Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / ELF / Relocations.h
blob15a2b5fc177c5462e21ede5642d2bd4af79eb8d1
1 //===- Relocations.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_ELF_RELOCATIONS_H
10 #define LLD_ELF_RELOCATIONS_H
12 #include "lld/Common/LLVM.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include <vector>
17 namespace lld::elf {
18 class Symbol;
19 class InputSection;
20 class InputSectionBase;
21 class OutputSection;
22 class SectionBase;
24 // Represents a relocation type, such as R_X86_64_PC32 or R_ARM_THM_CALL.
25 using RelType = uint32_t;
26 using JumpModType = uint32_t;
28 // List of target-independent relocation types. Relocations read
29 // from files are converted to these types so that the main code
30 // doesn't have to know about architecture-specific details.
31 enum RelExpr {
32 R_ABS,
33 R_ADDEND,
34 R_DTPREL,
35 R_GOT,
36 R_GOT_OFF,
37 R_GOT_PC,
38 R_GOTONLY_PC,
39 R_GOTPLTONLY_PC,
40 R_GOTPLT,
41 R_GOTPLTREL,
42 R_GOTREL,
43 R_NONE,
44 R_PC,
45 R_PLT,
46 R_PLT_PC,
47 R_PLT_GOTPLT,
48 R_RELAX_HINT,
49 R_RELAX_GOT_PC,
50 R_RELAX_GOT_PC_NOPIC,
51 R_RELAX_TLS_GD_TO_IE,
52 R_RELAX_TLS_GD_TO_IE_ABS,
53 R_RELAX_TLS_GD_TO_IE_GOT_OFF,
54 R_RELAX_TLS_GD_TO_IE_GOTPLT,
55 R_RELAX_TLS_GD_TO_LE,
56 R_RELAX_TLS_GD_TO_LE_NEG,
57 R_RELAX_TLS_IE_TO_LE,
58 R_RELAX_TLS_LD_TO_LE,
59 R_RELAX_TLS_LD_TO_LE_ABS,
60 R_SIZE,
61 R_TPREL,
62 R_TPREL_NEG,
63 R_TLSDESC,
64 R_TLSDESC_CALL,
65 R_TLSDESC_PC,
66 R_TLSDESC_GOTPLT,
67 R_TLSGD_GOT,
68 R_TLSGD_GOTPLT,
69 R_TLSGD_PC,
70 R_TLSIE_HINT,
71 R_TLSLD_GOT,
72 R_TLSLD_GOTPLT,
73 R_TLSLD_GOT_OFF,
74 R_TLSLD_HINT,
75 R_TLSLD_PC,
77 // The following is abstract relocation types used for only one target.
79 // Even though RelExpr is intended to be a target-neutral representation
80 // of a relocation type, there are some relocations whose semantics are
81 // unique to a target. Such relocation are marked with R_<TARGET_NAME>.
82 R_AARCH64_GOT_PAGE_PC,
83 R_AARCH64_GOT_PAGE,
84 R_AARCH64_PAGE_PC,
85 R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC,
86 R_AARCH64_TLSDESC_PAGE,
87 R_ARM_PCA,
88 R_ARM_SBREL,
89 R_MIPS_GOTREL,
90 R_MIPS_GOT_GP,
91 R_MIPS_GOT_GP_PC,
92 R_MIPS_GOT_LOCAL_PAGE,
93 R_MIPS_GOT_OFF,
94 R_MIPS_GOT_OFF32,
95 R_MIPS_TLSGD,
96 R_MIPS_TLSLD,
97 R_PPC32_PLTREL,
98 R_PPC64_CALL,
99 R_PPC64_CALL_PLT,
100 R_PPC64_RELAX_TOC,
101 R_PPC64_TOCBASE,
102 R_PPC64_RELAX_GOT_PC,
103 R_RISCV_ADD,
104 R_RISCV_PC_INDIRECT,
105 // Same as R_PC but with page-aligned semantics.
106 R_LOONGARCH_PAGE_PC,
107 // Same as R_PLT_PC but with page-aligned semantics.
108 R_LOONGARCH_PLT_PAGE_PC,
109 // In addition to having page-aligned semantics, LoongArch GOT relocs are
110 // also reused for TLS, making the semantics differ from other architectures.
111 R_LOONGARCH_GOT,
112 R_LOONGARCH_GOT_PAGE_PC,
113 R_LOONGARCH_TLSGD_PAGE_PC,
116 // Architecture-neutral representation of relocation.
117 struct Relocation {
118 RelExpr expr;
119 RelType type;
120 uint64_t offset;
121 int64_t addend;
122 Symbol *sym;
125 // Manipulate jump instructions with these modifiers. These are used to relax
126 // jump instruction opcodes at basic block boundaries and are particularly
127 // useful when basic block sections are enabled.
128 struct JumpInstrMod {
129 uint64_t offset;
130 JumpModType original;
131 unsigned size;
134 // This function writes undefined symbol diagnostics to an internal buffer.
135 // Call reportUndefinedSymbols() after calling scanRelocations() to emit
136 // the diagnostics.
137 template <class ELFT> void scanRelocations();
138 void reportUndefinedSymbols();
139 void postScanRelocations();
140 void addGotEntry(Symbol &sym);
142 void hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections);
143 bool hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections);
145 class ThunkSection;
146 class Thunk;
147 class InputSectionDescription;
149 class ThunkCreator {
150 public:
151 // Return true if Thunks have been added to OutputSections
152 bool createThunks(uint32_t pass, ArrayRef<OutputSection *> outputSections);
154 private:
155 void mergeThunks(ArrayRef<OutputSection *> outputSections);
157 ThunkSection *getISDThunkSec(OutputSection *os, InputSection *isec,
158 InputSectionDescription *isd,
159 const Relocation &rel, uint64_t src);
161 ThunkSection *getISThunkSec(InputSection *isec);
163 void createInitialThunkSections(ArrayRef<OutputSection *> outputSections);
165 std::pair<Thunk *, bool> getThunk(InputSection *isec, Relocation &rel,
166 uint64_t src);
168 ThunkSection *addThunkSection(OutputSection *os, InputSectionDescription *,
169 uint64_t off);
171 bool normalizeExistingThunk(Relocation &rel, uint64_t src);
173 // Record all the available Thunks for a (Symbol, addend) pair, where Symbol
174 // is represented as a (section, offset) pair. There may be multiple
175 // relocations sharing the same (section, offset + addend) pair. We may revert
176 // a relocation back to its original non-Thunk target, and restore the
177 // original addend, so we cannot fold offset + addend. A nested pair is used
178 // because DenseMapInfo is not specialized for std::tuple.
179 llvm::DenseMap<std::pair<std::pair<SectionBase *, uint64_t>, int64_t>,
180 std::vector<Thunk *>>
181 thunkedSymbolsBySectionAndAddend;
182 llvm::DenseMap<std::pair<Symbol *, int64_t>, std::vector<Thunk *>>
183 thunkedSymbols;
185 // Find a Thunk from the Thunks symbol definition, we can use this to find
186 // the Thunk from a relocation to the Thunks symbol definition.
187 llvm::DenseMap<Symbol *, Thunk *> thunks;
189 // Track InputSections that have an inline ThunkSection placed in front
190 // an inline ThunkSection may have control fall through to the section below
191 // so we need to make sure that there is only one of them.
192 // The Mips LA25 Thunk is an example of an inline ThunkSection.
193 llvm::DenseMap<InputSection *, ThunkSection *> thunkedSections;
195 // The number of completed passes of createThunks this permits us
196 // to do one time initialization on Pass 0 and put a limit on the
197 // number of times it can be called to prevent infinite loops.
198 uint32_t pass = 0;
201 // Return a int64_t to make sure we get the sign extension out of the way as
202 // early as possible.
203 template <class ELFT>
204 static inline int64_t getAddend(const typename ELFT::Rel &rel) {
205 return 0;
207 template <class ELFT>
208 static inline int64_t getAddend(const typename ELFT::Rela &rel) {
209 return rel.r_addend;
212 template <typename RelTy>
213 ArrayRef<RelTy> sortRels(ArrayRef<RelTy> rels, SmallVector<RelTy, 0> &storage) {
214 auto cmp = [](const RelTy &a, const RelTy &b) {
215 return a.r_offset < b.r_offset;
217 if (!llvm::is_sorted(rels, cmp)) {
218 storage.assign(rels.begin(), rels.end());
219 llvm::stable_sort(storage, cmp);
220 rels = storage;
222 return rels;
225 // Returns true if Expr refers a GOT entry. Note that this function returns
226 // false for TLS variables even though they need GOT, because TLS variables uses
227 // GOT differently than the regular variables.
228 bool needsGot(RelExpr expr);
229 } // namespace lld::elf
231 #endif