1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines various types of Symbols.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLD_ELF_SYMBOLS_H
14 #define LLD_ELF_SYMBOLS_H
17 #include "lld/Common/LLVM.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/Object/ELF.h"
21 #include "llvm/Support/Compiler.h"
28 // Returns a string representation for a symbol for diagnostics.
29 std::string
toString(const elf::Symbol
&);
36 class InputSectionBase
;
43 void printTraceSymbol(const Symbol
&sym
, StringRef name
);
48 HAS_DIRECT_RELOC
= 1 << 2,
49 // True if this symbol needs a canonical PLT entry, or (during
50 // postScanRelocations) a copy relocation.
52 NEEDS_TLSDESC
= 1 << 4,
54 NEEDS_TLSGD_TO_IE
= 1 << 6,
55 NEEDS_GOT_DTPREL
= 1 << 7,
59 // Some index properties of a symbol are stored separately in this auxiliary
60 // struct to decrease sizeof(SymbolUnion) in the majority of cases.
64 uint32_t tlsDescIdx
= -1;
65 uint32_t tlsGdIdx
= -1;
68 LLVM_LIBRARY_VISIBILITY
extern SmallVector
<SymbolAux
, 0> symAux
;
70 // The base class for real symbol classes.
82 Kind
kind() const { return static_cast<Kind
>(symbolKind
); }
84 // The file from which this symbol was created.
87 // The default copy constructor is deleted due to atomic flags. Define one for
88 // places where no atomic is needed.
89 Symbol(const Symbol
&o
) { memcpy(this, &o
, sizeof(o
)); }
93 // 32-bit size saves space.
97 // The next three fields have the same meaning as the ELF symbol attributes.
98 // type and binding are placed in this order to optimize generating st_info,
99 // which is defined as (binding << 4) + (type & 0xf), on a little-endian
101 uint8_t type
: 4; // symbol type
103 // Symbol binding. This is not overwritten by replace() to track
104 // changes during resolution. In particular:
105 // - An undefined weak is still weak when it resolves to a shared library.
106 // - An undefined weak will not extract archive members, but we have to
107 // remember it is weak.
110 uint8_t stOther
; // st_other field value
114 // The partition whose dynamic symbol table contains this symbol's definition.
117 // True if this symbol is preemptible at load time.
118 uint8_t isPreemptible
: 1;
120 // True if the symbol was used for linking and thus need to be added to the
121 // output file's symbol table. This is true for all symbols except for
122 // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
123 // are unreferenced except by other bitcode objects.
124 uint8_t isUsedInRegularObj
: 1;
126 // True if an undefined or shared symbol is used from a live section.
128 // NOTE: In Writer.cpp the field is used to mark local defined symbols
129 // which are referenced by relocations when -r or --emit-relocs is given.
132 // Used by a Defined symbol with protected or default visibility, to record
133 // whether it is required to be exported into .dynsym. This is set when any of
134 // the following conditions hold:
136 // - If there is an interposable symbol from a DSO. Note: We also do this for
137 // STV_PROTECTED symbols which can't be interposed (to match BFD behavior).
138 // - If -shared or --export-dynamic is specified, any symbol in an object
139 // file/bitcode sets this property, unless suppressed by LTO
140 // canBeOmittedFromSymbolTable().
141 uint8_t exportDynamic
: 1;
143 // True if the symbol is in the --dynamic-list file. A Defined symbol with
144 // protected or default visibility with this property is required to be
145 // exported into .dynsym.
146 uint8_t inDynamicList
: 1;
148 // Used to track if there has been at least one undefined reference to the
149 // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK
150 // if the first undefined reference from a non-shared object is weak.
151 uint8_t referenced
: 1;
153 // Used to track if this symbol will be referenced after wrapping is performed
154 // (i.e. this will be true for foo if __real_foo is referenced, and will be
155 // true for __wrap_foo if foo is referenced).
156 uint8_t referencedAfterWrap
: 1;
158 // True if this symbol is specified by --trace-symbol option.
161 // True if the name contains '@'.
162 uint8_t hasVersionSuffix
: 1;
164 // Symbol visibility. This is the computed minimum visibility of all
165 // observed non-DSO symbols.
166 uint8_t visibility() const { return stOther
& 3; }
167 void setVisibility(uint8_t visibility
) {
168 stOther
= (stOther
& ~3) | visibility
;
171 bool includeInDynsym() const;
172 uint8_t computeBinding() const;
173 bool isGlobal() const { return binding
== llvm::ELF::STB_GLOBAL
; }
174 bool isWeak() const { return binding
== llvm::ELF::STB_WEAK
; }
176 bool isUndefined() const { return symbolKind
== UndefinedKind
; }
177 bool isCommon() const { return symbolKind
== CommonKind
; }
178 bool isDefined() const { return symbolKind
== DefinedKind
; }
179 bool isShared() const { return symbolKind
== SharedKind
; }
180 bool isPlaceholder() const { return symbolKind
== PlaceholderKind
; }
182 bool isLocal() const { return binding
== llvm::ELF::STB_LOCAL
; }
184 bool isLazy() const { return symbolKind
== LazyObjectKind
; }
186 // True if this is an undefined weak symbol. This only works once
187 // all input files have been added.
188 bool isUndefWeak() const { return isWeak() && isUndefined(); }
190 StringRef
getName() const { return {nameData
, nameSize
}; }
192 void setName(StringRef s
) {
197 void parseSymbolVersion();
199 // Get the NUL-terminated version suffix ("", "@...", or "@@...").
201 // For @@, the name has been truncated by insert(). For @, the name has been
202 // truncated by Symbol::parseSymbolVersion().
203 const char *getVersionSuffix() const { return nameData
+ nameSize
; }
205 uint32_t getGotIdx() const { return symAux
[auxIdx
].gotIdx
; }
206 uint32_t getPltIdx() const { return symAux
[auxIdx
].pltIdx
; }
207 uint32_t getTlsDescIdx() const { return symAux
[auxIdx
].tlsDescIdx
; }
208 uint32_t getTlsGdIdx() const { return symAux
[auxIdx
].tlsGdIdx
; }
210 bool isInGot() const { return getGotIdx() != uint32_t(-1); }
211 bool isInPlt() const { return getPltIdx() != uint32_t(-1); }
213 uint64_t getVA(int64_t addend
= 0) const;
215 uint64_t getGotOffset() const;
216 uint64_t getGotVA() const;
217 uint64_t getGotPltOffset() const;
218 uint64_t getGotPltVA() const;
219 uint64_t getPltVA() const;
220 uint64_t getSize() const;
221 OutputSection
*getOutputSection() const;
223 // The following two functions are used for symbol resolution.
225 // You are expected to call mergeProperties for all symbols in input
226 // files so that attributes that are attached to names rather than
227 // indivisual symbol (such as visibility) are merged together.
229 // Every time you read a new symbol from an input, you are supposed
230 // to call resolve() with the new symbol. That function replaces
231 // "this" object as a result of name resolution if the new symbol is
232 // more appropriate to be included in the output.
234 // For example, if "this" is an undefined symbol and a new symbol is
235 // a defined symbol, "this" is replaced with the new symbol.
236 void mergeProperties(const Symbol
&other
);
237 void resolve(const Undefined
&other
);
238 void resolve(const CommonSymbol
&other
);
239 void resolve(const Defined
&other
);
240 void resolve(const LazyObject
&other
);
241 void resolve(const SharedSymbol
&other
);
243 // If this is a lazy symbol, extract an input file and add the symbol
244 // in the file to the symbol table. Calling this function on
245 // non-lazy object causes a runtime error.
246 void extract() const;
248 void checkDuplicate(const Defined
&other
) const;
251 bool shouldReplace(const Defined
&other
) const;
254 Symbol(Kind k
, InputFile
*file
, StringRef name
, uint8_t binding
,
255 uint8_t stOther
, uint8_t type
)
256 : file(file
), nameData(name
.data()), nameSize(name
.size()), type(type
),
257 binding(binding
), stOther(stOther
), symbolKind(k
), exportDynamic(false),
258 archSpecificBit(false) {}
260 void overwrite(Symbol
&sym
, Kind k
) const {
262 printTraceSymbol(*this, sym
.getName());
265 sym
.binding
= binding
;
266 sym
.stOther
= (stOther
& ~3) | sym
.visibility();
271 // True if this symbol is in the Iplt sub-section of the Plt and the Igot
272 // sub-section of the .got.plt or .got.
273 uint8_t isInIplt
: 1;
275 // True if this symbol needs a GOT entry and its GOT entry is actually in
276 // Igot. This will be true only for certain non-preemptible ifuncs.
277 uint8_t gotInIgot
: 1;
279 // True if defined relative to a section discarded by ICF.
282 // Allow reuse of a bit between architecture-exclusive symbol flags.
283 // - needsTocRestore(): On PPC64, true if a call to this symbol needs to be
284 // followed by a restore of the toc pointer.
285 // - isTagged(): On AArch64, true if the symbol needs special relocation and
286 // metadata semantics because it's tagged, under the AArch64 MemtagABI.
287 uint8_t archSpecificBit
: 1;
288 bool needsTocRestore() const { return archSpecificBit
; }
289 bool isTagged() const { return archSpecificBit
; }
290 void setNeedsTocRestore(bool v
) { archSpecificBit
= v
; }
291 void setIsTagged(bool v
) {
295 // True if this symbol is defined by a symbol assignment or wrapped by --wrap.
297 // LTO shouldn't inline the symbol because it doesn't know the final content
299 uint8_t scriptDefined
: 1;
301 // True if defined in a DSO as protected visibility.
302 uint8_t dsoProtected
: 1;
304 // True if targeted by a range extension thunk.
305 uint8_t thunkAccessed
: 1;
307 // Temporary flags used to communicate which symbol entries need PLT and GOT
308 // entries during postScanRelocations();
309 std::atomic
<uint16_t> flags
;
311 // A symAux index used to access GOT/PLT entry indexes. This is allocated in
312 // postScanRelocations().
314 uint32_t dynsymIndex
;
316 // This field is a index to the symbol's version definition.
317 uint16_t verdefIndex
;
319 // Version definition index.
322 void setFlags(uint16_t bits
) {
323 flags
.fetch_or(bits
, std::memory_order_relaxed
);
325 bool hasFlag(uint16_t bit
) const {
326 assert(bit
&& (bit
& (bit
- 1)) == 0 && "bit must be a power of 2");
327 return flags
.load(std::memory_order_relaxed
) & bit
;
330 bool needsDynReloc() const {
331 return flags
.load(std::memory_order_relaxed
) &
332 (NEEDS_COPY
| NEEDS_GOT
| NEEDS_PLT
| NEEDS_TLSDESC
| NEEDS_TLSGD
|
333 NEEDS_TLSGD_TO_IE
| NEEDS_GOT_DTPREL
| NEEDS_TLSIE
);
337 auxIdx
= symAux
.size();
338 symAux
.emplace_back();
341 bool isSection() const { return type
== llvm::ELF::STT_SECTION
; }
342 bool isTls() const { return type
== llvm::ELF::STT_TLS
; }
343 bool isFunc() const { return type
== llvm::ELF::STT_FUNC
; }
344 bool isGnuIFunc() const { return type
== llvm::ELF::STT_GNU_IFUNC
; }
345 bool isObject() const { return type
== llvm::ELF::STT_OBJECT
; }
346 bool isFile() const { return type
== llvm::ELF::STT_FILE
; }
349 // Represents a symbol that is defined in the current output file.
350 class Defined
: public Symbol
{
352 Defined(InputFile
*file
, StringRef name
, uint8_t binding
, uint8_t stOther
,
353 uint8_t type
, uint64_t value
, uint64_t size
, SectionBase
*section
)
354 : Symbol(DefinedKind
, file
, name
, binding
, stOther
, type
), value(value
),
355 size(size
), section(section
) {
356 exportDynamic
= config
->exportDynamic
;
358 void overwrite(Symbol
&sym
) const {
359 Symbol::overwrite(sym
, DefinedKind
);
360 sym
.verdefIndex
= -1;
361 auto &s
= static_cast<Defined
&>(sym
);
367 static bool classof(const Symbol
*s
) { return s
->isDefined(); }
371 SectionBase
*section
;
374 // Represents a common symbol.
376 // On Unix, it is traditionally allowed to write variable definitions
377 // without initialization expressions (such as "int foo;") to header
378 // files. Such definition is called "tentative definition".
380 // Using tentative definition is usually considered a bad practice
381 // because you should write only declarations (such as "extern int
382 // foo;") to header files. Nevertheless, the linker and the compiler
383 // have to do something to support bad code by allowing duplicate
384 // definitions for this particular case.
386 // Common symbols represent variable definitions without initializations.
387 // The compiler creates common symbols when it sees variable definitions
388 // without initialization (you can suppress this behavior and let the
389 // compiler create a regular defined symbol by -fno-common).
391 // The linker allows common symbols to be replaced by regular defined
392 // symbols. If there are remaining common symbols after name resolution is
393 // complete, they are converted to regular defined symbols in a .bss
394 // section. (Therefore, the later passes don't see any CommonSymbols.)
395 class CommonSymbol
: public Symbol
{
397 CommonSymbol(InputFile
*file
, StringRef name
, uint8_t binding
,
398 uint8_t stOther
, uint8_t type
, uint64_t alignment
, uint64_t size
)
399 : Symbol(CommonKind
, file
, name
, binding
, stOther
, type
),
400 alignment(alignment
), size(size
) {
401 exportDynamic
= config
->exportDynamic
;
403 void overwrite(Symbol
&sym
) const {
404 Symbol::overwrite(sym
, CommonKind
);
405 auto &s
= static_cast<CommonSymbol
&>(sym
);
406 s
.alignment
= alignment
;
410 static bool classof(const Symbol
*s
) { return s
->isCommon(); }
416 class Undefined
: public Symbol
{
418 Undefined(InputFile
*file
, StringRef name
, uint8_t binding
, uint8_t stOther
,
419 uint8_t type
, uint32_t discardedSecIdx
= 0)
420 : Symbol(UndefinedKind
, file
, name
, binding
, stOther
, type
),
421 discardedSecIdx(discardedSecIdx
) {}
422 void overwrite(Symbol
&sym
) const {
423 Symbol::overwrite(sym
, UndefinedKind
);
424 auto &s
= static_cast<Undefined
&>(sym
);
425 s
.discardedSecIdx
= discardedSecIdx
;
426 s
.nonPrevailing
= nonPrevailing
;
429 static bool classof(const Symbol
*s
) { return s
->kind() == UndefinedKind
; }
431 // The section index if in a discarded section, 0 otherwise.
432 uint32_t discardedSecIdx
;
433 bool nonPrevailing
= false;
436 class SharedSymbol
: public Symbol
{
438 static bool classof(const Symbol
*s
) { return s
->kind() == SharedKind
; }
440 SharedSymbol(InputFile
&file
, StringRef name
, uint8_t binding
,
441 uint8_t stOther
, uint8_t type
, uint64_t value
, uint64_t size
,
443 : Symbol(SharedKind
, &file
, name
, binding
, stOther
, type
), value(value
),
444 size(size
), alignment(alignment
) {
445 exportDynamic
= true;
446 dsoProtected
= visibility() == llvm::ELF::STV_PROTECTED
;
447 // GNU ifunc is a mechanism to allow user-supplied functions to
448 // resolve PLT slot values at load-time. This is contrary to the
449 // regular symbol resolution scheme in which symbols are resolved just
450 // by name. Using this hook, you can program how symbols are solved
451 // for you program. For example, you can make "memcpy" to be resolved
452 // to a SSE-enabled version of memcpy only when a machine running the
453 // program supports the SSE instruction set.
455 // Naturally, such symbols should always be called through their PLT
456 // slots. What GNU ifunc symbols point to are resolver functions, and
457 // calling them directly doesn't make sense (unless you are writing a
460 // For DSO symbols, we always call them through PLT slots anyway.
461 // So there's no difference between GNU ifunc and regular function
462 // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
463 if (this->type
== llvm::ELF::STT_GNU_IFUNC
)
464 this->type
= llvm::ELF::STT_FUNC
;
466 void overwrite(Symbol
&sym
) const {
467 Symbol::overwrite(sym
, SharedKind
);
468 auto &s
= static_cast<SharedSymbol
&>(sym
);
469 s
.dsoProtected
= dsoProtected
;
472 s
.alignment
= alignment
;
475 uint64_t value
; // st_value
476 uint64_t size
; // st_size
480 // LazyObject symbols represent symbols in object files between --start-lib and
481 // --end-lib options. LLD also handles traditional archives as if all the files
482 // in the archive are surrounded by --start-lib and --end-lib.
484 // A special complication is the handling of weak undefined symbols. They should
485 // not load a file, but we have to remember we have seen both the weak undefined
486 // and the lazy. We represent that with a lazy symbol with a weak binding. This
487 // means that code looking for undefined symbols normally also has to take lazy
488 // symbols into consideration.
489 class LazyObject
: public Symbol
{
491 LazyObject(InputFile
&file
)
492 : Symbol(LazyObjectKind
, &file
, {}, llvm::ELF::STB_GLOBAL
,
493 llvm::ELF::STV_DEFAULT
, llvm::ELF::STT_NOTYPE
) {}
494 void overwrite(Symbol
&sym
) const { Symbol::overwrite(sym
, LazyObjectKind
); }
496 static bool classof(const Symbol
*s
) { return s
->kind() == LazyObjectKind
; }
499 // Some linker-generated symbols need to be created as
506 static Defined
*etext1
;
507 static Defined
*etext2
;
510 static Defined
*edata1
;
511 static Defined
*edata2
;
514 static Defined
*end1
;
515 static Defined
*end2
;
517 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
518 // be at some offset from the base of the .got section, usually 0 or
519 // the end of the .got.
520 static Defined
*globalOffsetTable
;
522 // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
523 static Defined
*mipsGp
;
524 static Defined
*mipsGpDisp
;
525 static Defined
*mipsLocalGp
;
527 // __global_pointer$ for RISC-V.
528 static Defined
*riscvGlobalPointer
;
530 // __rel{,a}_iplt_{start,end} symbols.
531 static Defined
*relaIpltStart
;
532 static Defined
*relaIpltEnd
;
534 // _TLS_MODULE_BASE_ on targets that support TLSDESC.
535 static Defined
*tlsModuleBase
;
538 // A buffer class that is large enough to hold any Symbol-derived
539 // object. We allocate memory using this class and instantiate a symbol
540 // using the placement new.
542 // It is important to keep the size of SymbolUnion small for performance and
543 // memory usage reasons. 64 bytes is a soft limit based on the size of Defined
544 // on a 64-bit system. This is enforced by a static_assert in Symbols.cpp.
546 alignas(Defined
) char a
[sizeof(Defined
)];
547 alignas(CommonSymbol
) char b
[sizeof(CommonSymbol
)];
548 alignas(Undefined
) char c
[sizeof(Undefined
)];
549 alignas(SharedSymbol
) char d
[sizeof(SharedSymbol
)];
550 alignas(LazyObject
) char e
[sizeof(LazyObject
)];
553 template <typename
... T
> Defined
*makeDefined(T
&&...args
) {
554 auto *sym
= getSpecificAllocSingleton
<SymbolUnion
>().Allocate();
555 memset(sym
, 0, sizeof(Symbol
));
556 auto &s
= *new (reinterpret_cast<Defined
*>(sym
)) Defined(std::forward
<T
>(args
)...);
560 void reportDuplicate(const Symbol
&sym
, const InputFile
*newFile
,
561 InputSectionBase
*errSec
, uint64_t errOffset
);
562 void maybeWarnUnorderableSymbol(const Symbol
*sym
);
563 bool computeIsPreemptible(const Symbol
&sym
);