812 return false;
814 bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT;
815 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
816 return false;
818 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
819 // which references a switch table in a discarded .rodata/.text section. The
820 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
821 // spec says references from outside the group to a STB_LOCAL symbol are not
822 // allowed. Work around the bug.
824 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
825 // because .LC0-.LTOC is not representable if the two labels are in different
826 // .got2
827 if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc"))
828 return false;
830 bool isWarning =
831 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
832 config->noinhibitExec;
833 undefs.push_back({&sym, {{&sec, offset}}, isWarning});
834 return !isWarning;
837 // MIPS N32 ABI treats series of successive relocations with the same offset
838 // as a single relocation. The similar approach used by N64 ABI, but this ABI
839 // packs all relocations into the single relocation record. Here we emulate
840 // this for the N32 ABI. Iterate over relocation with the same offset and put
841 // theirs types into the single bit-set.
842 template <class RelTy>
843 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const {
844 RelType type = 0;
845 uint64_t offset = rel->r_offset;
847 int n = 0;
848 while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset)
849 type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
850 return type;
853 template <bool shard = false>
854 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec,
855 Symbol &sym, int64_t addend, RelExpr expr,
856 RelType type) {
857 Partition &part = isec.getPartition();
859 if (sym.isTagged()) {
860 std::lock_guard<std::mutex> lock(relocMutex);
861 part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym,
862 addend, type, expr);
863 // With MTE globals, we always want to derive the address tag by `ldg`-ing
864 // the symbol. When we have a RELATIVE relocation though, we no longer have
865 // a reference to the symbol. Because of this, when we have an addend that
866 // puts the result of the RELATIVE relocation out-of-bounds of the symbol
867 // (e.g. the addend is outside of [0, sym.getSize()]), the AArch64 MemtagABI
868 // says we should store the offset to the start of the symbol in the target
869 // field. This is described in further detail in:
870 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative
871 if (addend < 0 || static_cast<uint64_t>(addend) >= sym.getSize())
872 isec.relocations.push_back({expr, type, offsetInSec, addend, &sym});
873 return;
876 // Add a relative relocation. If relrDyn section is enabled, and the
877 // relocation offset is guaranteed to be even, add the relocation to
878 // the relrDyn section, otherwise add it to the relaDyn section.
879 // relrDyn sections don't support odd offsets. Also, relrDyn sections
880 // don't store the addend values, so we must write it to the relocated
881 // address.
882 if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) {
883 isec.addReloc({expr, type, offsetInSec, addend, &sym});
884 if (shard)
885 part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back(
886 {&isec, offsetInSec});
887 else
888 part.relrDyn->relocs.push_back({&isec, offsetInSec});
889 return;
891 part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec,
892 sym, addend, type, expr);
895 template <class PltSection, class GotPltSection>
896 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt,
897 RelocationBaseSection &rel, RelType type, Symbol &sym) {
898 plt.addEntry(sym);
899 gotPlt.addEntry(sym);
900 rel.addReloc({type, &gotPlt, sym.getGotPltOffset(),
901 sym.isPreemptible ? DynamicReloc::AgainstSymbol
902 : DynamicReloc::AddendOnlyWithTargetVA,
903 sym, 0, R_ABS});
906 void elf::addGotEntry(Symbol &sym) {
907 in.got->addEntry(sym);
908 uint64_t off = sym.getGotOffset();
910 // If preemptible, emit a GLOB_DAT relocation.
911 if (sym.isPreemptible) {
912 mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off,
913 DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
914 return;
917 // Otherwise, the value is either a link-time constant or the load base
918 // plus a constant.
919 if (!config->isPic || isAbsolute(sym))
920 in.got->addConstant({R_ABS, target->symbolicRel, off, 0, &sym});
921 else
922 addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel);
925 static void addTpOffsetGotEntry(Symbol &sym) {
926 in.got->addEntry(sym);
927 uint64_t off = sym.getGotOffset();
928 if (!sym.isPreemptible && !config->isPic) {
929 in.got->addConstant({R_TPREL, target->symbolicRel, off, 0, &sym});
930 return;
932 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
933 target->tlsGotRel, *in.got, off, sym, target->symbolicRel);
936 // Return true if we can define a symbol in the executable that
937 // contains the value/function of a symbol defined in a shared
938 // library.
939 static bool canDefineSymbolInExecutable(Symbol &sym) {
940 // If the symbol has default visibility the symbol defined in the
941 // executable will preempt it.
942 // Note that we want the visibility of the shared symbol itself, not
943 // the visibility of the symbol in the output file we are producing.
944 if (!sym.dsoProtected)
945 return true;
947 // If we are allowed to break address equality of functions, defining
948 // a plt entry will allow the program to call the function in the
949 // .so, but the .so and the executable will no agree on the address
950 // of the function. Similar logic for objects.
951 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
952 (sym.isObject() && config->ignoreDataAddressEquality));
955 // Returns true if a given relocation can be computed at link-time.
956 // This only handles relocation types expected in processAux.
958 // For instance, we know the offset from a relocation to its target at
959 // link-time if the relocation is PC-relative and refers a
960 // non-interposable function in the same executable. This function
961 // will return true for such relocation.
963 // If this function returns false, that means we need to emit a
964 // dynamic relocation so that the relocation will be fixed at load-time.
965 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type,
966 const Symbol &sym,
967 uint64_t relOff) const {
968 // These expressions always compute a constant
969 if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE,
970 R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
971 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
972 R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT,
973 R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE,
974 R_LOONGARCH_PLT_PAGE_PC, R_LOONGARCH_GOT, R_LOONGARCH_GOT_PAGE_PC>(
976 return true;
978 // These never do, except if the entire file is position dependent or if
979 // only the low bits are used.
980 if (e == R_GOT || e == R_PLT)
981 return target->usesOnlyLowPageBits(type) || !config->isPic;
983 if (sym.isPreemptible)
984 return false;
985 if (!config->isPic)
986 return true;
988 // The size of a non preemptible symbol is a constant.
989 if (e == R_SIZE)
990 return true;
992 // For the target and the relocation, we want to know if they are
993 // absolute or relative.
994 bool absVal = isAbsoluteValue(sym);
995 bool relE = isRelExpr(e);
996 if (absVal && !relE)
997 return true;
998 if (!absVal && relE)
999 return true;
1000 if (!absVal && !relE)
1001 return target->usesOnlyLowPageBits(type);
1003 assert(absVal && relE);
1005 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
1006 // in PIC mode. This is a little strange, but it allows us to link function
1007 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
1008 // Normally such a call will be guarded with a comparison, which will load a
1009 // zero from the GOT.
1010 if (sym.isUndefWeak())
1011 return true;
1013 // We set the final symbols values for linker script defined symbols later.
1014 // They always can be computed as a link time constant.
1015 if (sym.scriptDefined)
1016 return true;
1018 error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
1019 toString(sym) + getLocation(*sec, sym, relOff));
1020 return true;
1023 // The reason we have to do this early scan is as follows
1024 // * To mmap the output file, we need to know the size
1025 // * For that, we need to know how many dynamic relocs we will have.
1026 // It might be possible to avoid this by outputting the file with write:
1027 // * Write the allocated output sections, computing addresses.
1028 // * Apply relocations, recording which ones require a dynamic reloc.
1029 // * Write the dynamic relocations.
1030 // * Write the rest of the file.
1031 // This would have some drawbacks. For example, we would only know if .rela.dyn
1032 // is needed after applying relocations. If it is, it will go after rw and rx
1033 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1034 // complicates things for the dynamic linker and means we would have to reserve
1035 // space for the extra PT_LOAD even if we end up not using it.
1036 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset,
1037 Symbol &sym, int64_t addend) const {
1038 // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT
1039 // indirection.
1040 const bool isIfunc = sym.isGnuIFunc();
1041 if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) {
1042 if (expr != R_GOT_PC) {
1043 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1044 // stub type. It should be ignored if optimized to R_PC.
1045 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1046 addend &= ~0x8000;
1047 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1048 // call __tls_get_addr even if the symbol is non-preemptible.
1049 if (!(config->emachine == EM_HEXAGON &&
1050 (type == R_HEX_GD_PLT_B22_PCREL ||
1051 type == R_HEX_GD_PLT_B22_PCREL_X ||
1052 type == R_HEX_GD_PLT_B32_PCREL_X)))
1053 expr = fromPlt(expr);
1054 } else if (!isAbsoluteValue(sym)) {
1055 expr =
1056 target->adjustGotPcExpr(type, addend, sec->content().data() + offset);
1057 // If the target adjusted the expression to R_RELAX_GOT_PC, we may end up
1058 // needing the GOT if we can't relax everything.
1059 if (expr == R_RELAX_GOT_PC)
1060 in.got->hasGotOffRel.store(true, std::memory_order_relaxed);
1064 // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1065 // direct relocation on through.
1066 if (LLVM_UNLIKELY(isIfunc) && config->zIfuncNoplt) {
1067 std::lock_guard<std::mutex> lock(relocMutex);
1068 sym.exportDynamic = true;
1069 mainPart->relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type);
1070 return;
1073 if (needsGot(expr)) {
1074 if (config->emachine == EM_MIPS) {
1075 // MIPS ABI has special rules to process GOT entries and doesn't
1076 // require relocation entries for them. A special case is TLS
1077 // relocations. In that case dynamic loader applies dynamic
1078 // relocations to initialize TLS GOT entries.
1079 // See "Global Offset Table" in Chapter 5 in the following document
1080 // for detailed description:
1081 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1082 in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1083 } else if (!sym.isTls() || config->emachine != EM_LOONGARCH) {
1084 // Many LoongArch TLS relocs reuse the R_LOONGARCH_GOT type, in which
1085 // case the NEEDS_GOT flag shouldn't get set.
1086 sym.setFlags(NEEDS_GOT);
1088 } else if (needsPlt(expr)) {
1089 sym.setFlags(NEEDS_PLT);
1090 } else if (LLVM_UNLIKELY(isIfunc)) {
1091 sym.setFlags(HAS_DIRECT_RELOC);
1094 // If the relocation is known to be a link-time constant, we know no dynamic
1095 // relocation will be created, pass the control to relocateAlloc() or
1096 // relocateNonAlloc() to resolve it.
1098 // The behavior of an undefined weak reference is implementation defined. For
1099 // non-link-time constants, we resolve relocations statically (let
1100 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1101 // relocations for -pie and -shared.
1103 // The general expectation of -no-pie static linking is that there is no
1104 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1105 // -shared matches the spirit of its -z undefs default. -pie has freedom on
1106 // choices, and we choose dynamic relocations to be consistent with the
1107 // handling of GOT-generating relocations.
1108 if (isStaticLinkTimeConstant(expr, type, sym, offset) ||
1109 (!config->isPic && sym.isUndefWeak())) {
1110 sec->addReloc({expr, type, offset, addend, &sym});
1111 return;
1114 // Use a simple -z notext rule that treats all sections except .eh_frame as
1115 // writable. GNU ld does not produce dynamic relocations in .eh_frame (and our
1116 // SectionBase::getOffset would incorrectly adjust the offset).
1118 // For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel
1119 // conversion. We still emit a dynamic relocation.
1120 bool canWrite = (sec->flags & SHF_WRITE) ||
1121 !(config->zText ||
1122 (isa<EhInputSection>(sec) && config->emachine != EM_MIPS));
1123 if (canWrite) {
1124 RelType rel = target->getDynRel(type);
1125 if (oneof<R_GOT, R_LOONGARCH_GOT>(expr) ||
1126 (rel == target->symbolicRel && !sym.isPreemptible)) {
1127 addRelativeReloc<true>(*sec, offset, sym, addend, expr, type);
1128 return;
1129 } else if (rel != 0) {
1130 if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1131 rel = target->relativeRel;
1132 std::lock_guard<std::mutex> lock(relocMutex);
1133 sec->getPartition().relaDyn->addSymbolReloc(rel, *sec, offset, sym,
1134 addend, type);
1136 // MIPS ABI turns using of GOT and dynamic relocations inside out.
1137 // While regular ABI uses dynamic relocations to fill up GOT entries
1138 // MIPS ABI requires dynamic linker to fills up GOT entries using
1139 // specially sorted dynamic symbol table. This affects even dynamic
1140 // relocations against symbols which do not require GOT entries
1141 // creation explicitly, i.e. do not have any GOT-relocations. So if
1142 // a preemptible symbol has a dynamic relocation we anyway have
1143 // to create a GOT entry for it.
1144 // If a non-preemptible symbol has a dynamic relocation against it,
1145 // dynamic linker takes it st_value, adds offset and writes down
1146 // result of the dynamic relocation. In case of preemptible symbol
1147 // dynamic linker performs symbol resolution, writes the symbol value
1148 // to the GOT entry and reads the GOT entry when it needs to perform
1149 // a dynamic relocation.
1150 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1151 if (config->emachine == EM_MIPS)
1152 in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1153 return;
1157 // When producing an executable, we can perform copy relocations (for
1158 // STT_OBJECT) and canonical PLT (for STT_FUNC).
1159 if (!config->shared) {
1160 if (!canDefineSymbolInExecutable(sym)) {
1161 errorOrWarn("cannot preempt symbol: " + toString(sym) +
1162 getLocation(*sec, sym, offset));
1163 return;
1166 if (sym.isObject()) {
1167 // Produce a copy relocation.
1168 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1169 if (!config->zCopyreloc)
1170 error("unresolvable relocation " + toString(type) +
1171 " against symbol '" + toString(*ss) +
1172 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1173 getLocation(*sec, sym, offset));
1174 sym.setFlags(NEEDS_COPY);
1176 sec->addReloc({expr, type, offset, addend, &sym});
1177 return;
1180 // This handles a non PIC program call to function in a shared library. In
1181 // an ideal world, we could just report an error saying the relocation can
1182 // overflow at runtime. In the real world with glibc, crt1.o has a
1183 // R_X86_64_PC32 pointing to libc.so.
1185 // The general idea on how to handle such cases is to create a PLT entry and
1186 // use that as the function value.
1188 // For the static linking part, we just return a plt expr and everything
1189 // else will use the PLT entry as the address.
1191 // The remaining problem is making sure pointer equality still works. We
1192 // need the help of the dynamic linker for that. We let it know that we have
1193 // a direct reference to a so symbol by creating an undefined symbol with a
1194 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1195 // the value of the symbol we created. This is true even for got entries, so
1196 // pointer equality is maintained. To avoid an infinite loop, the only entry
1197 // that points to the real function is a dedicated got entry used by the
1198 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1199 // R_386_JMP_SLOT, etc).
1201 // For position independent executable on i386, the plt entry requires ebx
1202 // to be set. This causes two problems:
1203 // * If some code has a direct reference to a function, it was probably
1204 // compiled without -fPIE/-fPIC and doesn't maintain ebx.
1205 // * If a library definition gets preempted to the executable, it will have
1206 // the wrong ebx value.
1207 if (sym.isFunc()) {
1208 if (config->pie && config->emachine == EM_386)
1209 errorOrWarn("symbol '" + toString(sym) +
1210 "' cannot be preempted; recompile with -fPIE" +
1211 getLocation(*sec, sym, offset));
1212 sym.setFlags(NEEDS_COPY | NEEDS_PLT);
1213 sec->addReloc({expr, type, offset, addend, &sym});
1214 return;
1218 errorOrWarn("relocation " + toString(type) + " cannot be used against " +
1219 (sym.getName().empty() ? "local symbol"
1220 : "symbol '" + toString(sym) + "'") +
1221 "; recompile with -fPIC" + getLocation(*sec, sym, offset));
1224 // This function is similar to the `handleTlsRelocation`. MIPS does not
1225 // support any relaxations for TLS relocations so by factoring out MIPS
1226 // handling in to the separate function we can simplify the code and do not
1227 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1228 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1229 // without dynamic relocations.
1230 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1231 InputSectionBase &c, uint64_t offset,
1232 int64_t addend, RelExpr expr) {
1233 if (expr == R_MIPS_TLSLD) {
1234 in.mipsGot->addTlsIndex(*c.file);
1235 c.addReloc({expr, type, offset, addend, &sym});
1236 return 1;
1238 if (expr == R_MIPS_TLSGD) {
1239 in.mipsGot->addDynTlsEntry(*c.file, sym);
1240 c.addReloc({expr, type, offset, addend, &sym});
1241 return 1;
1243 return 0;
1246 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1247 // require the generation of a pair of GOT entries that have associated dynamic
1248 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1249 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1250 // symbol in TLS block.
1252 // Returns the number of relocations processed.
1253 static unsigned handleTlsRelocation(RelType type, Symbol &sym,
1254 InputSectionBase &c, uint64_t offset,
1255 int64_t addend, RelExpr expr) {
1256 if (expr == R_TPREL || expr == R_TPREL_NEG) {
1257 if (config->shared) {
1258 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1259 " cannot be used with -shared" + getLocation(c, sym, offset));
1260 return 1;
1262 return 0;
1265 if (config->emachine == EM_MIPS)
1266 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1268 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1269 R_TLSDESC_GOTPLT>(expr) &&
1270 config->shared) {
1271 if (expr != R_TLSDESC_CALL) {
1272 sym.setFlags(NEEDS_TLSDESC);
1273 c.addReloc({expr, type, offset, addend, &sym});
1275 return 1;
1278 // ARM, Hexagon, LoongArch and RISC-V do not support GD/LD to IE/LE
1279 // relaxation.
1280 // For PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1281 // relaxation as well.
1282 bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
1283 config->emachine != EM_HEXAGON &&
1284 config->emachine != EM_LOONGARCH &&
1285 config->emachine != EM_RISCV &&
1286 !c.file->ppc64DisableTLSRelax;
1288 // If we are producing an executable and the symbol is non-preemptable, it
1289 // must be defined and the code sequence can be relaxed to use Local-Exec.
1291 // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1292 // we can omit the DTPMOD dynamic relocations and resolve them at link time
1293 // because them are always 1. This may be necessary for static linking as
1294 // DTPMOD may not be expected at load time.
1295 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1297 // Local Dynamic is for access to module local TLS variables, while still
1298 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1299 // module index, with a special value of 0 for the current module. GOT[e1] is
1300 // unused. There only needs to be one module index entry.
1301 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(expr)) {
1302 // Local-Dynamic relocs can be relaxed to Local-Exec.
1303 if (toExecRelax) {
1304 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type,
1305 offset, addend, &sym});
1306 return target->getTlsGdRelaxSkip(type);
1308 if (expr == R_TLSLD_HINT)
1309 return 1;
1310 ctx.needsTlsLd.store(true, std::memory_order_relaxed);
1311 c.addReloc({expr, type, offset, addend, &sym});
1312 return 1;
1315 // Local-Dynamic relocs can be relaxed to Local-Exec.
1316 if (expr == R_DTPREL) {
1317 if (toExecRelax)
1318 expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE);
1319 c.addReloc({expr, type, offset, addend, &sym});
1320 return 1;
1323 // Local-Dynamic sequence where offset of tls variable relative to dynamic
1324 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
1325 if (expr == R_TLSLD_GOT_OFF) {
1326 sym.setFlags(NEEDS_GOT_DTPREL);
1327 c.addReloc({expr, type, offset, addend, &sym});
1328 return 1;
1331 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1332 R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC,
1333 R_LOONGARCH_TLSGD_PAGE_PC>(expr)) {
1334 if (!toExecRelax) {
1335 sym.setFlags(NEEDS_TLSGD);
1336 c.addReloc({expr, type, offset, addend, &sym});
1337 return 1;
1340 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
1341 // depending on the symbol being locally defined or not.
1342 if (sym.isPreemptible) {
1343 sym.setFlags(NEEDS_TLSGD_TO_IE);
1344 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type,
1345 offset, addend, &sym});
1346 } else {
1347 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type,
1348 offset, addend, &sym});
1350 return target->getTlsGdRelaxSkip(type);
1353 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC,
1354 R_LOONGARCH_GOT_PAGE_PC, R_GOT_OFF, R_TLSIE_HINT>(expr)) {
1355 ctx.hasTlsIe.store(true, std::memory_order_relaxed);
1356 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
1357 // defined.
1358 if (toExecRelax && isLocalInExecutable) {
1359 c.addReloc({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1360 } else if (expr != R_TLSIE_HINT) {
1361 sym.setFlags(NEEDS_TLSIE);
1362 // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1363 if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type))
1364 addRelativeReloc<true>(c, offset, sym, addend, expr, type);
1365 else
1366 c.addReloc({expr, type, offset, addend, &sym});
1368 return 1;
1371 return 0;
1374 template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) {
1375 const RelTy &rel = *i;
1376 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1377 Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex);
1378 RelType type;
1379 if (config->mipsN32Abi) {
1380 type = getMipsN32RelType(i);
1381 } else {
1382 type = rel.getType(config->isMips64EL);
1383 ++i;
1385 // Get an offset in an output section this relocation is applied to.
1386 uint64_t offset = getter.get(rel.r_offset);
1387 if (offset == uint64_t(-1))
1388 return;
1390 RelExpr expr = target->getRelExpr(type, sym, sec->content().data() + offset);
1391 int64_t addend = RelTy::IsRela
1392 ? getAddend<ELFT>(rel)
1393 : target->getImplicitAddend(
1394 sec->content().data() + rel.r_offset, type);
1395 if (LLVM_UNLIKELY(config->emachine == EM_MIPS))
1396 addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal());
1397 else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
1398 addend += getPPC64TocBase();
1400 // Ignore R_*_NONE and other marker relocations.
1401 if (expr == R_NONE)
1402 return;
1404 // Error if the target symbol is undefined. Symbol index 0 may be used by
1405 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1406 if (sym.isUndefined() && symIndex != 0 &&
1407 maybeReportUndefined(cast<Undefined>(sym), *sec, offset))
1408 return;
1410 if (config->emachine == EM_PPC64) {
1411 // We can separate the small code model relocations into 2 categories:
1412 // 1) Those that access the compiler generated .toc sections.
1413 // 2) Those that access the linker allocated got entries.
1414 // lld allocates got entries to symbols on demand. Since we don't try to
1415 // sort the got entries in any way, we don't have to track which objects
1416 // have got-based small code model relocs. The .toc sections get placed
1417 // after the end of the linker allocated .got section and we do sort those
1418 // so sections addressed with small code model relocations come first.
1419 if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS)
1420 sec->file->ppc64SmallCodeModelTocRelocs = true;
1422 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1423 // InputSectionBase::relocateAlloc().
1424 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1425 cast<Defined>(sym).section->name == ".toc")
1426 ppc64noTocRelax.insert({&sym, addend});
1428 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1429 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1430 if (i == end) {
1431 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1432 "relocation" +
1433 getLocation(*sec, sym, offset));
1434 return;
1437 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1438 // so we can discern it later from the toc-case.
1439 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1440 ++offset;
1444 // If the relocation does not emit a GOT or GOTPLT entry but its computation
1445 // uses their addresses, we need GOT or GOTPLT to be created.
1447 // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1448 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT,
1449 R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1450 in.gotPlt->hasGotPltOffRel.store(true, std::memory_order_relaxed);
1451 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1452 R_PPC64_RELAX_TOC>(expr)) {
1453 in.got->hasGotOffRel.store(true, std::memory_order_relaxed);
1456 // Process TLS relocations, including relaxing TLS relocations. Note that
1457 // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1458 if (sym.isTls()) {
1459 if (unsigned processed =
1460 handleTlsRelocation(type, sym, *sec, offset, addend, expr)) {
1461 i += processed - 1;
1462 return;
1466 processAux(expr, type, offset, sym, addend);
1469 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1470 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1471 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1472 // instructions are generated by very old IBM XL compilers. Work around the
1473 // issue by disabling GD/LD to IE/LE relaxation.
1474 template <class RelTy>
1475 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1476 // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1477 if (!sec.file || sec.file->ppc64DisableTLSRelax)
1478 return;
1479 bool hasGDLD = false;
1480 for (const RelTy &rel : rels) {
1481 RelType type = rel.getType(false);
1482 switch (type) {
1483 case R_PPC64_TLSGD:
1484 case R_PPC64_TLSLD:
1485 return; // Found a marker
1486 case R_PPC64_GOT_TLSGD16:
1487 case R_PPC64_GOT_TLSGD16_HA:
1488 case R_PPC64_GOT_TLSGD16_HI:
1489 case R_PPC64_GOT_TLSGD16_LO:
1490 case R_PPC64_GOT_TLSLD16:
1491 case R_PPC64_GOT_TLSLD16_HA:
1492 case R_PPC64_GOT_TLSLD16_HI:
1493 case R_PPC64_GOT_TLSLD16_LO:
1494 hasGDLD = true;
1495 break;
1498 if (hasGDLD) {
1499 sec.file->ppc64DisableTLSRelax = true;
1500 warn(toString(sec.file) +
1501 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1502 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1506 template <class ELFT, class RelTy>
1507 void RelocationScanner::scan(ArrayRef<RelTy> rels) {
1508 // Not all relocations end up in Sec->Relocations, but a lot do.
1509 sec->relocations.reserve(rels.size());
1511 if (config->emachine == EM_PPC64)
1512 checkPPC64TLSRelax<RelTy>(*sec, rels);
1514 // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1515 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1516 // script), the relocations may be unordered.
1517 SmallVector<RelTy, 0> storage;
1518 if (isa<EhInputSection>(sec))
1519 rels = sortRels(rels, storage);
1521 end = static_cast<const void *>(rels.end());
1522 for (auto i = rels.begin(); i != end;)
1523 scanOne<ELFT>(i);
1525 // Sort relocations by offset for more efficient searching for
1526 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1527 if (config->emachine == EM_RISCV ||
1528 (config->emachine == EM_PPC64 && sec->name == ".toc"))
1529 llvm::stable_sort(sec->relocs(),
1530 [](const Relocation &lhs, const Relocation &rhs) {
1531 return lhs.offset < rhs.offset;
1535 template <class ELFT> void RelocationScanner::scanSection(InputSectionBase &s) {
1536 sec = &s;
1537 getter = OffsetGetter(s);
1538 const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>();
1539 if (rels.areRelocsRel())
1540 scan<ELFT>(rels.rels);
1541 else
1542 scan<ELFT>(rels.relas);
1545 template <class ELFT> void elf::scanRelocations() {
1546 // Scan all relocations. Each relocation goes through a series of tests to
1547 // determine if it needs special treatment, such as creating GOT, PLT,
1548 // copy relocations, etc. Note that relocations for non-alloc sections are
1549 // directly processed by InputSection::relocateNonAlloc.
1551 // Deterministic parallellism needs sorting relocations which is unsuitable
1552 // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable
1553 // for parallelism.
1554 bool serial = !config->zCombreloc || config->emachine == EM_MIPS ||
1555 config->emachine == EM_PPC64;
1556 parallel::TaskGroup tg;
1557 for (ELFFileBase *f : ctx.objectFiles) {
1558 auto fn = [f]() {
1559 RelocationScanner scanner;
1560 for (InputSectionBase *s : f->getSections()) {
1561 if (s && s->kind() == SectionBase::Regular && s->isLive() &&
1562 (s->flags & SHF_ALLOC) &&
1563 !(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM))
1564 scanner.template scanSection<ELFT>(*s);
1567 tg.spawn(fn, serial);
1570 tg.spawn([] {
1571 RelocationScanner scanner;
1572 for (Partition &part : partitions) {
1573 for (EhInputSection *sec : part.ehFrame->sections)
1574 scanner.template scanSection<ELFT>(*sec);
1575 if (part.armExidx && part.armExidx->isLive())
1576 for (InputSection *sec : part.armExidx->exidxSections)
1577 if (sec->isLive())
1578 scanner.template scanSection<ELFT>(*sec);
1583 static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) {
1584 // Handle a reference to a non-preemptible ifunc. These are special in a
1585 // few ways:
1587 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1588 // a fixed value. But assuming that all references to the ifunc are
1589 // GOT-generating or PLT-generating, the handling of an ifunc is
1590 // relatively straightforward. We create a PLT entry in Iplt, which is
1591 // usually at the end of .plt, which makes an indirect call using a
1592 // matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1593 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1594 // which is usually at the end of .rela.plt. Unlike most relocations in
1595 // .rela.plt, which may be evaluated lazily without -z now, dynamic
1596 // loaders evaluate IRELATIVE relocs eagerly, which means that for
1597 // IRELATIVE relocs only, GOT-generating relocations can point directly to
1598 // .got.plt without requiring a separate GOT entry.
1600 // - Despite the fact that an ifunc does not have a fixed value, compilers
1601 // that are not passed -fPIC will assume that they do, and will emit
1602 // direct (non-GOT-generating, non-PLT-generating) relocations to the
1603 // symbol. This means that if a direct relocation to the symbol is
1604 // seen, the linker must set a value for the symbol, and this value must
1605 // be consistent no matter what type of reference is made to the symbol.
1606 // This can be done by creating a PLT entry for the symbol in the way
1607 // described above and making it canonical, that is, making all references
1608 // point to the PLT entry instead of the resolver. In lld we also store
1609 // the address of the PLT entry in the dynamic symbol table, which means
1610 // that the symbol will also have the same value in other modules.
1611 // Because the value loaded from the GOT needs to be consistent with
1612 // the value computed using a direct relocation, a non-preemptible ifunc
1613 // may end up with two GOT entries, one in .got.plt that points to the
1614 // address returned by the resolver and is used only by the PLT entry,
1615 // and another in .got that points to the PLT entry and is used by
1616 // GOT-generating relocations.
1618 // - The fact that these symbols do not have a fixed value makes them an
1619 // exception to the general rule that a statically linked executable does
1620 // not require any form of dynamic relocation. To handle these relocations
1621 // correctly, the IRELATIVE relocations are stored in an array which a
1622 // statically linked executable's startup code must enumerate using the
1623 // linker-defined symbols __rela?_iplt_{start,end}.
1624 if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt)
1625 return false;
1626 // Skip unreferenced non-preemptible ifunc.
1627 if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC)))
1628 return true;
1630 sym.isInIplt = true;
1632 // Create an Iplt and the associated IRELATIVE relocation pointing to the
1633 // original section/value pairs. For non-GOT non-PLT relocation case below, we
1634 // may alter section/value, so create a copy of the symbol to make
1635 // section/value fixed.
1636 auto *directSym = makeDefined(cast<Defined>(sym));
1637 directSym->allocateAux();
1638 addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel,
1639 *directSym);
1640 sym.allocateAux();
1641 symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx;
1643 if (flags & HAS_DIRECT_RELOC) {
1644 // Change the value to the IPLT and redirect all references to it.
1645 auto &d = cast<Defined>(sym);
1646 d.section = in.iplt.get();
1647 d.value = d.getPltIdx() * target->ipltEntrySize;
1648 d.size = 0;
1649 // It's important to set the symbol type here so that dynamic loaders
1650 // don't try to call the PLT as if it were an ifunc resolver.
1651 d.type = STT_FUNC;
1653 if (flags & NEEDS_GOT)
1654 addGotEntry(sym);
1655 } else if (flags & NEEDS_GOT) {
1656 // Redirect GOT accesses to point to the Igot.
1657 sym.gotInIgot = true;
1659 return true;
1662 void elf::postScanRelocations() {
1663 auto fn = [](Symbol &sym) {
1664 auto flags = sym.flags.load(std::memory_order_relaxed);
1665 if (handleNonPreemptibleIfunc(sym, flags))
1666 return;
1668 if (sym.isTagged() && sym.isDefined())
1669 mainPart->memtagDescriptors->addSymbol(sym);
1671 if (!sym.needsDynReloc())
1672 return;
1673 sym.allocateAux();
1675 if (flags & NEEDS_GOT)
1676 addGotEntry(sym);
1677 if (flags & NEEDS_PLT)
1678 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym);
1679 if (flags & NEEDS_COPY) {
1680 if (sym.isObject()) {
1681 invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym));
1682 // NEEDS_COPY is cleared for sym and its aliases so that in
1683 // later iterations aliases won't cause redundant copies.
1684 assert(!sym.hasFlag(NEEDS_COPY));
1685 } else {
1686 assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT));
1687 if (!sym.isDefined()) {
1688 replaceWithDefined(sym, *in.plt,
1689 target->pltHeaderSize +
1690 target->pltEntrySize * sym.getPltIdx(),
1692 sym.setFlags(NEEDS_COPY);
1693 if (config->emachine == EM_PPC) {
1694 // PPC32 canonical PLT entries are at the beginning of .glink
1695 cast<Defined>(sym).value = in.plt->headerSize;
1696 in.plt->headerSize += 16;
1697 cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym);
1703 if (!sym.isTls())
1704 return;
1705 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1706 GotSection *got = in.got.get();
1708 if (flags & NEEDS_TLSDESC) {
1709 got->addTlsDescEntry(sym);
1710 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1711 target->tlsDescRel, *got, got->getTlsDescOffset(sym), sym,
1712 target->tlsDescRel);
1714 if (flags & NEEDS_TLSGD) {
1715 got->addDynTlsEntry(sym);
1716 uint64_t off = got->getGlobalDynOffset(sym);
1717 if (isLocalInExecutable)
1718 // Write one to the GOT slot.
1719 got->addConstant({R_ADDEND, target->symbolicRel, off, 1, &sym});
1720 else
1721 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *got, off,
1722 sym);
1724 // If the symbol is preemptible we need the dynamic linker to write
1725 // the offset too.
1726 uint64_t offsetOff = off + config->wordsize;
1727 if (sym.isPreemptible)
1728 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *got, offsetOff,
1729 sym);
1730 else
1731 got->addConstant({R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1733 if (flags & NEEDS_TLSGD_TO_IE) {
1734 got->addEntry(sym);
1735 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *got,
1736 sym.getGotOffset(), sym);
1738 if (flags & NEEDS_GOT_DTPREL) {
1739 got->addEntry(sym);
1740 got->addConstant(
1741 {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym});
1744 if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE))
1745 addTpOffsetGotEntry(sym);
1748 GotSection *got = in.got.get();
1749 if (ctx.needsTlsLd.load(std::memory_order_relaxed) && got->addTlsIndex()) {
1750 static Undefined dummy(nullptr, "", STB_LOCAL, 0, 0);
1751 if (config->shared)
1752 mainPart->relaDyn->addReloc(
1753 {target->tlsModuleIndexRel, got, got->getTlsIndexOff()});
1754 else
1755 got->addConstant(
1756 {R_ADDEND, target->symbolicRel, got->getTlsIndexOff(), 1, &dummy});
1759 assert(symAux.size() == 1);
1760 for (Symbol *sym : symtab.getSymbols())
1761 fn(*sym);
1763 // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1764 // handling. They don't need regular PLT.
1765 for (ELFFileBase *file : ctx.objectFiles)
1766 for (Symbol *sym : file->getLocalSymbols())
1767 fn(*sym);
1770 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1771 // std::merge requires a strict weak ordering.
1772 if (a->outSecOff < b->outSecOff)
1773 return true;
1775 // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection.
1776 if (a->outSecOff == b->outSecOff && a != b) {
1777 auto *ta = dyn_cast<ThunkSection>(a);
1778 auto *tb = dyn_cast<ThunkSection>(b);
1780 // Check if Thunk is immediately before any specific Target
1781 // InputSection for example Mips LA25 Thunks.
1782 if (ta && ta->getTargetInputSection() == b)
1783 return true;
1785 // Place Thunk Sections without specific targets before
1786 // non-Thunk Sections.
1787 if (ta && !tb && !ta->getTargetInputSection())
1788 return true;
1791 return false;
1794 // Call Fn on every executable InputSection accessed via the linker script
1795 // InputSectionDescription::Sections.
1796 static void forEachInputSectionDescription(
1797 ArrayRef<OutputSection *> outputSections,
1798 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1799 for (OutputSection *os : outputSections) {
1800 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1801 continue;
1802 for (SectionCommand *bc : os->commands)
1803 if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1804 fn(os, isd);
1808 // Thunk Implementation
1810 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1811 // of code that the linker inserts inbetween a caller and a callee. The thunks
1812 // are added at link time rather than compile time as the decision on whether
1813 // a thunk is needed, such as the caller and callee being out of range, can only
1814 // be made at link time.
1816 // It is straightforward to tell given the current state of the program when a
1817 // thunk is needed for a particular call. The more difficult part is that
1818 // the thunk needs to be placed in the program such that the caller can reach
1819 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1820 // the program alters addresses, which can mean more thunks etc.
1822 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1823 // The decision to have a ThunkSection act as a container means that we can
1824 // more easily handle the most common case of a single block of contiguous
1825 // Thunks by inserting just a single ThunkSection.
1827 // The implementation of Thunks in lld is split across these areas
1828 // Relocations.cpp : Framework for creating and placing thunks
1829 // Thunks.cpp : The code generated for each supported thunk
1830 // Target.cpp : Target specific hooks that the framework uses to decide when
1831 // a thunk is used
1832 // Synthetic.cpp : Implementation of ThunkSection
1833 // Writer.cpp : Iteratively call framework until no more Thunks added
1835 // Thunk placement requirements:
1836 // Mips LA25 thunks. These must be placed immediately before the callee section
1837 // We can assume that the caller is in range of the Thunk. These are modelled
1838 // by Thunks that return the section they must precede with
1839 // getTargetInputSection().
1841 // ARM interworking and range extension thunks. These thunks must be placed
1842 // within range of the caller. All implemented ARM thunks can always reach the
1843 // callee as they use an indirect jump via a register that has no range
1844 // restrictions.
1846 // Thunk placement algorithm:
1847 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1848 // getTargetInputSection().
1850 // For thunks that must be placed within range of the caller there are many
1851 // possible choices given that the maximum range from the caller is usually
1852 // much larger than the average InputSection size. Desirable properties include:
1853 // - Maximize reuse of thunks by multiple callers
1854 // - Minimize number of ThunkSections to simplify insertion
1855 // - Handle impact of already added Thunks on addresses
1856 // - Simple to understand and implement
1858 // In lld for the first pass, we pre-create one or more ThunkSections per
1859 // InputSectionDescription at Target specific intervals. A ThunkSection is
1860 // placed so that the estimated end of the ThunkSection is within range of the
1861 // start of the InputSectionDescription or the previous ThunkSection. For
1862 // example:
1863 // InputSectionDescription
1864 // Section 0
1865 // ...
1866 // Section N
1867 // ThunkSection 0
1868 // Section N + 1
1869 // ...
1870 // Section N + K
1871 // Thunk Section 1
1873 // The intention is that we can add a Thunk to a ThunkSection that is well
1874 // spaced enough to service a number of callers without having to do a lot
1875 // of work. An important principle is that it is not an error if a Thunk cannot
1876 // be placed in a pre-created ThunkSection; when this happens we create a new
1877 // ThunkSection placed next to the caller. This allows us to handle the vast
1878 // majority of thunks simply, but also handle rare cases where the branch range
1879 // is smaller than the target specific spacing.
1881 // The algorithm is expected to create all the thunks that are needed in a
1882 // single pass, with a small number of programs needing a second pass due to
1883 // the insertion of thunks in the first pass increasing the offset between
1884 // callers and callees that were only just in range.
1886 // A consequence of allowing new ThunkSections to be created outside of the
1887 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1888 // range in pass K, are out of range in some pass > K due to the insertion of
1889 // more Thunks in between the caller and callee. When this happens we retarget
1890 // the relocation back to the original target and create another Thunk.
1892 // Remove ThunkSections that are empty, this should only be the initial set
1893 // precreated on pass 0.
1895 // Insert the Thunks for OutputSection OS into their designated place
1896 // in the Sections vector, and recalculate the InputSection output section
1897 // offsets.
1898 // This may invalidate any output section offsets stored outside of InputSection
1899 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1900 forEachInputSectionDescription(
1901 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1902 if (isd->thunkSections.empty())
1903 return;
1905 // Remove any zero sized precreated Thunks.
1906 llvm::erase_if(isd->thunkSections,
1907 [](const std::pair<ThunkSection *, uint32_t> &ts) {
1908 return ts.first->getSize() == 0;
1911 // ISD->ThunkSections contains all created ThunkSections, including
1912 // those inserted in previous passes. Extract the Thunks created this
1913 // pass and order them in ascending outSecOff.
1914 std::vector<ThunkSection *> newThunks;
1915 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1916 if (ts.second == pass)
1917 newThunks.push_back(ts.first);
1918 llvm::stable_sort(newThunks,
1919 [](const ThunkSection *a, const ThunkSection *b) {
1920 return a->outSecOff < b->outSecOff;
1923 // Merge sorted vectors of Thunks and InputSections by outSecOff
1924 SmallVector<InputSection *, 0> tmp;
1925 tmp.reserve(isd->sections.size() + newThunks.size());
1927 std::merge(isd->sections.begin(), isd->sections.end(),
1928 newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1929 mergeCmp);
1931 isd->sections = std::move(tmp);
1935 static int64_t getPCBias(RelType type) {
1936 if (config->emachine != EM_ARM)
1937 return 0;
1938 switch (type) {
1939 case R_ARM_THM_JUMP19:
1940 case R_ARM_THM_JUMP24:
1941 case R_ARM_THM_CALL:
1942 return 4;
1943 default:
1944 return 8;
1948 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1949 // is in range of Src. An ISD maps to a range of InputSections described by a
1950 // linker script section pattern such as { .text .text.* }.
1951 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1952 InputSection *isec,
1953 InputSectionDescription *isd,
1954 const Relocation &rel,
1955 uint64_t src) {
1956 // See the comment in getThunk for -pcBias below.
1957 const int64_t pcBias = getPCBias(rel.type);
1958 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1959 ThunkSection *ts = tp.first;
1960 uint64_t tsBase = os->addr + ts->outSecOff - pcBias;
1961 uint64_t tsLimit = tsBase + ts->getSize();
1962 if (target->inBranchRange(rel.type, src,
1963 (src > tsLimit) ? tsBase : tsLimit))
1964 return ts;
1967 // No suitable ThunkSection exists. This can happen when there is a branch
1968 // with lower range than the ThunkSection spacing or when there are too
1969 // many Thunks. Create a new ThunkSection as close to the InputSection as
1970 // possible. Error if InputSection is so large we cannot place ThunkSection
1971 // anywhere in Range.
1972 uint64_t thunkSecOff = isec->outSecOff;
1973 if (!target->inBranchRange(rel.type, src,
1974 os->addr + thunkSecOff + rel.addend)) {
1975 thunkSecOff = isec->outSecOff + isec->getSize();
1976 if (!target->inBranchRange(rel.type, src,
1977 os->addr + thunkSecOff + rel.addend))
1978 fatal("InputSection too large for range extension thunk " +
1979 isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1981 return addThunkSection(os, isd, thunkSecOff);
1984 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1985 // precedes its Target.
1986 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1987 ThunkSection *ts = thunkedSections.lookup(isec);
1988 if (ts)
1989 return ts;
1991 // Find InputSectionRange within Target Output Section (TOS) that the
1992 // InputSection (IS) that we need to precede is in.
1993 OutputSection *tos = isec->getParent();
1994 for (SectionCommand *bc : tos->commands) {
1995 auto *isd = dyn_cast<InputSectionDescription>(bc);
1996 if (!isd || isd->sections.empty())
1997 continue;
1999 InputSection *first = isd->sections.front();
2000 InputSection *last = isd->sections.back();
2002 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
2003 continue;
2005 ts = addThunkSection(tos, isd, isec->outSecOff);
2006 thunkedSections[isec] = ts;
2007 return ts;
2010 return nullptr;
2013 // Create one or more ThunkSections per OS that can be used to place Thunks.
2014 // We attempt to place the ThunkSections using the following desirable
2015 // properties:
2016 // - Within range of the maximum number of callers
2017 // - Minimise the number of ThunkSections
2019 // We follow a simple but conservative heuristic to place ThunkSections at
2020 // offsets that are multiples of a Target specific branch range.
2021 // For an InputSectionDescription that is smaller than the range, a single
2022 // ThunkSection at the end of the range will do.
2024 // For an InputSectionDescription that is more than twice the size of the range,
2025 // we place the last ThunkSection at range bytes from the end of the
2026 // InputSectionDescription in order to increase the likelihood that the
2027 // distance from a thunk to its target will be sufficiently small to
2028 // allow for the creation of a short thunk.
2029 void ThunkCreator::createInitialThunkSections(
2030 ArrayRef<OutputSection *> outputSections) {
2031 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
2033 forEachInputSectionDescription(
2034 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2035 if (isd->sections.empty())
2036 return;
2038 uint32_t isdBegin = isd->sections.front()->outSecOff;
2039 uint32_t isdEnd =
2040 isd->sections.back()->outSecOff + isd->sections.back()->getSize();
2041 uint32_t lastThunkLowerBound = -1;
2042 if (isdEnd - isdBegin > thunkSectionSpacing * 2)
2043 lastThunkLowerBound = isdEnd - thunkSectionSpacing;
2045 uint32_t isecLimit;
2046 uint32_t prevIsecLimit = isdBegin;
2047 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
2049 for (const InputSection *isec : isd->sections) {
2050 isecLimit = isec->outSecOff + isec->getSize();
2051 if (isecLimit > thunkUpperBound) {
2052 addThunkSection(os, isd, prevIsecLimit);
2053 thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
2055 if (isecLimit > lastThunkLowerBound)
2056 break;
2057 prevIsecLimit = isecLimit;
2059 addThunkSection(os, isd, isecLimit);
2063 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
2064 InputSectionDescription *isd,
2065 uint64_t off) {
2066 auto *ts = make<ThunkSection>(os, off);
2067 ts->partition = os->partition;
2068 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
2069 !isd->sections.empty()) {
2070 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
2071 // thunks we disturb the base addresses of sections placed after the thunks
2072 // this makes patches we have generated redundant, and may cause us to
2073 // generate more patches as different instructions are now in sensitive
2074 // locations. When we generate more patches we may force more branches to
2075 // go out of range, causing more thunks to be generated. In pathological
2076 // cases this can cause the address dependent content pass not to converge.
2077 // We fix this by rounding up the size of the ThunkSection to 4KiB, this
2078 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2079 // which means that adding Thunks to the section does not invalidate
2080 // errata patches for following code.
2081 // Rounding up the size to 4KiB has consequences for code-size and can
2082 // trip up linker script defined assertions. For example the linux kernel
2083 // has an assertion that what LLD represents as an InputSectionDescription
2084 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2085 // We use the heuristic of rounding up the size when both of the following
2086 // conditions are true:
2087 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2088 // accounts for the case where no single InputSectionDescription is
2089 // larger than the OutputSection size. This is conservative but simple.
2090 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2091 // any assertion failures that an InputSectionDescription is < 4 KiB
2092 // in size.
2093 uint64_t isdSize = isd->sections.back()->outSecOff +
2094 isd->sections.back()->getSize() -
2095 isd->sections.front()->outSecOff;
2096 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
2097 ts->roundUpSizeForErrata = true;
2099 isd->thunkSections.push_back({ts, pass});
2100 return ts;
2103 static bool isThunkSectionCompatible(InputSection *source,
2104 SectionBase *target) {
2105 // We can't reuse thunks in different loadable partitions because they might
2106 // not be loaded. But partition 1 (the main partition) will always be loaded.
2107 if (source->partition != target->partition)
2108 return target->partition == 1;
2109 return true;
2112 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
2113 Relocation &rel, uint64_t src) {
2114 std::vector<Thunk *> *thunkVec = nullptr;
2115 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2116 // out in the relocation addend. We compensate for the PC bias so that
2117 // an Arm and Thumb relocation to the same destination get the same keyAddend,
2118 // which is usually 0.
2119 const int64_t pcBias = getPCBias(rel.type);
2120 const int64_t keyAddend = rel.addend + pcBias;
2122 // We use a ((section, offset), addend) pair to find the thunk position if
2123 // possible so that we create only one thunk for aliased symbols or ICFed
2124 // sections. There may be multiple relocations sharing the same (section,
2125 // offset + addend) pair. We may revert the relocation back to its original
2126 // non-Thunk target, so we cannot fold offset + addend.
2127 if (auto *d = dyn_cast<Defined>(rel.sym))
2128 if (!d->isInPlt() && d->section)
2129 thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value},
2130 keyAddend}];
2131 if (!thunkVec)
2132 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
2134 // Check existing Thunks for Sym to see if they can be reused
2135 for (Thunk *t : *thunkVec)
2136 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
2137 t->isCompatibleWith(*isec, rel) &&
2138 target->inBranchRange(rel.type, src,
2139 t->getThunkTargetSym()->getVA(-pcBias)))
2140 return std::make_pair(t, false);
2142 // No existing compatible Thunk in range, create a new one
2143 Thunk *t = addThunk(*isec, rel);
2144 thunkVec->push_back(t);
2145 return std::make_pair(t, true);
2148 // Return true if the relocation target is an in range Thunk.
2149 // Return false if the relocation is not to a Thunk. If the relocation target
2150 // was originally to a Thunk, but is no longer in range we revert the
2151 // relocation back to its original non-Thunk target.
2152 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2153 if (Thunk *t = thunks.lookup(rel.sym)) {
2154 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2155 return true;
2156 rel.sym = &t->destination;
2157 rel.addend = t->addend;
2158 if (rel.sym->isInPlt())
2159 rel.expr = toPlt(rel.expr);
2161 return false;
2164 // Process all relocations from the InputSections that have been assigned
2165 // to InputSectionDescriptions and redirect through Thunks if needed. The
2166 // function should be called iteratively until it returns false.
2168 // PreConditions:
2169 // All InputSections that may need a Thunk are reachable from
2170 // OutputSectionCommands.
2172 // All OutputSections have an address and all InputSections have an offset
2173 // within the OutputSection.
2175 // The offsets between caller (relocation place) and callee
2176 // (relocation target) will not be modified outside of createThunks().
2178 // PostConditions:
2179 // If return value is true then ThunkSections have been inserted into
2180 // OutputSections. All relocations that needed a Thunk based on the information
2181 // available to createThunks() on entry have been redirected to a Thunk. Note
2182 // that adding Thunks changes offsets between caller and callee so more Thunks
2183 // may be required.
2185 // If return value is false then no more Thunks are needed, and createThunks has
2186 // made no changes. If the target requires range extension thunks, currently
2187 // ARM, then any future change in offset between caller and callee risks a
2188 // relocation out of range error.
2189 bool ThunkCreator::createThunks(uint32_t pass,
2190 ArrayRef<OutputSection *> outputSections) {
2191 this->pass = pass;
2192 bool addressesChanged = false;
2194 if (pass == 0 && target->getThunkSectionSpacing())
2195 createInitialThunkSections(outputSections);
2197 // Create all the Thunks and insert them into synthetic ThunkSections. The
2198 // ThunkSections are later inserted back into InputSectionDescriptions.
2199 // We separate the creation of ThunkSections from the insertion of the
2200 // ThunkSections as ThunkSections are not always inserted into the same
2201 // InputSectionDescription as the caller.
2202 forEachInputSectionDescription(
2203 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2204 for (InputSection *isec : isd->sections)
2205 for (Relocation &rel : isec->relocs()) {
2206 uint64_t src = isec->getVA(rel.offset);
2208 // If we are a relocation to an existing Thunk, check if it is
2209 // still in range. If not then Rel will be altered to point to its
2210 // original target so another Thunk can be generated.
2211 if (pass > 0 && normalizeExistingThunk(rel, src))
2212 continue;
2214 if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2215 *rel.sym, rel.addend))
2216 continue;
2218 Thunk *t;
2219 bool isNew;
2220 std::tie(t, isNew) = getThunk(isec, rel, src);
2222 if (isNew) {
2223 // Find or create a ThunkSection for the new Thunk
2224 ThunkSection *ts;
2225 if (auto *tis = t->getTargetInputSection())
2226 ts = getISThunkSec(tis);
2227 else
2228 ts = getISDThunkSec(os, isec, isd, rel, src);
2229 ts->addThunk(t);
2230 thunks[t->getThunkTargetSym()] = t;
2233 // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2234 rel.sym = t->getThunkTargetSym();
2235 rel.expr = fromPlt(rel.expr);
2237 // On AArch64 and PPC, a jump/call relocation may be encoded as
2238 // STT_SECTION + non-zero addend, clear the addend after
2239 // redirection.
2240 if (config->emachine != EM_MIPS)
2241 rel.addend = -getPCBias(rel.type);
2244 for (auto &p : isd->thunkSections)
2245 addressesChanged |= p.first->assignOffsets();
2248 for (auto &p : thunkedSections)
2249 addressesChanged |= p.second->assignOffsets();
2251 // Merge all created synthetic ThunkSections back into OutputSection
2252 mergeThunks(outputSections);
2253 return addressesChanged;
2256 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2257 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2258 // __tls_get_addr.
2259 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2260 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2261 bool needTlsSymbol = false;
2262 forEachInputSectionDescription(
2263 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2264 for (InputSection *isec : isd->sections)
2265 for (Relocation &rel : isec->relocs())
2266 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2267 needTlsSymbol = true;
2268 return;
2271 return needTlsSymbol;
2274 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2275 Symbol *sym = symtab.find("__tls_get_addr");
2276 if (!sym)
2277 return;
2278 bool needEntry = true;
2279 forEachInputSectionDescription(
2280 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2281 for (InputSection *isec : isd->sections)
2282 for (Relocation &rel : isec->relocs())
2283 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2284 if (needEntry) {
2285 sym->allocateAux();
2286 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel,
2287 *sym);
2288 needEntry = false;
2290 rel.sym = sym;
2295 template void elf::scanRelocations<ELF32LE>();
2296 template void elf::scanRelocations<ELF32BE>();
2297 template void elf::scanRelocations<ELF64LE>();
2298 template void elf::scanRelocations<ELF64BE>();