Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / ELF / SyntheticSections.cpp
blob0f7ebf9d7ba840b1b6f926ec1247e4d077632a44
1 //===- SyntheticSections.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains linker-synthesized sections. Currently,
10 // synthetic sections are created either output sections or input sections,
11 // but we are rewriting code so that all synthetic sections are created as
12 // input sections.
14 //===----------------------------------------------------------------------===//
16 #include "SyntheticSections.h"
17 #include "Config.h"
18 #include "DWARF.h"
19 #include "EhFrame.h"
20 #include "InputFiles.h"
21 #include "LinkerScript.h"
22 #include "OutputSections.h"
23 #include "SymbolTable.h"
24 #include "Symbols.h"
25 #include "Target.h"
26 #include "Thunks.h"
27 #include "Writer.h"
28 #include "lld/Common/CommonLinkerContext.h"
29 #include "lld/Common/DWARF.h"
30 #include "lld/Common/Strings.h"
31 #include "lld/Common/Version.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SetOperations.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
38 #include "llvm/Support/Endian.h"
39 #include "llvm/Support/LEB128.h"
40 #include "llvm/Support/Parallel.h"
41 #include "llvm/Support/TimeProfiler.h"
42 #include <cstdlib>
44 using namespace llvm;
45 using namespace llvm::dwarf;
46 using namespace llvm::ELF;
47 using namespace llvm::object;
48 using namespace llvm::support;
49 using namespace lld;
50 using namespace lld::elf;
52 using llvm::support::endian::read32le;
53 using llvm::support::endian::write32le;
54 using llvm::support::endian::write64le;
56 constexpr size_t MergeNoTailSection::numShards;
58 static uint64_t readUint(uint8_t *buf) {
59 return config->is64 ? read64(buf) : read32(buf);
62 static void writeUint(uint8_t *buf, uint64_t val) {
63 if (config->is64)
64 write64(buf, val);
65 else
66 write32(buf, val);
69 // Returns an LLD version string.
70 static ArrayRef<uint8_t> getVersion() {
71 // Check LLD_VERSION first for ease of testing.
72 // You can get consistent output by using the environment variable.
73 // This is only for testing.
74 StringRef s = getenv("LLD_VERSION");
75 if (s.empty())
76 s = saver().save(Twine("Linker: ") + getLLDVersion());
78 // +1 to include the terminating '\0'.
79 return {(const uint8_t *)s.data(), s.size() + 1};
82 // Creates a .comment section containing LLD version info.
83 // With this feature, you can identify LLD-generated binaries easily
84 // by "readelf --string-dump .comment <file>".
85 // The returned object is a mergeable string section.
86 MergeInputSection *elf::createCommentSection() {
87 auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
88 getVersion(), ".comment");
89 sec->splitIntoPieces();
90 return sec;
93 // .MIPS.abiflags section.
94 template <class ELFT>
95 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
96 : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
97 flags(flags) {
98 this->entsize = sizeof(Elf_Mips_ABIFlags);
101 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
102 memcpy(buf, &flags, sizeof(flags));
105 template <class ELFT>
106 std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() {
107 Elf_Mips_ABIFlags flags = {};
108 bool create = false;
110 for (InputSectionBase *sec : ctx.inputSections) {
111 if (sec->type != SHT_MIPS_ABIFLAGS)
112 continue;
113 sec->markDead();
114 create = true;
116 std::string filename = toString(sec->file);
117 const size_t size = sec->content().size();
118 // Older version of BFD (such as the default FreeBSD linker) concatenate
119 // .MIPS.abiflags instead of merging. To allow for this case (or potential
120 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
121 if (size < sizeof(Elf_Mips_ABIFlags)) {
122 error(filename + ": invalid size of .MIPS.abiflags section: got " +
123 Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
124 return nullptr;
126 auto *s =
127 reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data());
128 if (s->version != 0) {
129 error(filename + ": unexpected .MIPS.abiflags version " +
130 Twine(s->version));
131 return nullptr;
134 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
135 // select the highest number of ISA/Rev/Ext.
136 flags.isa_level = std::max(flags.isa_level, s->isa_level);
137 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
138 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
139 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
140 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
141 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
142 flags.ases |= s->ases;
143 flags.flags1 |= s->flags1;
144 flags.flags2 |= s->flags2;
145 flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
148 if (create)
149 return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags);
150 return nullptr;
153 // .MIPS.options section.
154 template <class ELFT>
155 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
156 : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
157 reginfo(reginfo) {
158 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
161 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
162 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
163 options->kind = ODK_REGINFO;
164 options->size = getSize();
166 if (!config->relocatable)
167 reginfo.ri_gp_value = in.mipsGot->getGp();
168 memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
171 template <class ELFT>
172 std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() {
173 // N64 ABI only.
174 if (!ELFT::Is64Bits)
175 return nullptr;
177 SmallVector<InputSectionBase *, 0> sections;
178 for (InputSectionBase *sec : ctx.inputSections)
179 if (sec->type == SHT_MIPS_OPTIONS)
180 sections.push_back(sec);
182 if (sections.empty())
183 return nullptr;
185 Elf_Mips_RegInfo reginfo = {};
186 for (InputSectionBase *sec : sections) {
187 sec->markDead();
189 std::string filename = toString(sec->file);
190 ArrayRef<uint8_t> d = sec->content();
192 while (!d.empty()) {
193 if (d.size() < sizeof(Elf_Mips_Options)) {
194 error(filename + ": invalid size of .MIPS.options section");
195 break;
198 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
199 if (opt->kind == ODK_REGINFO) {
200 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
201 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
202 break;
205 if (!opt->size)
206 fatal(filename + ": zero option descriptor size");
207 d = d.slice(opt->size);
211 return std::make_unique<MipsOptionsSection<ELFT>>(reginfo);
214 // MIPS .reginfo section.
215 template <class ELFT>
216 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
217 : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
218 reginfo(reginfo) {
219 this->entsize = sizeof(Elf_Mips_RegInfo);
222 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
223 if (!config->relocatable)
224 reginfo.ri_gp_value = in.mipsGot->getGp();
225 memcpy(buf, &reginfo, sizeof(reginfo));
228 template <class ELFT>
229 std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() {
230 // Section should be alive for O32 and N32 ABIs only.
231 if (ELFT::Is64Bits)
232 return nullptr;
234 SmallVector<InputSectionBase *, 0> sections;
235 for (InputSectionBase *sec : ctx.inputSections)
236 if (sec->type == SHT_MIPS_REGINFO)
237 sections.push_back(sec);
239 if (sections.empty())
240 return nullptr;
242 Elf_Mips_RegInfo reginfo = {};
243 for (InputSectionBase *sec : sections) {
244 sec->markDead();
246 if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) {
247 error(toString(sec->file) + ": invalid size of .reginfo section");
248 return nullptr;
251 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data());
252 reginfo.ri_gprmask |= r->ri_gprmask;
253 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
256 return std::make_unique<MipsReginfoSection<ELFT>>(reginfo);
259 InputSection *elf::createInterpSection() {
260 // StringSaver guarantees that the returned string ends with '\0'.
261 StringRef s = saver().save(config->dynamicLinker);
262 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
264 return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
265 ".interp");
268 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
269 uint64_t size, InputSectionBase &section) {
270 Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type,
271 value, size, &section);
272 if (in.symTab)
273 in.symTab->addSymbol(s);
275 if (config->emachine == EM_ARM && !config->isLE && config->armBe8 &&
276 (section.flags & SHF_EXECINSTR))
277 // Adding Linker generated mapping symbols to the arm specific mapping
278 // symbols list.
279 addArmSyntheticSectionMappingSymbol(s);
281 return s;
284 static size_t getHashSize() {
285 switch (config->buildId) {
286 case BuildIdKind::Fast:
287 return 8;
288 case BuildIdKind::Md5:
289 case BuildIdKind::Uuid:
290 return 16;
291 case BuildIdKind::Sha1:
292 return 20;
293 case BuildIdKind::Hexstring:
294 return config->buildIdVector.size();
295 default:
296 llvm_unreachable("unknown BuildIdKind");
300 // This class represents a linker-synthesized .note.gnu.property section.
302 // In x86 and AArch64, object files may contain feature flags indicating the
303 // features that they have used. The flags are stored in a .note.gnu.property
304 // section.
306 // lld reads the sections from input files and merges them by computing AND of
307 // the flags. The result is written as a new .note.gnu.property section.
309 // If the flag is zero (which indicates that the intersection of the feature
310 // sets is empty, or some input files didn't have .note.gnu.property sections),
311 // we don't create this section.
312 GnuPropertySection::GnuPropertySection()
313 : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
314 config->wordsize, ".note.gnu.property") {}
316 void GnuPropertySection::writeTo(uint8_t *buf) {
317 uint32_t featureAndType = config->emachine == EM_AARCH64
318 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
319 : GNU_PROPERTY_X86_FEATURE_1_AND;
321 write32(buf, 4); // Name size
322 write32(buf + 4, config->is64 ? 16 : 12); // Content size
323 write32(buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type
324 memcpy(buf + 12, "GNU", 4); // Name string
325 write32(buf + 16, featureAndType); // Feature type
326 write32(buf + 20, 4); // Feature size
327 write32(buf + 24, config->andFeatures); // Feature flags
328 if (config->is64)
329 write32(buf + 28, 0); // Padding
332 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
334 BuildIdSection::BuildIdSection()
335 : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
336 hashSize(getHashSize()) {}
338 void BuildIdSection::writeTo(uint8_t *buf) {
339 write32(buf, 4); // Name size
340 write32(buf + 4, hashSize); // Content size
341 write32(buf + 8, NT_GNU_BUILD_ID); // Type
342 memcpy(buf + 12, "GNU", 4); // Name string
343 hashBuf = buf + 16;
346 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
347 assert(buf.size() == hashSize);
348 memcpy(hashBuf, buf.data(), hashSize);
351 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
352 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
353 this->bss = true;
354 this->size = size;
357 EhFrameSection::EhFrameSection()
358 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
360 // Search for an existing CIE record or create a new one.
361 // CIE records from input object files are uniquified by their contents
362 // and where their relocations point to.
363 template <class ELFT, class RelTy>
364 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
365 Symbol *personality = nullptr;
366 unsigned firstRelI = cie.firstRelocation;
367 if (firstRelI != (unsigned)-1)
368 personality =
369 &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
371 // Search for an existing CIE by CIE contents/relocation target pair.
372 CieRecord *&rec = cieMap[{cie.data(), personality}];
374 // If not found, create a new one.
375 if (!rec) {
376 rec = make<CieRecord>();
377 rec->cie = &cie;
378 cieRecords.push_back(rec);
380 return rec;
383 // There is one FDE per function. Returns a non-null pointer to the function
384 // symbol if the given FDE points to a live function.
385 template <class ELFT, class RelTy>
386 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
387 auto *sec = cast<EhInputSection>(fde.sec);
388 unsigned firstRelI = fde.firstRelocation;
390 // An FDE should point to some function because FDEs are to describe
391 // functions. That's however not always the case due to an issue of
392 // ld.gold with -r. ld.gold may discard only functions and leave their
393 // corresponding FDEs, which results in creating bad .eh_frame sections.
394 // To deal with that, we ignore such FDEs.
395 if (firstRelI == (unsigned)-1)
396 return nullptr;
398 const RelTy &rel = rels[firstRelI];
399 Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
401 // FDEs for garbage-collected or merged-by-ICF sections, or sections in
402 // another partition, are dead.
403 if (auto *d = dyn_cast<Defined>(&b))
404 if (!d->folded && d->section && d->section->partition == partition)
405 return d;
406 return nullptr;
409 // .eh_frame is a sequence of CIE or FDE records. In general, there
410 // is one CIE record per input object file which is followed by
411 // a list of FDEs. This function searches an existing CIE or create a new
412 // one and associates FDEs to the CIE.
413 template <class ELFT, class RelTy>
414 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
415 offsetToCie.clear();
416 for (EhSectionPiece &cie : sec->cies)
417 offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels);
418 for (EhSectionPiece &fde : sec->fdes) {
419 uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4);
420 CieRecord *rec = offsetToCie[fde.inputOff + 4 - id];
421 if (!rec)
422 fatal(toString(sec) + ": invalid CIE reference");
424 if (!isFdeLive<ELFT>(fde, rels))
425 continue;
426 rec->fdes.push_back(&fde);
427 numFdes++;
431 template <class ELFT>
432 void EhFrameSection::addSectionAux(EhInputSection *sec) {
433 if (!sec->isLive())
434 return;
435 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
436 if (rels.areRelocsRel())
437 addRecords<ELFT>(sec, rels.rels);
438 else
439 addRecords<ELFT>(sec, rels.relas);
442 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to
443 // EhFrameSection::addRecords().
444 template <class ELFT, class RelTy>
445 void EhFrameSection::iterateFDEWithLSDAAux(
446 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA,
447 llvm::function_ref<void(InputSection &)> fn) {
448 for (EhSectionPiece &cie : sec.cies)
449 if (hasLSDA(cie))
450 ciesWithLSDA.insert(cie.inputOff);
451 for (EhSectionPiece &fde : sec.fdes) {
452 uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4);
453 if (!ciesWithLSDA.contains(fde.inputOff + 4 - id))
454 continue;
456 // The CIE has a LSDA argument. Call fn with d's section.
457 if (Defined *d = isFdeLive<ELFT>(fde, rels))
458 if (auto *s = dyn_cast_or_null<InputSection>(d->section))
459 fn(*s);
463 template <class ELFT>
464 void EhFrameSection::iterateFDEWithLSDA(
465 llvm::function_ref<void(InputSection &)> fn) {
466 DenseSet<size_t> ciesWithLSDA;
467 for (EhInputSection *sec : sections) {
468 ciesWithLSDA.clear();
469 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
470 if (rels.areRelocsRel())
471 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn);
472 else
473 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn);
477 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
478 memcpy(buf, d.data(), d.size());
479 // Fix the size field. -4 since size does not include the size field itself.
480 write32(buf, d.size() - 4);
483 void EhFrameSection::finalizeContents() {
484 assert(!this->size); // Not finalized.
486 switch (config->ekind) {
487 case ELFNoneKind:
488 llvm_unreachable("invalid ekind");
489 case ELF32LEKind:
490 for (EhInputSection *sec : sections)
491 addSectionAux<ELF32LE>(sec);
492 break;
493 case ELF32BEKind:
494 for (EhInputSection *sec : sections)
495 addSectionAux<ELF32BE>(sec);
496 break;
497 case ELF64LEKind:
498 for (EhInputSection *sec : sections)
499 addSectionAux<ELF64LE>(sec);
500 break;
501 case ELF64BEKind:
502 for (EhInputSection *sec : sections)
503 addSectionAux<ELF64BE>(sec);
504 break;
507 size_t off = 0;
508 for (CieRecord *rec : cieRecords) {
509 rec->cie->outputOff = off;
510 off += rec->cie->size;
512 for (EhSectionPiece *fde : rec->fdes) {
513 fde->outputOff = off;
514 off += fde->size;
518 // The LSB standard does not allow a .eh_frame section with zero
519 // Call Frame Information records. glibc unwind-dw2-fde.c
520 // classify_object_over_fdes expects there is a CIE record length 0 as a
521 // terminator. Thus we add one unconditionally.
522 off += 4;
524 this->size = off;
527 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
528 // to get an FDE from an address to which FDE is applied. This function
529 // returns a list of such pairs.
530 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const {
531 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
532 SmallVector<FdeData, 0> ret;
534 uint64_t va = getPartition().ehFrameHdr->getVA();
535 for (CieRecord *rec : cieRecords) {
536 uint8_t enc = getFdeEncoding(rec->cie);
537 for (EhSectionPiece *fde : rec->fdes) {
538 uint64_t pc = getFdePc(buf, fde->outputOff, enc);
539 uint64_t fdeVA = getParent()->addr + fde->outputOff;
540 if (!isInt<32>(pc - va))
541 fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
542 Twine::utohexstr(pc - va));
543 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
547 // Sort the FDE list by their PC and uniqueify. Usually there is only
548 // one FDE for a PC (i.e. function), but if ICF merges two functions
549 // into one, there can be more than one FDEs pointing to the address.
550 auto less = [](const FdeData &a, const FdeData &b) {
551 return a.pcRel < b.pcRel;
553 llvm::stable_sort(ret, less);
554 auto eq = [](const FdeData &a, const FdeData &b) {
555 return a.pcRel == b.pcRel;
557 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
559 return ret;
562 static uint64_t readFdeAddr(uint8_t *buf, int size) {
563 switch (size) {
564 case DW_EH_PE_udata2:
565 return read16(buf);
566 case DW_EH_PE_sdata2:
567 return (int16_t)read16(buf);
568 case DW_EH_PE_udata4:
569 return read32(buf);
570 case DW_EH_PE_sdata4:
571 return (int32_t)read32(buf);
572 case DW_EH_PE_udata8:
573 case DW_EH_PE_sdata8:
574 return read64(buf);
575 case DW_EH_PE_absptr:
576 return readUint(buf);
578 fatal("unknown FDE size encoding");
581 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
582 // We need it to create .eh_frame_hdr section.
583 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
584 uint8_t enc) const {
585 // The starting address to which this FDE applies is
586 // stored at FDE + 8 byte. And this offset is within
587 // the .eh_frame section.
588 size_t off = fdeOff + 8;
589 uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
590 if ((enc & 0x70) == DW_EH_PE_absptr)
591 return addr;
592 if ((enc & 0x70) == DW_EH_PE_pcrel)
593 return addr + getParent()->addr + off + outSecOff;
594 fatal("unknown FDE size relative encoding");
597 void EhFrameSection::writeTo(uint8_t *buf) {
598 // Write CIE and FDE records.
599 for (CieRecord *rec : cieRecords) {
600 size_t cieOffset = rec->cie->outputOff;
601 writeCieFde(buf + cieOffset, rec->cie->data());
603 for (EhSectionPiece *fde : rec->fdes) {
604 size_t off = fde->outputOff;
605 writeCieFde(buf + off, fde->data());
607 // FDE's second word should have the offset to an associated CIE.
608 // Write it.
609 write32(buf + off + 4, off + 4 - cieOffset);
613 // Apply relocations. .eh_frame section contents are not contiguous
614 // in the output buffer, but relocateAlloc() still works because
615 // getOffset() takes care of discontiguous section pieces.
616 for (EhInputSection *s : sections)
617 target->relocateAlloc(*s, buf);
619 if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
620 getPartition().ehFrameHdr->write();
623 GotSection::GotSection()
624 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
625 target->gotEntrySize, ".got") {
626 numEntries = target->gotHeaderEntriesNum;
629 void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); }
630 void GotSection::addEntry(Symbol &sym) {
631 assert(sym.auxIdx == symAux.size() - 1);
632 symAux.back().gotIdx = numEntries++;
635 bool GotSection::addTlsDescEntry(Symbol &sym) {
636 assert(sym.auxIdx == symAux.size() - 1);
637 symAux.back().tlsDescIdx = numEntries;
638 numEntries += 2;
639 return true;
642 bool GotSection::addDynTlsEntry(Symbol &sym) {
643 assert(sym.auxIdx == symAux.size() - 1);
644 symAux.back().tlsGdIdx = numEntries;
645 // Global Dynamic TLS entries take two GOT slots.
646 numEntries += 2;
647 return true;
650 // Reserves TLS entries for a TLS module ID and a TLS block offset.
651 // In total it takes two GOT slots.
652 bool GotSection::addTlsIndex() {
653 if (tlsIndexOff != uint32_t(-1))
654 return false;
655 tlsIndexOff = numEntries * config->wordsize;
656 numEntries += 2;
657 return true;
660 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const {
661 return sym.getTlsDescIdx() * config->wordsize;
664 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const {
665 return getVA() + getTlsDescOffset(sym);
668 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
669 return this->getVA() + b.getTlsGdIdx() * config->wordsize;
672 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
673 return b.getTlsGdIdx() * config->wordsize;
676 void GotSection::finalizeContents() {
677 if (config->emachine == EM_PPC64 &&
678 numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable)
679 size = 0;
680 else
681 size = numEntries * config->wordsize;
684 bool GotSection::isNeeded() const {
685 // Needed if the GOT symbol is used or the number of entries is more than just
686 // the header. A GOT with just the header may not be needed.
687 return hasGotOffRel || numEntries > target->gotHeaderEntriesNum;
690 void GotSection::writeTo(uint8_t *buf) {
691 // On PPC64 .got may be needed but empty. Skip the write.
692 if (size == 0)
693 return;
694 target->writeGotHeader(buf);
695 target->relocateAlloc(*this, buf);
698 static uint64_t getMipsPageAddr(uint64_t addr) {
699 return (addr + 0x8000) & ~0xffff;
702 static uint64_t getMipsPageCount(uint64_t size) {
703 return (size + 0xfffe) / 0xffff + 1;
706 MipsGotSection::MipsGotSection()
707 : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
708 ".got") {}
710 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
711 RelExpr expr) {
712 FileGot &g = getGot(file);
713 if (expr == R_MIPS_GOT_LOCAL_PAGE) {
714 if (const OutputSection *os = sym.getOutputSection())
715 g.pagesMap.insert({os, {}});
716 else
717 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
718 } else if (sym.isTls())
719 g.tls.insert({&sym, 0});
720 else if (sym.isPreemptible && expr == R_ABS)
721 g.relocs.insert({&sym, 0});
722 else if (sym.isPreemptible)
723 g.global.insert({&sym, 0});
724 else if (expr == R_MIPS_GOT_OFF32)
725 g.local32.insert({{&sym, addend}, 0});
726 else
727 g.local16.insert({{&sym, addend}, 0});
730 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
731 getGot(file).dynTlsSymbols.insert({&sym, 0});
734 void MipsGotSection::addTlsIndex(InputFile &file) {
735 getGot(file).dynTlsSymbols.insert({nullptr, 0});
738 size_t MipsGotSection::FileGot::getEntriesNum() const {
739 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
740 tls.size() + dynTlsSymbols.size() * 2;
743 size_t MipsGotSection::FileGot::getPageEntriesNum() const {
744 size_t num = 0;
745 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
746 num += p.second.count;
747 return num;
750 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
751 size_t count = getPageEntriesNum() + local16.size() + global.size();
752 // If there are relocation-only entries in the GOT, TLS entries
753 // are allocated after them. TLS entries should be addressable
754 // by 16-bit index so count both reloc-only and TLS entries.
755 if (!tls.empty() || !dynTlsSymbols.empty())
756 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
757 return count;
760 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
761 if (f.mipsGotIndex == uint32_t(-1)) {
762 gots.emplace_back();
763 gots.back().file = &f;
764 f.mipsGotIndex = gots.size() - 1;
766 return gots[f.mipsGotIndex];
769 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
770 const Symbol &sym,
771 int64_t addend) const {
772 const FileGot &g = gots[f->mipsGotIndex];
773 uint64_t index = 0;
774 if (const OutputSection *outSec = sym.getOutputSection()) {
775 uint64_t secAddr = getMipsPageAddr(outSec->addr);
776 uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
777 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
778 } else {
779 index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
781 return index * config->wordsize;
784 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
785 int64_t addend) const {
786 const FileGot &g = gots[f->mipsGotIndex];
787 Symbol *sym = const_cast<Symbol *>(&s);
788 if (sym->isTls())
789 return g.tls.lookup(sym) * config->wordsize;
790 if (sym->isPreemptible)
791 return g.global.lookup(sym) * config->wordsize;
792 return g.local16.lookup({sym, addend}) * config->wordsize;
795 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
796 const FileGot &g = gots[f->mipsGotIndex];
797 return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
800 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
801 const Symbol &s) const {
802 const FileGot &g = gots[f->mipsGotIndex];
803 Symbol *sym = const_cast<Symbol *>(&s);
804 return g.dynTlsSymbols.lookup(sym) * config->wordsize;
807 const Symbol *MipsGotSection::getFirstGlobalEntry() const {
808 if (gots.empty())
809 return nullptr;
810 const FileGot &primGot = gots.front();
811 if (!primGot.global.empty())
812 return primGot.global.front().first;
813 if (!primGot.relocs.empty())
814 return primGot.relocs.front().first;
815 return nullptr;
818 unsigned MipsGotSection::getLocalEntriesNum() const {
819 if (gots.empty())
820 return headerEntriesNum;
821 return headerEntriesNum + gots.front().getPageEntriesNum() +
822 gots.front().local16.size();
825 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
826 FileGot tmp = dst;
827 set_union(tmp.pagesMap, src.pagesMap);
828 set_union(tmp.local16, src.local16);
829 set_union(tmp.global, src.global);
830 set_union(tmp.relocs, src.relocs);
831 set_union(tmp.tls, src.tls);
832 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
834 size_t count = isPrimary ? headerEntriesNum : 0;
835 count += tmp.getIndexedEntriesNum();
837 if (count * config->wordsize > config->mipsGotSize)
838 return false;
840 std::swap(tmp, dst);
841 return true;
844 void MipsGotSection::finalizeContents() { updateAllocSize(); }
846 bool MipsGotSection::updateAllocSize() {
847 size = headerEntriesNum * config->wordsize;
848 for (const FileGot &g : gots)
849 size += g.getEntriesNum() * config->wordsize;
850 return false;
853 void MipsGotSection::build() {
854 if (gots.empty())
855 return;
857 std::vector<FileGot> mergedGots(1);
859 // For each GOT move non-preemptible symbols from the `Global`
860 // to `Local16` list. Preemptible symbol might become non-preemptible
861 // one if, for example, it gets a related copy relocation.
862 for (FileGot &got : gots) {
863 for (auto &p: got.global)
864 if (!p.first->isPreemptible)
865 got.local16.insert({{p.first, 0}, 0});
866 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
867 return !p.first->isPreemptible;
871 // For each GOT remove "reloc-only" entry if there is "global"
872 // entry for the same symbol. And add local entries which indexed
873 // using 32-bit value at the end of 16-bit entries.
874 for (FileGot &got : gots) {
875 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
876 return got.global.count(p.first);
878 set_union(got.local16, got.local32);
879 got.local32.clear();
882 // Evaluate number of "reloc-only" entries in the resulting GOT.
883 // To do that put all unique "reloc-only" and "global" entries
884 // from all GOTs to the future primary GOT.
885 FileGot *primGot = &mergedGots.front();
886 for (FileGot &got : gots) {
887 set_union(primGot->relocs, got.global);
888 set_union(primGot->relocs, got.relocs);
889 got.relocs.clear();
892 // Evaluate number of "page" entries in each GOT.
893 for (FileGot &got : gots) {
894 for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
895 got.pagesMap) {
896 const OutputSection *os = p.first;
897 uint64_t secSize = 0;
898 for (SectionCommand *cmd : os->commands) {
899 if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
900 for (InputSection *isec : isd->sections) {
901 uint64_t off = alignToPowerOf2(secSize, isec->addralign);
902 secSize = off + isec->getSize();
905 p.second.count = getMipsPageCount(secSize);
909 // Merge GOTs. Try to join as much as possible GOTs but do not exceed
910 // maximum GOT size. At first, try to fill the primary GOT because
911 // the primary GOT can be accessed in the most effective way. If it
912 // is not possible, try to fill the last GOT in the list, and finally
913 // create a new GOT if both attempts failed.
914 for (FileGot &srcGot : gots) {
915 InputFile *file = srcGot.file;
916 if (tryMergeGots(mergedGots.front(), srcGot, true)) {
917 file->mipsGotIndex = 0;
918 } else {
919 // If this is the first time we failed to merge with the primary GOT,
920 // MergedGots.back() will also be the primary GOT. We must make sure not
921 // to try to merge again with isPrimary=false, as otherwise, if the
922 // inputs are just right, we could allow the primary GOT to become 1 or 2
923 // words bigger due to ignoring the header size.
924 if (mergedGots.size() == 1 ||
925 !tryMergeGots(mergedGots.back(), srcGot, false)) {
926 mergedGots.emplace_back();
927 std::swap(mergedGots.back(), srcGot);
929 file->mipsGotIndex = mergedGots.size() - 1;
932 std::swap(gots, mergedGots);
934 // Reduce number of "reloc-only" entries in the primary GOT
935 // by subtracting "global" entries in the primary GOT.
936 primGot = &gots.front();
937 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
938 return primGot->global.count(p.first);
941 // Calculate indexes for each GOT entry.
942 size_t index = headerEntriesNum;
943 for (FileGot &got : gots) {
944 got.startIndex = &got == primGot ? 0 : index;
945 for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
946 got.pagesMap) {
947 // For each output section referenced by GOT page relocations calculate
948 // and save into pagesMap an upper bound of MIPS GOT entries required
949 // to store page addresses of local symbols. We assume the worst case -
950 // each 64kb page of the output section has at least one GOT relocation
951 // against it. And take in account the case when the section intersects
952 // page boundaries.
953 p.second.firstIndex = index;
954 index += p.second.count;
956 for (auto &p: got.local16)
957 p.second = index++;
958 for (auto &p: got.global)
959 p.second = index++;
960 for (auto &p: got.relocs)
961 p.second = index++;
962 for (auto &p: got.tls)
963 p.second = index++;
964 for (auto &p: got.dynTlsSymbols) {
965 p.second = index;
966 index += 2;
970 // Update SymbolAux::gotIdx field to use this
971 // value later in the `sortMipsSymbols` function.
972 for (auto &p : primGot->global) {
973 if (p.first->auxIdx == 0)
974 p.first->allocateAux();
975 symAux.back().gotIdx = p.second;
977 for (auto &p : primGot->relocs) {
978 if (p.first->auxIdx == 0)
979 p.first->allocateAux();
980 symAux.back().gotIdx = p.second;
983 // Create dynamic relocations.
984 for (FileGot &got : gots) {
985 // Create dynamic relocations for TLS entries.
986 for (std::pair<Symbol *, size_t> &p : got.tls) {
987 Symbol *s = p.first;
988 uint64_t offset = p.second * config->wordsize;
989 // When building a shared library we still need a dynamic relocation
990 // for the TP-relative offset as we don't know how much other data will
991 // be allocated before us in the static TLS block.
992 if (s->isPreemptible || config->shared)
993 mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset,
994 DynamicReloc::AgainstSymbolWithTargetVA,
995 *s, 0, R_ABS});
997 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
998 Symbol *s = p.first;
999 uint64_t offset = p.second * config->wordsize;
1000 if (s == nullptr) {
1001 if (!config->shared)
1002 continue;
1003 mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset});
1004 } else {
1005 // When building a shared library we still need a dynamic relocation
1006 // for the module index. Therefore only checking for
1007 // S->isPreemptible is not sufficient (this happens e.g. for
1008 // thread-locals that have been marked as local through a linker script)
1009 if (!s->isPreemptible && !config->shared)
1010 continue;
1011 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this,
1012 offset, *s);
1013 // However, we can skip writing the TLS offset reloc for non-preemptible
1014 // symbols since it is known even in shared libraries
1015 if (!s->isPreemptible)
1016 continue;
1017 offset += config->wordsize;
1018 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset,
1019 *s);
1023 // Do not create dynamic relocations for non-TLS
1024 // entries in the primary GOT.
1025 if (&got == primGot)
1026 continue;
1028 // Dynamic relocations for "global" entries.
1029 for (const std::pair<Symbol *, size_t> &p : got.global) {
1030 uint64_t offset = p.second * config->wordsize;
1031 mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset,
1032 *p.first);
1034 if (!config->isPic)
1035 continue;
1036 // Dynamic relocations for "local" entries in case of PIC.
1037 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1038 got.pagesMap) {
1039 size_t pageCount = l.second.count;
1040 for (size_t pi = 0; pi < pageCount; ++pi) {
1041 uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
1042 mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
1043 int64_t(pi * 0x10000)});
1046 for (const std::pair<GotEntry, size_t> &p : got.local16) {
1047 uint64_t offset = p.second * config->wordsize;
1048 mainPart->relaDyn->addReloc({target->relativeRel, this, offset,
1049 DynamicReloc::AddendOnlyWithTargetVA,
1050 *p.first.first, p.first.second, R_ABS});
1055 bool MipsGotSection::isNeeded() const {
1056 // We add the .got section to the result for dynamic MIPS target because
1057 // its address and properties are mentioned in the .dynamic section.
1058 return !config->relocatable;
1061 uint64_t MipsGotSection::getGp(const InputFile *f) const {
1062 // For files without related GOT or files refer a primary GOT
1063 // returns "common" _gp value. For secondary GOTs calculate
1064 // individual _gp values.
1065 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0)
1066 return ElfSym::mipsGp->getVA(0);
1067 return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0;
1070 void MipsGotSection::writeTo(uint8_t *buf) {
1071 // Set the MSB of the second GOT slot. This is not required by any
1072 // MIPS ABI documentation, though.
1074 // There is a comment in glibc saying that "The MSB of got[1] of a
1075 // gnu object is set to identify gnu objects," and in GNU gold it
1076 // says "the second entry will be used by some runtime loaders".
1077 // But how this field is being used is unclear.
1079 // We are not really willing to mimic other linkers behaviors
1080 // without understanding why they do that, but because all files
1081 // generated by GNU tools have this special GOT value, and because
1082 // we've been doing this for years, it is probably a safe bet to
1083 // keep doing this for now. We really need to revisit this to see
1084 // if we had to do this.
1085 writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
1086 for (const FileGot &g : gots) {
1087 auto write = [&](size_t i, const Symbol *s, int64_t a) {
1088 uint64_t va = a;
1089 if (s)
1090 va = s->getVA(a);
1091 writeUint(buf + i * config->wordsize, va);
1093 // Write 'page address' entries to the local part of the GOT.
1094 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1095 g.pagesMap) {
1096 size_t pageCount = l.second.count;
1097 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1098 for (size_t pi = 0; pi < pageCount; ++pi)
1099 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1101 // Local, global, TLS, reloc-only entries.
1102 // If TLS entry has a corresponding dynamic relocations, leave it
1103 // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1104 // To calculate the adjustments use offsets for thread-local storage.
1105 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL
1106 for (const std::pair<GotEntry, size_t> &p : g.local16)
1107 write(p.second, p.first.first, p.first.second);
1108 // Write VA to the primary GOT only. For secondary GOTs that
1109 // will be done by REL32 dynamic relocations.
1110 if (&g == &gots.front())
1111 for (const std::pair<Symbol *, size_t> &p : g.global)
1112 write(p.second, p.first, 0);
1113 for (const std::pair<Symbol *, size_t> &p : g.relocs)
1114 write(p.second, p.first, 0);
1115 for (const std::pair<Symbol *, size_t> &p : g.tls)
1116 write(p.second, p.first,
1117 p.first->isPreemptible || config->shared ? 0 : -0x7000);
1118 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1119 if (p.first == nullptr && !config->shared)
1120 write(p.second, nullptr, 1);
1121 else if (p.first && !p.first->isPreemptible) {
1122 // If we are emitting a shared library with relocations we mustn't write
1123 // anything to the GOT here. When using Elf_Rel relocations the value
1124 // one will be treated as an addend and will cause crashes at runtime
1125 if (!config->shared)
1126 write(p.second, nullptr, 1);
1127 write(p.second + 1, p.first, -0x8000);
1133 // On PowerPC the .plt section is used to hold the table of function addresses
1134 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1135 // section. I don't know why we have a BSS style type for the section but it is
1136 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
1137 GotPltSection::GotPltSection()
1138 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
1139 ".got.plt") {
1140 if (config->emachine == EM_PPC) {
1141 name = ".plt";
1142 } else if (config->emachine == EM_PPC64) {
1143 type = SHT_NOBITS;
1144 name = ".plt";
1148 void GotPltSection::addEntry(Symbol &sym) {
1149 assert(sym.auxIdx == symAux.size() - 1 &&
1150 symAux.back().pltIdx == entries.size());
1151 entries.push_back(&sym);
1154 size_t GotPltSection::getSize() const {
1155 return (target->gotPltHeaderEntriesNum + entries.size()) *
1156 target->gotEntrySize;
1159 void GotPltSection::writeTo(uint8_t *buf) {
1160 target->writeGotPltHeader(buf);
1161 buf += target->gotPltHeaderEntriesNum * target->gotEntrySize;
1162 for (const Symbol *b : entries) {
1163 target->writeGotPlt(buf, *b);
1164 buf += target->gotEntrySize;
1168 bool GotPltSection::isNeeded() const {
1169 // We need to emit GOTPLT even if it's empty if there's a relocation relative
1170 // to it.
1171 return !entries.empty() || hasGotPltOffRel;
1174 static StringRef getIgotPltName() {
1175 // On ARM the IgotPltSection is part of the GotSection.
1176 if (config->emachine == EM_ARM)
1177 return ".got";
1179 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1180 // needs to be named the same.
1181 if (config->emachine == EM_PPC64)
1182 return ".plt";
1184 return ".got.plt";
1187 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1188 // with the IgotPltSection.
1189 IgotPltSection::IgotPltSection()
1190 : SyntheticSection(SHF_ALLOC | SHF_WRITE,
1191 config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1192 target->gotEntrySize, getIgotPltName()) {}
1194 void IgotPltSection::addEntry(Symbol &sym) {
1195 assert(symAux.back().pltIdx == entries.size());
1196 entries.push_back(&sym);
1199 size_t IgotPltSection::getSize() const {
1200 return entries.size() * target->gotEntrySize;
1203 void IgotPltSection::writeTo(uint8_t *buf) {
1204 for (const Symbol *b : entries) {
1205 target->writeIgotPlt(buf, *b);
1206 buf += target->gotEntrySize;
1210 StringTableSection::StringTableSection(StringRef name, bool dynamic)
1211 : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
1212 dynamic(dynamic) {
1213 // ELF string tables start with a NUL byte.
1214 strings.push_back("");
1215 stringMap.try_emplace(CachedHashStringRef(""), 0);
1216 size = 1;
1219 // Adds a string to the string table. If `hashIt` is true we hash and check for
1220 // duplicates. It is optional because the name of global symbols are already
1221 // uniqued and hashing them again has a big cost for a small value: uniquing
1222 // them with some other string that happens to be the same.
1223 unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1224 if (hashIt) {
1225 auto r = stringMap.try_emplace(CachedHashStringRef(s), size);
1226 if (!r.second)
1227 return r.first->second;
1229 if (s.empty())
1230 return 0;
1231 unsigned ret = this->size;
1232 this->size = this->size + s.size() + 1;
1233 strings.push_back(s);
1234 return ret;
1237 void StringTableSection::writeTo(uint8_t *buf) {
1238 for (StringRef s : strings) {
1239 memcpy(buf, s.data(), s.size());
1240 buf[s.size()] = '\0';
1241 buf += s.size() + 1;
1245 // Returns the number of entries in .gnu.version_d: the number of
1246 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1247 // Note that we don't support vd_cnt > 1 yet.
1248 static unsigned getVerDefNum() {
1249 return namedVersionDefs().size() + 1;
1252 template <class ELFT>
1253 DynamicSection<ELFT>::DynamicSection()
1254 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
1255 ".dynamic") {
1256 this->entsize = ELFT::Is64Bits ? 16 : 8;
1258 // .dynamic section is not writable on MIPS and on Fuchsia OS
1259 // which passes -z rodynamic.
1260 // See "Special Section" in Chapter 4 in the following document:
1261 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1262 if (config->emachine == EM_MIPS || config->zRodynamic)
1263 this->flags = SHF_ALLOC;
1266 // The output section .rela.dyn may include these synthetic sections:
1268 // - part.relaDyn
1269 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
1270 // - in.relaPlt: this is included if a linker script places .rela.plt inside
1271 // .rela.dyn
1273 // DT_RELASZ is the total size of the included sections.
1274 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) {
1275 size_t size = relaDyn.getSize();
1276 if (in.relaIplt->getParent() == relaDyn.getParent())
1277 size += in.relaIplt->getSize();
1278 if (in.relaPlt->getParent() == relaDyn.getParent())
1279 size += in.relaPlt->getSize();
1280 return size;
1283 // A Linker script may assign the RELA relocation sections to the same
1284 // output section. When this occurs we cannot just use the OutputSection
1285 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1286 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
1287 static uint64_t addPltRelSz() {
1288 size_t size = in.relaPlt->getSize();
1289 if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
1290 in.relaIplt->name == in.relaPlt->name)
1291 size += in.relaIplt->getSize();
1292 return size;
1295 // Add remaining entries to complete .dynamic contents.
1296 template <class ELFT>
1297 std::vector<std::pair<int32_t, uint64_t>>
1298 DynamicSection<ELFT>::computeContents() {
1299 elf::Partition &part = getPartition();
1300 bool isMain = part.name.empty();
1301 std::vector<std::pair<int32_t, uint64_t>> entries;
1303 auto addInt = [&](int32_t tag, uint64_t val) {
1304 entries.emplace_back(tag, val);
1306 auto addInSec = [&](int32_t tag, const InputSection &sec) {
1307 entries.emplace_back(tag, sec.getVA());
1310 for (StringRef s : config->filterList)
1311 addInt(DT_FILTER, part.dynStrTab->addString(s));
1312 for (StringRef s : config->auxiliaryList)
1313 addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1315 if (!config->rpath.empty())
1316 addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
1317 part.dynStrTab->addString(config->rpath));
1319 for (SharedFile *file : ctx.sharedFiles)
1320 if (file->isNeeded)
1321 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1323 if (isMain) {
1324 if (!config->soName.empty())
1325 addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
1326 } else {
1327 if (!config->soName.empty())
1328 addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
1329 addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1332 // Set DT_FLAGS and DT_FLAGS_1.
1333 uint32_t dtFlags = 0;
1334 uint32_t dtFlags1 = 0;
1335 if (config->bsymbolic == BsymbolicKind::All)
1336 dtFlags |= DF_SYMBOLIC;
1337 if (config->zGlobal)
1338 dtFlags1 |= DF_1_GLOBAL;
1339 if (config->zInitfirst)
1340 dtFlags1 |= DF_1_INITFIRST;
1341 if (config->zInterpose)
1342 dtFlags1 |= DF_1_INTERPOSE;
1343 if (config->zNodefaultlib)
1344 dtFlags1 |= DF_1_NODEFLIB;
1345 if (config->zNodelete)
1346 dtFlags1 |= DF_1_NODELETE;
1347 if (config->zNodlopen)
1348 dtFlags1 |= DF_1_NOOPEN;
1349 if (config->pie)
1350 dtFlags1 |= DF_1_PIE;
1351 if (config->zNow) {
1352 dtFlags |= DF_BIND_NOW;
1353 dtFlags1 |= DF_1_NOW;
1355 if (config->zOrigin) {
1356 dtFlags |= DF_ORIGIN;
1357 dtFlags1 |= DF_1_ORIGIN;
1359 if (!config->zText)
1360 dtFlags |= DF_TEXTREL;
1361 if (ctx.hasTlsIe && config->shared)
1362 dtFlags |= DF_STATIC_TLS;
1364 if (dtFlags)
1365 addInt(DT_FLAGS, dtFlags);
1366 if (dtFlags1)
1367 addInt(DT_FLAGS_1, dtFlags1);
1369 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1370 // need it for each process, so we don't write it for DSOs. The loader writes
1371 // the pointer into this entry.
1373 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1374 // systems (currently only Fuchsia OS) provide other means to give the
1375 // debugger this information. Such systems may choose make .dynamic read-only.
1376 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1377 if (!config->shared && !config->relocatable && !config->zRodynamic)
1378 addInt(DT_DEBUG, 0);
1380 if (part.relaDyn->isNeeded() ||
1381 (in.relaIplt->isNeeded() &&
1382 part.relaDyn->getParent() == in.relaIplt->getParent())) {
1383 addInSec(part.relaDyn->dynamicTag, *part.relaDyn);
1384 entries.emplace_back(part.relaDyn->sizeDynamicTag,
1385 addRelaSz(*part.relaDyn));
1387 bool isRela = config->isRela;
1388 addInt(isRela ? DT_RELAENT : DT_RELENT,
1389 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1391 // MIPS dynamic loader does not support RELCOUNT tag.
1392 // The problem is in the tight relation between dynamic
1393 // relocations and GOT. So do not emit this tag on MIPS.
1394 if (config->emachine != EM_MIPS) {
1395 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1396 if (config->zCombreloc && numRelativeRels)
1397 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1400 if (part.relrDyn && part.relrDyn->getParent() &&
1401 !part.relrDyn->relocs.empty()) {
1402 addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1403 *part.relrDyn);
1404 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1405 part.relrDyn->getParent()->size);
1406 addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1407 sizeof(Elf_Relr));
1409 // .rel[a].plt section usually consists of two parts, containing plt and
1410 // iplt relocations. It is possible to have only iplt relocations in the
1411 // output. In that case relaPlt is empty and have zero offset, the same offset
1412 // as relaIplt has. And we still want to emit proper dynamic tags for that
1413 // case, so here we always use relaPlt as marker for the beginning of
1414 // .rel[a].plt section.
1415 if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
1416 addInSec(DT_JMPREL, *in.relaPlt);
1417 entries.emplace_back(DT_PLTRELSZ, addPltRelSz());
1418 switch (config->emachine) {
1419 case EM_MIPS:
1420 addInSec(DT_MIPS_PLTGOT, *in.gotPlt);
1421 break;
1422 case EM_SPARCV9:
1423 addInSec(DT_PLTGOT, *in.plt);
1424 break;
1425 case EM_AARCH64:
1426 if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) {
1427 return r.type == target->pltRel &&
1428 r.sym->stOther & STO_AARCH64_VARIANT_PCS;
1429 }) != in.relaPlt->relocs.end())
1430 addInt(DT_AARCH64_VARIANT_PCS, 0);
1431 addInSec(DT_PLTGOT, *in.gotPlt);
1432 break;
1433 case EM_RISCV:
1434 if (llvm::any_of(in.relaPlt->relocs, [](const DynamicReloc &r) {
1435 return r.type == target->pltRel &&
1436 (r.sym->stOther & STO_RISCV_VARIANT_CC);
1438 addInt(DT_RISCV_VARIANT_CC, 0);
1439 [[fallthrough]];
1440 default:
1441 addInSec(DT_PLTGOT, *in.gotPlt);
1442 break;
1444 addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
1447 if (config->emachine == EM_AARCH64) {
1448 if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1449 addInt(DT_AARCH64_BTI_PLT, 0);
1450 if (config->zPacPlt)
1451 addInt(DT_AARCH64_PAC_PLT, 0);
1453 if (config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE) {
1454 addInt(DT_AARCH64_MEMTAG_MODE, config->androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC);
1455 addInt(DT_AARCH64_MEMTAG_HEAP, config->androidMemtagHeap);
1456 addInt(DT_AARCH64_MEMTAG_STACK, config->androidMemtagStack);
1457 if (mainPart->memtagDescriptors->isNeeded()) {
1458 addInSec(DT_AARCH64_MEMTAG_GLOBALS, *mainPart->memtagDescriptors);
1459 addInt(DT_AARCH64_MEMTAG_GLOBALSSZ, mainPart->memtagDescriptors->getSize());
1464 addInSec(DT_SYMTAB, *part.dynSymTab);
1465 addInt(DT_SYMENT, sizeof(Elf_Sym));
1466 addInSec(DT_STRTAB, *part.dynStrTab);
1467 addInt(DT_STRSZ, part.dynStrTab->getSize());
1468 if (!config->zText)
1469 addInt(DT_TEXTREL, 0);
1470 if (part.gnuHashTab && part.gnuHashTab->getParent())
1471 addInSec(DT_GNU_HASH, *part.gnuHashTab);
1472 if (part.hashTab && part.hashTab->getParent())
1473 addInSec(DT_HASH, *part.hashTab);
1475 if (isMain) {
1476 if (Out::preinitArray) {
1477 addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr);
1478 addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size);
1480 if (Out::initArray) {
1481 addInt(DT_INIT_ARRAY, Out::initArray->addr);
1482 addInt(DT_INIT_ARRAYSZ, Out::initArray->size);
1484 if (Out::finiArray) {
1485 addInt(DT_FINI_ARRAY, Out::finiArray->addr);
1486 addInt(DT_FINI_ARRAYSZ, Out::finiArray->size);
1489 if (Symbol *b = symtab.find(config->init))
1490 if (b->isDefined())
1491 addInt(DT_INIT, b->getVA());
1492 if (Symbol *b = symtab.find(config->fini))
1493 if (b->isDefined())
1494 addInt(DT_FINI, b->getVA());
1497 if (part.verSym && part.verSym->isNeeded())
1498 addInSec(DT_VERSYM, *part.verSym);
1499 if (part.verDef && part.verDef->isLive()) {
1500 addInSec(DT_VERDEF, *part.verDef);
1501 addInt(DT_VERDEFNUM, getVerDefNum());
1503 if (part.verNeed && part.verNeed->isNeeded()) {
1504 addInSec(DT_VERNEED, *part.verNeed);
1505 unsigned needNum = 0;
1506 for (SharedFile *f : ctx.sharedFiles)
1507 if (!f->vernauxs.empty())
1508 ++needNum;
1509 addInt(DT_VERNEEDNUM, needNum);
1512 if (config->emachine == EM_MIPS) {
1513 addInt(DT_MIPS_RLD_VERSION, 1);
1514 addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1515 addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
1516 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1517 addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum());
1519 if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
1520 addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1521 else
1522 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1523 addInSec(DT_PLTGOT, *in.mipsGot);
1524 if (in.mipsRldMap) {
1525 if (!config->pie)
1526 addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap);
1527 // Store the offset to the .rld_map section
1528 // relative to the address of the tag.
1529 addInt(DT_MIPS_RLD_MAP_REL,
1530 in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize));
1534 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1535 // glibc assumes the old-style BSS PLT layout which we don't support.
1536 if (config->emachine == EM_PPC)
1537 addInSec(DT_PPC_GOT, *in.got);
1539 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1540 if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
1541 // The Glink tag points to 32 bytes before the first lazy symbol resolution
1542 // stub, which starts directly after the header.
1543 addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32);
1546 if (config->emachine == EM_PPC64)
1547 addInt(DT_PPC64_OPT, getPPC64TargetInfo()->ppc64DynamicSectionOpt);
1549 addInt(DT_NULL, 0);
1550 return entries;
1553 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1554 if (OutputSection *sec = getPartition().dynStrTab->getParent())
1555 getParent()->link = sec->sectionIndex;
1556 this->size = computeContents().size() * this->entsize;
1559 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1560 auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1562 for (std::pair<int32_t, uint64_t> kv : computeContents()) {
1563 p->d_tag = kv.first;
1564 p->d_un.d_val = kv.second;
1565 ++p;
1569 uint64_t DynamicReloc::getOffset() const {
1570 return inputSec->getVA(offsetInSec);
1573 int64_t DynamicReloc::computeAddend() const {
1574 switch (kind) {
1575 case AddendOnly:
1576 assert(sym == nullptr);
1577 return addend;
1578 case AgainstSymbol:
1579 assert(sym != nullptr);
1580 return addend;
1581 case AddendOnlyWithTargetVA:
1582 case AgainstSymbolWithTargetVA: {
1583 uint64_t ca = InputSection::getRelocTargetVA(inputSec->file, type, addend,
1584 getOffset(), *sym, expr);
1585 return config->is64 ? ca : SignExtend64<32>(ca);
1587 case MipsMultiGotPage:
1588 assert(sym == nullptr);
1589 return getMipsPageAddr(outputSec->addr) + addend;
1591 llvm_unreachable("Unknown DynamicReloc::Kind enum");
1594 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1595 if (!needsDynSymIndex())
1596 return 0;
1598 size_t index = symTab->getSymbolIndex(sym);
1599 assert((index != 0 || (type != target->gotRel && type != target->pltRel) ||
1600 !mainPart->dynSymTab->getParent()) &&
1601 "GOT or PLT relocation must refer to symbol in dynamic symbol table");
1602 return index;
1605 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
1606 int32_t dynamicTag,
1607 int32_t sizeDynamicTag,
1608 bool combreloc,
1609 unsigned concurrency)
1610 : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
1611 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag),
1612 relocsVec(concurrency), combreloc(combreloc) {}
1614 void RelocationBaseSection::addSymbolReloc(
1615 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
1616 int64_t addend, std::optional<RelType> addendRelType) {
1617 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend,
1618 R_ADDEND, addendRelType ? *addendRelType : target->noneRel);
1621 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible(
1622 RelType dynType, GotSection &sec, uint64_t offsetInSec, Symbol &sym,
1623 RelType addendRelType) {
1624 // No need to write an addend to the section for preemptible symbols.
1625 if (sym.isPreemptible)
1626 addReloc({dynType, &sec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0,
1627 R_ABS});
1628 else
1629 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, sec, offsetInSec,
1630 sym, 0, R_ABS, addendRelType);
1633 void RelocationBaseSection::mergeRels() {
1634 size_t newSize = relocs.size();
1635 for (const auto &v : relocsVec)
1636 newSize += v.size();
1637 relocs.reserve(newSize);
1638 for (const auto &v : relocsVec)
1639 llvm::append_range(relocs, v);
1640 relocsVec.clear();
1643 void RelocationBaseSection::partitionRels() {
1644 if (!combreloc)
1645 return;
1646 const RelType relativeRel = target->relativeRel;
1647 numRelativeRelocs =
1648 llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) -
1649 relocs.begin();
1652 void RelocationBaseSection::finalizeContents() {
1653 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1655 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1656 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1657 // case.
1658 if (symTab && symTab->getParent())
1659 getParent()->link = symTab->getParent()->sectionIndex;
1660 else
1661 getParent()->link = 0;
1663 if (in.relaPlt.get() == this && in.gotPlt->getParent()) {
1664 getParent()->flags |= ELF::SHF_INFO_LINK;
1665 getParent()->info = in.gotPlt->getParent()->sectionIndex;
1667 if (in.relaIplt.get() == this && in.igotPlt->getParent()) {
1668 getParent()->flags |= ELF::SHF_INFO_LINK;
1669 getParent()->info = in.igotPlt->getParent()->sectionIndex;
1673 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) {
1674 r_offset = getOffset();
1675 r_sym = getSymIndex(symtab);
1676 addend = computeAddend();
1677 kind = AddendOnly; // Catch errors
1680 void RelocationBaseSection::computeRels() {
1681 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1682 parallelForEach(relocs,
1683 [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); });
1684 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1685 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1686 // is to make results easier to read.
1687 if (combreloc) {
1688 auto nonRelative = relocs.begin() + numRelativeRelocs;
1689 parallelSort(relocs.begin(), nonRelative,
1690 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; });
1691 // Non-relative relocations are few, so don't bother with parallelSort.
1692 llvm::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) {
1693 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset);
1698 template <class ELFT>
1699 RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc,
1700 unsigned concurrency)
1701 : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
1702 config->isRela ? DT_RELA : DT_REL,
1703 config->isRela ? DT_RELASZ : DT_RELSZ, combreloc,
1704 concurrency) {
1705 this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1708 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1709 computeRels();
1710 for (const DynamicReloc &rel : relocs) {
1711 auto *p = reinterpret_cast<Elf_Rela *>(buf);
1712 p->r_offset = rel.r_offset;
1713 p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL);
1714 if (config->isRela)
1715 p->r_addend = rel.addend;
1716 buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1720 RelrBaseSection::RelrBaseSection(unsigned concurrency)
1721 : SyntheticSection(SHF_ALLOC,
1722 config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
1723 config->wordsize, ".relr.dyn"),
1724 relocsVec(concurrency) {}
1726 void RelrBaseSection::mergeRels() {
1727 size_t newSize = relocs.size();
1728 for (const auto &v : relocsVec)
1729 newSize += v.size();
1730 relocs.reserve(newSize);
1731 for (const auto &v : relocsVec)
1732 llvm::append_range(relocs, v);
1733 relocsVec.clear();
1736 template <class ELFT>
1737 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1738 StringRef name, unsigned concurrency)
1739 : RelocationBaseSection(
1740 name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1741 config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1742 config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ,
1743 /*combreloc=*/false, concurrency) {
1744 this->entsize = 1;
1747 template <class ELFT>
1748 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
1749 // This function computes the contents of an Android-format packed relocation
1750 // section.
1752 // This format compresses relocations by using relocation groups to factor out
1753 // fields that are common between relocations and storing deltas from previous
1754 // relocations in SLEB128 format (which has a short representation for small
1755 // numbers). A good example of a relocation type with common fields is
1756 // R_*_RELATIVE, which is normally used to represent function pointers in
1757 // vtables. In the REL format, each relative relocation has the same r_info
1758 // field, and is only different from other relative relocations in terms of
1759 // the r_offset field. By sorting relocations by offset, grouping them by
1760 // r_info and representing each relocation with only the delta from the
1761 // previous offset, each 8-byte relocation can be compressed to as little as 1
1762 // byte (or less with run-length encoding). This relocation packer was able to
1763 // reduce the size of the relocation section in an Android Chromium DSO from
1764 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1766 // A relocation section consists of a header containing the literal bytes
1767 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1768 // elements are the total number of relocations in the section and an initial
1769 // r_offset value. The remaining elements define a sequence of relocation
1770 // groups. Each relocation group starts with a header consisting of the
1771 // following elements:
1773 // - the number of relocations in the relocation group
1774 // - flags for the relocation group
1775 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1776 // for each relocation in the group.
1777 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1778 // field for each relocation in the group.
1779 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1780 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1781 // each relocation in the group.
1783 // Following the relocation group header are descriptions of each of the
1784 // relocations in the group. They consist of the following elements:
1786 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1787 // delta for this relocation.
1788 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1789 // field for this relocation.
1790 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1791 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1792 // this relocation.
1794 size_t oldSize = relocData.size();
1796 relocData = {'A', 'P', 'S', '2'};
1797 raw_svector_ostream os(relocData);
1798 auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1800 // The format header includes the number of relocations and the initial
1801 // offset (we set this to zero because the first relocation group will
1802 // perform the initial adjustment).
1803 add(relocs.size());
1804 add(0);
1806 std::vector<Elf_Rela> relatives, nonRelatives;
1808 for (const DynamicReloc &rel : relocs) {
1809 Elf_Rela r;
1810 r.r_offset = rel.getOffset();
1811 r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()),
1812 rel.type, false);
1813 r.r_addend = config->isRela ? rel.computeAddend() : 0;
1815 if (r.getType(config->isMips64EL) == target->relativeRel)
1816 relatives.push_back(r);
1817 else
1818 nonRelatives.push_back(r);
1821 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1822 return a.r_offset < b.r_offset;
1825 // Try to find groups of relative relocations which are spaced one word
1826 // apart from one another. These generally correspond to vtable entries. The
1827 // format allows these groups to be encoded using a sort of run-length
1828 // encoding, but each group will cost 7 bytes in addition to the offset from
1829 // the previous group, so it is only profitable to do this for groups of
1830 // size 8 or larger.
1831 std::vector<Elf_Rela> ungroupedRelatives;
1832 std::vector<std::vector<Elf_Rela>> relativeGroups;
1833 for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1834 std::vector<Elf_Rela> group;
1835 do {
1836 group.push_back(*i++);
1837 } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
1839 if (group.size() < 8)
1840 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1841 group.end());
1842 else
1843 relativeGroups.emplace_back(std::move(group));
1846 // For non-relative relocations, we would like to:
1847 // 1. Have relocations with the same symbol offset to be consecutive, so
1848 // that the runtime linker can speed-up symbol lookup by implementing an
1849 // 1-entry cache.
1850 // 2. Group relocations by r_info to reduce the size of the relocation
1851 // section.
1852 // Since the symbol offset is the high bits in r_info, sorting by r_info
1853 // allows us to do both.
1855 // For Rela, we also want to sort by r_addend when r_info is the same. This
1856 // enables us to group by r_addend as well.
1857 llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1858 if (a.r_info != b.r_info)
1859 return a.r_info < b.r_info;
1860 if (a.r_addend != b.r_addend)
1861 return a.r_addend < b.r_addend;
1862 return a.r_offset < b.r_offset;
1865 // Group relocations with the same r_info. Note that each group emits a group
1866 // header and that may make the relocation section larger. It is hard to
1867 // estimate the size of a group header as the encoded size of that varies
1868 // based on r_info. However, we can approximate this trade-off by the number
1869 // of values encoded. Each group header contains 3 values, and each relocation
1870 // in a group encodes one less value, as compared to when it is not grouped.
1871 // Therefore, we only group relocations if there are 3 or more of them with
1872 // the same r_info.
1874 // For Rela, the addend for most non-relative relocations is zero, and thus we
1875 // can usually get a smaller relocation section if we group relocations with 0
1876 // addend as well.
1877 std::vector<Elf_Rela> ungroupedNonRelatives;
1878 std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1879 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1880 auto j = i + 1;
1881 while (j != e && i->r_info == j->r_info &&
1882 (!config->isRela || i->r_addend == j->r_addend))
1883 ++j;
1884 if (j - i < 3 || (config->isRela && i->r_addend != 0))
1885 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1886 else
1887 nonRelativeGroups.emplace_back(i, j);
1888 i = j;
1891 // Sort ungrouped relocations by offset to minimize the encoded length.
1892 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1893 return a.r_offset < b.r_offset;
1896 unsigned hasAddendIfRela =
1897 config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1899 uint64_t offset = 0;
1900 uint64_t addend = 0;
1902 // Emit the run-length encoding for the groups of adjacent relative
1903 // relocations. Each group is represented using two groups in the packed
1904 // format. The first is used to set the current offset to the start of the
1905 // group (and also encodes the first relocation), and the second encodes the
1906 // remaining relocations.
1907 for (std::vector<Elf_Rela> &g : relativeGroups) {
1908 // The first relocation in the group.
1909 add(1);
1910 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1911 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1912 add(g[0].r_offset - offset);
1913 add(target->relativeRel);
1914 if (config->isRela) {
1915 add(g[0].r_addend - addend);
1916 addend = g[0].r_addend;
1919 // The remaining relocations.
1920 add(g.size() - 1);
1921 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1922 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1923 add(config->wordsize);
1924 add(target->relativeRel);
1925 if (config->isRela) {
1926 for (const auto &i : llvm::drop_begin(g)) {
1927 add(i.r_addend - addend);
1928 addend = i.r_addend;
1932 offset = g.back().r_offset;
1935 // Now the ungrouped relatives.
1936 if (!ungroupedRelatives.empty()) {
1937 add(ungroupedRelatives.size());
1938 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1939 add(target->relativeRel);
1940 for (Elf_Rela &r : ungroupedRelatives) {
1941 add(r.r_offset - offset);
1942 offset = r.r_offset;
1943 if (config->isRela) {
1944 add(r.r_addend - addend);
1945 addend = r.r_addend;
1950 // Grouped non-relatives.
1951 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
1952 add(g.size());
1953 add(RELOCATION_GROUPED_BY_INFO_FLAG);
1954 add(g[0].r_info);
1955 for (const Elf_Rela &r : g) {
1956 add(r.r_offset - offset);
1957 offset = r.r_offset;
1959 addend = 0;
1962 // Finally the ungrouped non-relative relocations.
1963 if (!ungroupedNonRelatives.empty()) {
1964 add(ungroupedNonRelatives.size());
1965 add(hasAddendIfRela);
1966 for (Elf_Rela &r : ungroupedNonRelatives) {
1967 add(r.r_offset - offset);
1968 offset = r.r_offset;
1969 add(r.r_info);
1970 if (config->isRela) {
1971 add(r.r_addend - addend);
1972 addend = r.r_addend;
1977 // Don't allow the section to shrink; otherwise the size of the section can
1978 // oscillate infinitely.
1979 if (relocData.size() < oldSize)
1980 relocData.append(oldSize - relocData.size(), 0);
1982 // Returns whether the section size changed. We need to keep recomputing both
1983 // section layout and the contents of this section until the size converges
1984 // because changing this section's size can affect section layout, which in
1985 // turn can affect the sizes of the LEB-encoded integers stored in this
1986 // section.
1987 return relocData.size() != oldSize;
1990 template <class ELFT>
1991 RelrSection<ELFT>::RelrSection(unsigned concurrency)
1992 : RelrBaseSection(concurrency) {
1993 this->entsize = config->wordsize;
1996 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
1997 // This function computes the contents of an SHT_RELR packed relocation
1998 // section.
2000 // Proposal for adding SHT_RELR sections to generic-abi is here:
2001 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
2003 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
2004 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
2006 // i.e. start with an address, followed by any number of bitmaps. The address
2007 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
2008 // relocations each, at subsequent offsets following the last address entry.
2010 // The bitmap entries must have 1 in the least significant bit. The assumption
2011 // here is that an address cannot have 1 in lsb. Odd addresses are not
2012 // supported.
2014 // Excluding the least significant bit in the bitmap, each non-zero bit in
2015 // the bitmap represents a relocation to be applied to a corresponding machine
2016 // word that follows the base address word. The second least significant bit
2017 // represents the machine word immediately following the initial address, and
2018 // each bit that follows represents the next word, in linear order. As such,
2019 // a single bitmap can encode up to 31 relocations in a 32-bit object, and
2020 // 63 relocations in a 64-bit object.
2022 // This encoding has a couple of interesting properties:
2023 // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
2024 // even means address, odd means bitmap.
2025 // 2. Just a simple list of addresses is a valid encoding.
2027 size_t oldSize = relrRelocs.size();
2028 relrRelocs.clear();
2030 // Same as Config->Wordsize but faster because this is a compile-time
2031 // constant.
2032 const size_t wordsize = sizeof(typename ELFT::uint);
2034 // Number of bits to use for the relocation offsets bitmap.
2035 // Must be either 63 or 31.
2036 const size_t nBits = wordsize * 8 - 1;
2038 // Get offsets for all relative relocations and sort them.
2039 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]);
2040 for (auto [i, r] : llvm::enumerate(relocs))
2041 offsets[i] = r.getOffset();
2042 llvm::sort(offsets.get(), offsets.get() + relocs.size());
2044 // For each leading relocation, find following ones that can be folded
2045 // as a bitmap and fold them.
2046 for (size_t i = 0, e = relocs.size(); i != e;) {
2047 // Add a leading relocation.
2048 relrRelocs.push_back(Elf_Relr(offsets[i]));
2049 uint64_t base = offsets[i] + wordsize;
2050 ++i;
2052 // Find foldable relocations to construct bitmaps.
2053 for (;;) {
2054 uint64_t bitmap = 0;
2055 for (; i != e; ++i) {
2056 uint64_t d = offsets[i] - base;
2057 if (d >= nBits * wordsize || d % wordsize)
2058 break;
2059 bitmap |= uint64_t(1) << (d / wordsize);
2061 if (!bitmap)
2062 break;
2063 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
2064 base += nBits * wordsize;
2068 // Don't allow the section to shrink; otherwise the size of the section can
2069 // oscillate infinitely. Trailing 1s do not decode to more relocations.
2070 if (relrRelocs.size() < oldSize) {
2071 log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
2072 " padding word(s)");
2073 relrRelocs.resize(oldSize, Elf_Relr(1));
2076 return relrRelocs.size() != oldSize;
2079 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
2080 : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
2081 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
2082 config->wordsize,
2083 strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
2084 strTabSec(strTabSec) {}
2086 // Orders symbols according to their positions in the GOT,
2087 // in compliance with MIPS ABI rules.
2088 // See "Global Offset Table" in Chapter 5 in the following document
2089 // for detailed description:
2090 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2091 static bool sortMipsSymbols(const SymbolTableEntry &l,
2092 const SymbolTableEntry &r) {
2093 // Sort entries related to non-local preemptible symbols by GOT indexes.
2094 // All other entries go to the beginning of a dynsym in arbitrary order.
2095 if (l.sym->isInGot() && r.sym->isInGot())
2096 return l.sym->getGotIdx() < r.sym->getGotIdx();
2097 if (!l.sym->isInGot() && !r.sym->isInGot())
2098 return false;
2099 return !l.sym->isInGot();
2102 void SymbolTableBaseSection::finalizeContents() {
2103 if (OutputSection *sec = strTabSec.getParent())
2104 getParent()->link = sec->sectionIndex;
2106 if (this->type != SHT_DYNSYM) {
2107 sortSymTabSymbols();
2108 return;
2111 // If it is a .dynsym, there should be no local symbols, but we need
2112 // to do a few things for the dynamic linker.
2114 // Section's Info field has the index of the first non-local symbol.
2115 // Because the first symbol entry is a null entry, 1 is the first.
2116 getParent()->info = 1;
2118 if (getPartition().gnuHashTab) {
2119 // NB: It also sorts Symbols to meet the GNU hash table requirements.
2120 getPartition().gnuHashTab->addSymbols(symbols);
2121 } else if (config->emachine == EM_MIPS) {
2122 llvm::stable_sort(symbols, sortMipsSymbols);
2125 // Only the main partition's dynsym indexes are stored in the symbols
2126 // themselves. All other partitions use a lookup table.
2127 if (this == mainPart->dynSymTab.get()) {
2128 size_t i = 0;
2129 for (const SymbolTableEntry &s : symbols)
2130 s.sym->dynsymIndex = ++i;
2134 // The ELF spec requires that all local symbols precede global symbols, so we
2135 // sort symbol entries in this function. (For .dynsym, we don't do that because
2136 // symbols for dynamic linking are inherently all globals.)
2138 // Aside from above, we put local symbols in groups starting with the STT_FILE
2139 // symbol. That is convenient for purpose of identifying where are local symbols
2140 // coming from.
2141 void SymbolTableBaseSection::sortSymTabSymbols() {
2142 // Move all local symbols before global symbols.
2143 auto e = std::stable_partition(
2144 symbols.begin(), symbols.end(),
2145 [](const SymbolTableEntry &s) { return s.sym->isLocal(); });
2146 size_t numLocals = e - symbols.begin();
2147 getParent()->info = numLocals + 1;
2149 // We want to group the local symbols by file. For that we rebuild the local
2150 // part of the symbols vector. We do not need to care about the STT_FILE
2151 // symbols, they are already naturally placed first in each group. That
2152 // happens because STT_FILE is always the first symbol in the object and hence
2153 // precede all other local symbols we add for a file.
2154 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr;
2155 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2156 arr[s.sym->file].push_back(s);
2158 auto i = symbols.begin();
2159 for (auto &p : arr)
2160 for (SymbolTableEntry &entry : p.second)
2161 *i++ = entry;
2164 void SymbolTableBaseSection::addSymbol(Symbol *b) {
2165 // Adding a local symbol to a .dynsym is a bug.
2166 assert(this->type != SHT_DYNSYM || !b->isLocal());
2167 symbols.push_back({b, strTabSec.addString(b->getName(), false)});
2170 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
2171 if (this == mainPart->dynSymTab.get())
2172 return sym->dynsymIndex;
2174 // Initializes symbol lookup tables lazily. This is used only for -r,
2175 // --emit-relocs and dynsyms in partitions other than the main one.
2176 llvm::call_once(onceFlag, [&] {
2177 symbolIndexMap.reserve(symbols.size());
2178 size_t i = 0;
2179 for (const SymbolTableEntry &e : symbols) {
2180 if (e.sym->type == STT_SECTION)
2181 sectionIndexMap[e.sym->getOutputSection()] = ++i;
2182 else
2183 symbolIndexMap[e.sym] = ++i;
2187 // Section symbols are mapped based on their output sections
2188 // to maintain their semantics.
2189 if (sym->type == STT_SECTION)
2190 return sectionIndexMap.lookup(sym->getOutputSection());
2191 return symbolIndexMap.lookup(sym);
2194 template <class ELFT>
2195 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
2196 : SymbolTableBaseSection(strTabSec) {
2197 this->entsize = sizeof(Elf_Sym);
2200 static BssSection *getCommonSec(Symbol *sym) {
2201 if (config->relocatable)
2202 if (auto *d = dyn_cast<Defined>(sym))
2203 return dyn_cast_or_null<BssSection>(d->section);
2204 return nullptr;
2207 static uint32_t getSymSectionIndex(Symbol *sym) {
2208 assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject()));
2209 if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY))
2210 return SHN_UNDEF;
2211 if (const OutputSection *os = sym->getOutputSection())
2212 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2213 : os->sectionIndex;
2214 return SHN_ABS;
2217 // Write the internal symbol table contents to the output symbol table.
2218 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2219 // The first entry is a null entry as per the ELF spec.
2220 buf += sizeof(Elf_Sym);
2222 auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2224 for (SymbolTableEntry &ent : symbols) {
2225 Symbol *sym = ent.sym;
2226 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2228 // Set st_name, st_info and st_other.
2229 eSym->st_name = ent.strTabOffset;
2230 eSym->setBindingAndType(sym->binding, sym->type);
2231 eSym->st_other = sym->stOther;
2233 if (BssSection *commonSec = getCommonSec(sym)) {
2234 // When -r is specified, a COMMON symbol is not allocated. Its st_shndx
2235 // holds SHN_COMMON and st_value holds the alignment.
2236 eSym->st_shndx = SHN_COMMON;
2237 eSym->st_value = commonSec->addralign;
2238 eSym->st_size = cast<Defined>(sym)->size;
2239 } else {
2240 const uint32_t shndx = getSymSectionIndex(sym);
2241 if (isDefinedHere) {
2242 eSym->st_shndx = shndx;
2243 eSym->st_value = sym->getVA();
2244 // Copy symbol size if it is a defined symbol. st_size is not
2245 // significant for undefined symbols, so whether copying it or not is up
2246 // to us if that's the case. We'll leave it as zero because by not
2247 // setting a value, we can get the exact same outputs for two sets of
2248 // input files that differ only in undefined symbol size in DSOs.
2249 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0;
2250 } else {
2251 eSym->st_shndx = 0;
2252 eSym->st_value = 0;
2253 eSym->st_size = 0;
2257 ++eSym;
2260 // On MIPS we need to mark symbol which has a PLT entry and requires
2261 // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2262 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2263 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2264 if (config->emachine == EM_MIPS) {
2265 auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2267 for (SymbolTableEntry &ent : symbols) {
2268 Symbol *sym = ent.sym;
2269 if (sym->isInPlt() && sym->hasFlag(NEEDS_COPY))
2270 eSym->st_other |= STO_MIPS_PLT;
2271 if (isMicroMips()) {
2272 // We already set the less-significant bit for symbols
2273 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2274 // records. That allows us to distinguish such symbols in
2275 // the `MIPS<ELFT>::relocate()` routine. Now we should
2276 // clear that bit for non-dynamic symbol table, so tools
2277 // like `objdump` will be able to deal with a correct
2278 // symbol position.
2279 if (sym->isDefined() &&
2280 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) {
2281 if (!strTabSec.isDynamic())
2282 eSym->st_value &= ~1;
2283 eSym->st_other |= STO_MIPS_MICROMIPS;
2286 if (config->relocatable)
2287 if (auto *d = dyn_cast<Defined>(sym))
2288 if (isMipsPIC<ELFT>(d))
2289 eSym->st_other |= STO_MIPS_PIC;
2290 ++eSym;
2295 SymtabShndxSection::SymtabShndxSection()
2296 : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2297 this->entsize = 4;
2300 void SymtabShndxSection::writeTo(uint8_t *buf) {
2301 // We write an array of 32 bit values, where each value has 1:1 association
2302 // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
2303 // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
2304 buf += 4; // Ignore .symtab[0] entry.
2305 for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
2306 if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX)
2307 write32(buf, entry.sym->getOutputSection()->sectionIndex);
2308 buf += 4;
2312 bool SymtabShndxSection::isNeeded() const {
2313 // SHT_SYMTAB can hold symbols with section indices values up to
2314 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2315 // section. Problem is that we reveal the final section indices a bit too
2316 // late, and we do not know them here. For simplicity, we just always create
2317 // a .symtab_shndx section when the amount of output sections is huge.
2318 size_t size = 0;
2319 for (SectionCommand *cmd : script->sectionCommands)
2320 if (isa<OutputDesc>(cmd))
2321 ++size;
2322 return size >= SHN_LORESERVE;
2325 void SymtabShndxSection::finalizeContents() {
2326 getParent()->link = in.symTab->getParent()->sectionIndex;
2329 size_t SymtabShndxSection::getSize() const {
2330 return in.symTab->getNumSymbols() * 4;
2333 // .hash and .gnu.hash sections contain on-disk hash tables that map
2334 // symbol names to their dynamic symbol table indices. Their purpose
2335 // is to help the dynamic linker resolve symbols quickly. If ELF files
2336 // don't have them, the dynamic linker has to do linear search on all
2337 // dynamic symbols, which makes programs slower. Therefore, a .hash
2338 // section is added to a DSO by default.
2340 // The Unix semantics of resolving dynamic symbols is somewhat expensive.
2341 // Each ELF file has a list of DSOs that the ELF file depends on and a
2342 // list of dynamic symbols that need to be resolved from any of the
2343 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2344 // where m is the number of DSOs and n is the number of dynamic
2345 // symbols. For modern large programs, both m and n are large. So
2346 // making each step faster by using hash tables substantially
2347 // improves time to load programs.
2349 // (Note that this is not the only way to design the shared library.
2350 // For instance, the Windows DLL takes a different approach. On
2351 // Windows, each dynamic symbol has a name of DLL from which the symbol
2352 // has to be resolved. That makes the cost of symbol resolution O(n).
2353 // This disables some hacky techniques you can use on Unix such as
2354 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2356 // Due to historical reasons, we have two different hash tables, .hash
2357 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2358 // and better version of .hash. .hash is just an on-disk hash table, but
2359 // .gnu.hash has a bloom filter in addition to a hash table to skip
2360 // DSOs very quickly. If you are sure that your dynamic linker knows
2361 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a
2362 // safe bet is to specify --hash-style=both for backward compatibility.
2363 GnuHashTableSection::GnuHashTableSection()
2364 : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
2367 void GnuHashTableSection::finalizeContents() {
2368 if (OutputSection *sec = getPartition().dynSymTab->getParent())
2369 getParent()->link = sec->sectionIndex;
2371 // Computes bloom filter size in word size. We want to allocate 12
2372 // bits for each symbol. It must be a power of two.
2373 if (symbols.empty()) {
2374 maskWords = 1;
2375 } else {
2376 uint64_t numBits = symbols.size() * 12;
2377 maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
2380 size = 16; // Header
2381 size += config->wordsize * maskWords; // Bloom filter
2382 size += nBuckets * 4; // Hash buckets
2383 size += symbols.size() * 4; // Hash values
2386 void GnuHashTableSection::writeTo(uint8_t *buf) {
2387 // Write a header.
2388 write32(buf, nBuckets);
2389 write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
2390 write32(buf + 8, maskWords);
2391 write32(buf + 12, Shift2);
2392 buf += 16;
2394 // Write the 2-bit bloom filter.
2395 const unsigned c = config->is64 ? 64 : 32;
2396 for (const Entry &sym : symbols) {
2397 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2398 // the word using bits [0:5] and [26:31].
2399 size_t i = (sym.hash / c) & (maskWords - 1);
2400 uint64_t val = readUint(buf + i * config->wordsize);
2401 val |= uint64_t(1) << (sym.hash % c);
2402 val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2403 writeUint(buf + i * config->wordsize, val);
2405 buf += config->wordsize * maskWords;
2407 // Write the hash table.
2408 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2409 uint32_t oldBucket = -1;
2410 uint32_t *values = buckets + nBuckets;
2411 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2412 // Write a hash value. It represents a sequence of chains that share the
2413 // same hash modulo value. The last element of each chain is terminated by
2414 // LSB 1.
2415 uint32_t hash = i->hash;
2416 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2417 hash = isLastInChain ? hash | 1 : hash & ~1;
2418 write32(values++, hash);
2420 if (i->bucketIdx == oldBucket)
2421 continue;
2422 // Write a hash bucket. Hash buckets contain indices in the following hash
2423 // value table.
2424 write32(buckets + i->bucketIdx,
2425 getPartition().dynSymTab->getSymbolIndex(i->sym));
2426 oldBucket = i->bucketIdx;
2430 // Add symbols to this symbol hash table. Note that this function
2431 // destructively sort a given vector -- which is needed because
2432 // GNU-style hash table places some sorting requirements.
2433 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) {
2434 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2435 // its type correctly.
2436 auto mid =
2437 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2438 return !s.sym->isDefined() || s.sym->partition != partition;
2441 // We chose load factor 4 for the on-disk hash table. For each hash
2442 // collision, the dynamic linker will compare a uint32_t hash value.
2443 // Since the integer comparison is quite fast, we believe we can
2444 // make the load factor even larger. 4 is just a conservative choice.
2446 // Note that we don't want to create a zero-sized hash table because
2447 // Android loader as of 2018 doesn't like a .gnu.hash containing such
2448 // table. If that's the case, we create a hash table with one unused
2449 // dummy slot.
2450 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2452 if (mid == v.end())
2453 return;
2455 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2456 Symbol *b = ent.sym;
2457 uint32_t hash = hashGnu(b->getName());
2458 uint32_t bucketIdx = hash % nBuckets;
2459 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2462 llvm::sort(symbols, [](const Entry &l, const Entry &r) {
2463 return std::tie(l.bucketIdx, l.strTabOffset) <
2464 std::tie(r.bucketIdx, r.strTabOffset);
2467 v.erase(mid, v.end());
2468 for (const Entry &ent : symbols)
2469 v.push_back({ent.sym, ent.strTabOffset});
2472 HashTableSection::HashTableSection()
2473 : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
2474 this->entsize = 4;
2477 void HashTableSection::finalizeContents() {
2478 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2480 if (OutputSection *sec = symTab->getParent())
2481 getParent()->link = sec->sectionIndex;
2483 unsigned numEntries = 2; // nbucket and nchain.
2484 numEntries += symTab->getNumSymbols(); // The chain entries.
2486 // Create as many buckets as there are symbols.
2487 numEntries += symTab->getNumSymbols();
2488 this->size = numEntries * 4;
2491 void HashTableSection::writeTo(uint8_t *buf) {
2492 SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2493 unsigned numSymbols = symTab->getNumSymbols();
2495 uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2496 write32(p++, numSymbols); // nbucket
2497 write32(p++, numSymbols); // nchain
2499 uint32_t *buckets = p;
2500 uint32_t *chains = p + numSymbols;
2502 for (const SymbolTableEntry &s : symTab->getSymbols()) {
2503 Symbol *sym = s.sym;
2504 StringRef name = sym->getName();
2505 unsigned i = sym->dynsymIndex;
2506 uint32_t hash = hashSysV(name) % numSymbols;
2507 chains[i] = buckets[hash];
2508 write32(buckets + hash, i);
2512 PltSection::PltSection()
2513 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
2514 headerSize(target->pltHeaderSize) {
2515 // On PowerPC, this section contains lazy symbol resolvers.
2516 if (config->emachine == EM_PPC64) {
2517 name = ".glink";
2518 addralign = 4;
2521 // On x86 when IBT is enabled, this section contains the second PLT (lazy
2522 // symbol resolvers).
2523 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
2524 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2525 name = ".plt.sec";
2527 // The PLT needs to be writable on SPARC as the dynamic linker will
2528 // modify the instructions in the PLT entries.
2529 if (config->emachine == EM_SPARCV9)
2530 this->flags |= SHF_WRITE;
2533 void PltSection::writeTo(uint8_t *buf) {
2534 // At beginning of PLT, we have code to call the dynamic
2535 // linker to resolve dynsyms at runtime. Write such code.
2536 target->writePltHeader(buf);
2537 size_t off = headerSize;
2539 for (const Symbol *sym : entries) {
2540 target->writePlt(buf + off, *sym, getVA() + off);
2541 off += target->pltEntrySize;
2545 void PltSection::addEntry(Symbol &sym) {
2546 assert(sym.auxIdx == symAux.size() - 1);
2547 symAux.back().pltIdx = entries.size();
2548 entries.push_back(&sym);
2551 size_t PltSection::getSize() const {
2552 return headerSize + entries.size() * target->pltEntrySize;
2555 bool PltSection::isNeeded() const {
2556 // For -z retpolineplt, .iplt needs the .plt header.
2557 return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
2560 // Used by ARM to add mapping symbols in the PLT section, which aid
2561 // disassembly.
2562 void PltSection::addSymbols() {
2563 target->addPltHeaderSymbols(*this);
2565 size_t off = headerSize;
2566 for (size_t i = 0; i < entries.size(); ++i) {
2567 target->addPltSymbols(*this, off);
2568 off += target->pltEntrySize;
2572 IpltSection::IpltSection()
2573 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
2574 if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
2575 name = ".glink";
2576 addralign = 4;
2580 void IpltSection::writeTo(uint8_t *buf) {
2581 uint32_t off = 0;
2582 for (const Symbol *sym : entries) {
2583 target->writeIplt(buf + off, *sym, getVA() + off);
2584 off += target->ipltEntrySize;
2588 size_t IpltSection::getSize() const {
2589 return entries.size() * target->ipltEntrySize;
2592 void IpltSection::addEntry(Symbol &sym) {
2593 assert(sym.auxIdx == symAux.size() - 1);
2594 symAux.back().pltIdx = entries.size();
2595 entries.push_back(&sym);
2598 // ARM uses mapping symbols to aid disassembly.
2599 void IpltSection::addSymbols() {
2600 size_t off = 0;
2601 for (size_t i = 0, e = entries.size(); i != e; ++i) {
2602 target->addPltSymbols(*this, off);
2603 off += target->pltEntrySize;
2607 PPC32GlinkSection::PPC32GlinkSection() {
2608 name = ".glink";
2609 addralign = 4;
2612 void PPC32GlinkSection::writeTo(uint8_t *buf) {
2613 writePPC32GlinkSection(buf, entries.size());
2616 size_t PPC32GlinkSection::getSize() const {
2617 return headerSize + entries.size() * target->pltEntrySize + footerSize;
2620 // This is an x86-only extra PLT section and used only when a security
2621 // enhancement feature called CET is enabled. In this comment, I'll explain what
2622 // the feature is and why we have two PLT sections if CET is enabled.
2624 // So, what does CET do? CET introduces a new restriction to indirect jump
2625 // instructions. CET works this way. Assume that CET is enabled. Then, if you
2626 // execute an indirect jump instruction, the processor verifies that a special
2627 // "landing pad" instruction (which is actually a repurposed NOP instruction and
2628 // now called "endbr32" or "endbr64") is at the jump target. If the jump target
2629 // does not start with that instruction, the processor raises an exception
2630 // instead of continuing executing code.
2632 // If CET is enabled, the compiler emits endbr to all locations where indirect
2633 // jumps may jump to.
2635 // This mechanism makes it extremely hard to transfer the control to a middle of
2636 // a function that is not supporsed to be a indirect jump target, preventing
2637 // certain types of attacks such as ROP or JOP.
2639 // Note that the processors in the market as of 2019 don't actually support the
2640 // feature. Only the spec is available at the moment.
2642 // Now, I'll explain why we have this extra PLT section for CET.
2644 // Since you can indirectly jump to a PLT entry, we have to make PLT entries
2645 // start with endbr. The problem is there's no extra space for endbr (which is 4
2646 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2647 // used.
2649 // In order to deal with the issue, we split a PLT entry into two PLT entries.
2650 // Remember that each PLT entry contains code to jump to an address read from
2651 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2652 // the former code is written to .plt.sec, and the latter code is written to
2653 // .plt.
2655 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2656 // that the regular .plt is now called .plt.sec and .plt is repurposed to
2657 // contain only code for lazy symbol resolution.
2659 // In other words, this is how the 2-PLT scheme works. Application code is
2660 // supposed to jump to .plt.sec to call an external function. Each .plt.sec
2661 // entry contains code to read an address from a corresponding .got.plt entry
2662 // and jump to that address. Addresses in .got.plt initially point to .plt, so
2663 // when an application calls an external function for the first time, the
2664 // control is transferred to a function that resolves a symbol name from
2665 // external shared object files. That function then rewrites a .got.plt entry
2666 // with a resolved address, so that the subsequent function calls directly jump
2667 // to a desired location from .plt.sec.
2669 // There is an open question as to whether the 2-PLT scheme was desirable or
2670 // not. We could have simply extended the PLT entry size to 32-bytes to
2671 // accommodate endbr, and that scheme would have been much simpler than the
2672 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2673 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2674 // that the optimization actually makes a difference.
2676 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2677 // depend on it, so we implement the ABI.
2678 IBTPltSection::IBTPltSection()
2679 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}
2681 void IBTPltSection::writeTo(uint8_t *buf) {
2682 target->writeIBTPlt(buf, in.plt->getNumEntries());
2685 size_t IBTPltSection::getSize() const {
2686 // 16 is the header size of .plt.
2687 return 16 + in.plt->getNumEntries() * target->pltEntrySize;
2690 bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; }
2692 RelroPaddingSection::RelroPaddingSection()
2693 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, 1, ".relro_padding") {
2696 // The string hash function for .gdb_index.
2697 static uint32_t computeGdbHash(StringRef s) {
2698 uint32_t h = 0;
2699 for (uint8_t c : s)
2700 h = h * 67 + toLower(c) - 113;
2701 return h;
2704 GdbIndexSection::GdbIndexSection()
2705 : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}
2707 // Returns the desired size of an on-disk hash table for a .gdb_index section.
2708 // There's a tradeoff between size and collision rate. We aim 75% utilization.
2709 size_t GdbIndexSection::computeSymtabSize() const {
2710 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
2713 static SmallVector<GdbIndexSection::CuEntry, 0>
2714 readCuList(DWARFContext &dwarf) {
2715 SmallVector<GdbIndexSection::CuEntry, 0> ret;
2716 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
2717 ret.push_back({cu->getOffset(), cu->getLength() + 4});
2718 return ret;
2721 static SmallVector<GdbIndexSection::AddressEntry, 0>
2722 readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
2723 SmallVector<GdbIndexSection::AddressEntry, 0> ret;
2725 uint32_t cuIdx = 0;
2726 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
2727 if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
2728 warn(toString(sec) + ": " + toString(std::move(e)));
2729 return {};
2731 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
2732 if (!ranges) {
2733 warn(toString(sec) + ": " + toString(ranges.takeError()));
2734 return {};
2737 ArrayRef<InputSectionBase *> sections = sec->file->getSections();
2738 for (DWARFAddressRange &r : *ranges) {
2739 if (r.SectionIndex == -1ULL)
2740 continue;
2741 // Range list with zero size has no effect.
2742 InputSectionBase *s = sections[r.SectionIndex];
2743 if (s && s != &InputSection::discarded && s->isLive())
2744 if (r.LowPC != r.HighPC)
2745 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
2747 ++cuIdx;
2750 return ret;
2753 template <class ELFT>
2754 static SmallVector<GdbIndexSection::NameAttrEntry, 0>
2755 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
2756 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) {
2757 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
2758 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
2760 SmallVector<GdbIndexSection::NameAttrEntry, 0> ret;
2761 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
2762 DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize);
2763 DWARFDebugPubTable table;
2764 table.extract(data, /*GnuStyle=*/true, [&](Error e) {
2765 warn(toString(pub->sec) + ": " + toString(std::move(e)));
2767 for (const DWARFDebugPubTable::Set &set : table.getData()) {
2768 // The value written into the constant pool is kind << 24 | cuIndex. As we
2769 // don't know how many compilation units precede this object to compute
2770 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
2771 // the number of preceding compilation units later.
2772 uint32_t i = llvm::partition_point(cus,
2773 [&](GdbIndexSection::CuEntry cu) {
2774 return cu.cuOffset < set.Offset;
2775 }) -
2776 cus.begin();
2777 for (const DWARFDebugPubTable::Entry &ent : set.Entries)
2778 ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
2779 (ent.Descriptor.toBits() << 24) | i});
2782 return ret;
2785 // Create a list of symbols from a given list of symbol names and types
2786 // by uniquifying them by name.
2787 static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t>
2788 createSymbols(
2789 ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs,
2790 const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) {
2791 using GdbSymbol = GdbIndexSection::GdbSymbol;
2792 using NameAttrEntry = GdbIndexSection::NameAttrEntry;
2794 // For each chunk, compute the number of compilation units preceding it.
2795 uint32_t cuIdx = 0;
2796 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]);
2797 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
2798 cuIdxs[i] = cuIdx;
2799 cuIdx += chunks[i].compilationUnits.size();
2802 // The number of symbols we will handle in this function is of the order
2803 // of millions for very large executables, so we use multi-threading to
2804 // speed it up.
2805 constexpr size_t numShards = 32;
2806 const size_t concurrency =
2807 llvm::bit_floor(std::min<size_t>(config->threadCount, numShards));
2809 // A sharded map to uniquify symbols by name.
2810 auto map =
2811 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards);
2812 size_t shift = 32 - llvm::countr_zero(numShards);
2814 // Instantiate GdbSymbols while uniqufying them by name.
2815 auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards);
2817 parallelFor(0, concurrency, [&](size_t threadId) {
2818 uint32_t i = 0;
2819 for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
2820 for (const NameAttrEntry &ent : entries) {
2821 size_t shardId = ent.name.hash() >> shift;
2822 if ((shardId & (concurrency - 1)) != threadId)
2823 continue;
2825 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
2826 size_t &idx = map[shardId][ent.name];
2827 if (idx) {
2828 symbols[shardId][idx - 1].cuVector.push_back(v);
2829 continue;
2832 idx = symbols[shardId].size() + 1;
2833 symbols[shardId].push_back({ent.name, {v}, 0, 0});
2835 ++i;
2839 size_t numSymbols = 0;
2840 for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards))
2841 numSymbols += v.size();
2843 // The return type is a flattened vector, so we'll copy each vector
2844 // contents to Ret.
2845 SmallVector<GdbSymbol, 0> ret;
2846 ret.reserve(numSymbols);
2847 for (SmallVector<GdbSymbol, 0> &vec :
2848 MutableArrayRef(symbols.get(), numShards))
2849 for (GdbSymbol &sym : vec)
2850 ret.push_back(std::move(sym));
2852 // CU vectors and symbol names are adjacent in the output file.
2853 // We can compute their offsets in the output file now.
2854 size_t off = 0;
2855 for (GdbSymbol &sym : ret) {
2856 sym.cuVectorOff = off;
2857 off += (sym.cuVector.size() + 1) * 4;
2859 for (GdbSymbol &sym : ret) {
2860 sym.nameOff = off;
2861 off += sym.name.size() + 1;
2863 // If off overflows, the last symbol's nameOff likely overflows.
2864 if (!isUInt<32>(off))
2865 errorOrWarn("--gdb-index: constant pool size (" + Twine(off) +
2866 ") exceeds UINT32_MAX");
2868 return {ret, off};
2871 // Returns a newly-created .gdb_index section.
2872 template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
2873 llvm::TimeTraceScope timeScope("Create gdb index");
2875 // Collect InputFiles with .debug_info. See the comment in
2876 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
2877 // note that isec->data() may uncompress the full content, which should be
2878 // parallelized.
2879 SetVector<InputFile *> files;
2880 for (InputSectionBase *s : ctx.inputSections) {
2881 InputSection *isec = dyn_cast<InputSection>(s);
2882 if (!isec)
2883 continue;
2884 // .debug_gnu_pub{names,types} are useless in executables.
2885 // They are present in input object files solely for creating
2886 // a .gdb_index. So we can remove them from the output.
2887 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
2888 s->markDead();
2889 else if (isec->name == ".debug_info")
2890 files.insert(isec->file);
2892 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs.
2893 llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
2894 if (auto *isec = dyn_cast<InputSection>(s))
2895 if (InputSectionBase *rel = isec->getRelocatedSection())
2896 return !rel->isLive();
2897 return !s->isLive();
2900 SmallVector<GdbChunk, 0> chunks(files.size());
2901 SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size());
2903 parallelFor(0, files.size(), [&](size_t i) {
2904 // To keep memory usage low, we don't want to keep cached DWARFContext, so
2905 // avoid getDwarf() here.
2906 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
2907 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
2908 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
2910 // If the are multiple compile units .debug_info (very rare ld -r --unique),
2911 // this only picks the last one. Other address ranges are lost.
2912 chunks[i].sec = dobj.getInfoSection();
2913 chunks[i].compilationUnits = readCuList(dwarf);
2914 chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec);
2915 nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits);
2918 auto *ret = make<GdbIndexSection>();
2919 ret->chunks = std::move(chunks);
2920 std::tie(ret->symbols, ret->size) = createSymbols(nameAttrs, ret->chunks);
2922 // Count the areas other than the constant pool.
2923 ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8;
2924 for (GdbChunk &chunk : ret->chunks)
2925 ret->size +=
2926 chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
2928 return ret;
2931 void GdbIndexSection::writeTo(uint8_t *buf) {
2932 // Write the header.
2933 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
2934 uint8_t *start = buf;
2935 hdr->version = 7;
2936 buf += sizeof(*hdr);
2938 // Write the CU list.
2939 hdr->cuListOff = buf - start;
2940 for (GdbChunk &chunk : chunks) {
2941 for (CuEntry &cu : chunk.compilationUnits) {
2942 write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
2943 write64le(buf + 8, cu.cuLength);
2944 buf += 16;
2948 // Write the address area.
2949 hdr->cuTypesOff = buf - start;
2950 hdr->addressAreaOff = buf - start;
2951 uint32_t cuOff = 0;
2952 for (GdbChunk &chunk : chunks) {
2953 for (AddressEntry &e : chunk.addressAreas) {
2954 // In the case of ICF there may be duplicate address range entries.
2955 const uint64_t baseAddr = e.section->repl->getVA(0);
2956 write64le(buf, baseAddr + e.lowAddress);
2957 write64le(buf + 8, baseAddr + e.highAddress);
2958 write32le(buf + 16, e.cuIndex + cuOff);
2959 buf += 20;
2961 cuOff += chunk.compilationUnits.size();
2964 // Write the on-disk open-addressing hash table containing symbols.
2965 hdr->symtabOff = buf - start;
2966 size_t symtabSize = computeSymtabSize();
2967 uint32_t mask = symtabSize - 1;
2969 for (GdbSymbol &sym : symbols) {
2970 uint32_t h = sym.name.hash();
2971 uint32_t i = h & mask;
2972 uint32_t step = ((h * 17) & mask) | 1;
2974 while (read32le(buf + i * 8))
2975 i = (i + step) & mask;
2977 write32le(buf + i * 8, sym.nameOff);
2978 write32le(buf + i * 8 + 4, sym.cuVectorOff);
2981 buf += symtabSize * 8;
2983 // Write the string pool.
2984 hdr->constantPoolOff = buf - start;
2985 parallelForEach(symbols, [&](GdbSymbol &sym) {
2986 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
2989 // Write the CU vectors.
2990 for (GdbSymbol &sym : symbols) {
2991 write32le(buf, sym.cuVector.size());
2992 buf += 4;
2993 for (uint32_t val : sym.cuVector) {
2994 write32le(buf, val);
2995 buf += 4;
3000 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
3002 EhFrameHeader::EhFrameHeader()
3003 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
3005 void EhFrameHeader::writeTo(uint8_t *buf) {
3006 // Unlike most sections, the EhFrameHeader section is written while writing
3007 // another section, namely EhFrameSection, which calls the write() function
3008 // below from its writeTo() function. This is necessary because the contents
3009 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
3010 // don't know which order the sections will be written in.
3013 // .eh_frame_hdr contains a binary search table of pointers to FDEs.
3014 // Each entry of the search table consists of two values,
3015 // the starting PC from where FDEs covers, and the FDE's address.
3016 // It is sorted by PC.
3017 void EhFrameHeader::write() {
3018 uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
3019 using FdeData = EhFrameSection::FdeData;
3020 SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData();
3022 buf[0] = 1;
3023 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
3024 buf[2] = DW_EH_PE_udata4;
3025 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
3026 write32(buf + 4,
3027 getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
3028 write32(buf + 8, fdes.size());
3029 buf += 12;
3031 for (FdeData &fde : fdes) {
3032 write32(buf, fde.pcRel);
3033 write32(buf + 4, fde.fdeVARel);
3034 buf += 8;
3038 size_t EhFrameHeader::getSize() const {
3039 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
3040 return 12 + getPartition().ehFrame->numFdes * 8;
3043 bool EhFrameHeader::isNeeded() const {
3044 return isLive() && getPartition().ehFrame->isNeeded();
3047 VersionDefinitionSection::VersionDefinitionSection()
3048 : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
3049 ".gnu.version_d") {}
3051 StringRef VersionDefinitionSection::getFileDefName() {
3052 if (!getPartition().name.empty())
3053 return getPartition().name;
3054 if (!config->soName.empty())
3055 return config->soName;
3056 return config->outputFile;
3059 void VersionDefinitionSection::finalizeContents() {
3060 fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
3061 for (const VersionDefinition &v : namedVersionDefs())
3062 verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
3064 if (OutputSection *sec = getPartition().dynStrTab->getParent())
3065 getParent()->link = sec->sectionIndex;
3067 // sh_info should be set to the number of definitions. This fact is missed in
3068 // documentation, but confirmed by binutils community:
3069 // https://sourceware.org/ml/binutils/2014-11/msg00355.html
3070 getParent()->info = getVerDefNum();
3073 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
3074 StringRef name, size_t nameOff) {
3075 uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
3077 // Write a verdef.
3078 write16(buf, 1); // vd_version
3079 write16(buf + 2, flags); // vd_flags
3080 write16(buf + 4, index); // vd_ndx
3081 write16(buf + 6, 1); // vd_cnt
3082 write32(buf + 8, hashSysV(name)); // vd_hash
3083 write32(buf + 12, 20); // vd_aux
3084 write32(buf + 16, 28); // vd_next
3086 // Write a veraux.
3087 write32(buf + 20, nameOff); // vda_name
3088 write32(buf + 24, 0); // vda_next
3091 void VersionDefinitionSection::writeTo(uint8_t *buf) {
3092 writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3094 auto nameOffIt = verDefNameOffs.begin();
3095 for (const VersionDefinition &v : namedVersionDefs()) {
3096 buf += EntrySize;
3097 writeOne(buf, v.id, v.name, *nameOffIt++);
3100 // Need to terminate the last version definition.
3101 write32(buf + 16, 0); // vd_next
3104 size_t VersionDefinitionSection::getSize() const {
3105 return EntrySize * getVerDefNum();
3108 // .gnu.version is a table where each entry is 2 byte long.
3109 VersionTableSection::VersionTableSection()
3110 : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3111 ".gnu.version") {
3112 this->entsize = 2;
3115 void VersionTableSection::finalizeContents() {
3116 // At the moment of june 2016 GNU docs does not mention that sh_link field
3117 // should be set, but Sun docs do. Also readelf relies on this field.
3118 getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
3121 size_t VersionTableSection::getSize() const {
3122 return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
3125 void VersionTableSection::writeTo(uint8_t *buf) {
3126 buf += 2;
3127 for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
3128 // For an unextracted lazy symbol (undefined weak), it must have been
3129 // converted to Undefined and have VER_NDX_GLOBAL version here.
3130 assert(!s.sym->isLazy());
3131 write16(buf, s.sym->versionId);
3132 buf += 2;
3136 bool VersionTableSection::isNeeded() const {
3137 return isLive() &&
3138 (getPartition().verDef || getPartition().verNeed->isNeeded());
3141 void elf::addVerneed(Symbol *ss) {
3142 auto &file = cast<SharedFile>(*ss->file);
3143 if (ss->verdefIndex == VER_NDX_GLOBAL) {
3144 ss->versionId = VER_NDX_GLOBAL;
3145 return;
3148 if (file.vernauxs.empty())
3149 file.vernauxs.resize(file.verdefs.size());
3151 // Select a version identifier for the vernaux data structure, if we haven't
3152 // already allocated one. The verdef identifiers cover the range
3153 // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
3154 // getVerDefNum()+1.
3155 if (file.vernauxs[ss->verdefIndex] == 0)
3156 file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();
3158 ss->versionId = file.vernauxs[ss->verdefIndex];
3161 template <class ELFT>
3162 VersionNeedSection<ELFT>::VersionNeedSection()
3163 : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3164 ".gnu.version_r") {}
3166 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3167 for (SharedFile *f : ctx.sharedFiles) {
3168 if (f->vernauxs.empty())
3169 continue;
3170 verneeds.emplace_back();
3171 Verneed &vn = verneeds.back();
3172 vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
3173 bool isLibc = config->relrGlibc && f->soName.starts_with("libc.so.");
3174 bool isGlibc2 = false;
3175 for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3176 if (f->vernauxs[i] == 0)
3177 continue;
3178 auto *verdef =
3179 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3180 StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name);
3181 if (isLibc && ver.starts_with("GLIBC_2."))
3182 isGlibc2 = true;
3183 vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i],
3184 getPartition().dynStrTab->addString(ver)});
3186 if (isGlibc2) {
3187 const char *ver = "GLIBC_ABI_DT_RELR";
3188 vn.vernauxs.push_back({hashSysV(ver),
3189 ++SharedFile::vernauxNum + getVerDefNum(),
3190 getPartition().dynStrTab->addString(ver)});
3194 if (OutputSection *sec = getPartition().dynStrTab->getParent())
3195 getParent()->link = sec->sectionIndex;
3196 getParent()->info = verneeds.size();
3199 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3200 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3201 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3202 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3204 for (auto &vn : verneeds) {
3205 // Create an Elf_Verneed for this DSO.
3206 verneed->vn_version = 1;
3207 verneed->vn_cnt = vn.vernauxs.size();
3208 verneed->vn_file = vn.nameStrTab;
3209 verneed->vn_aux =
3210 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3211 verneed->vn_next = sizeof(Elf_Verneed);
3212 ++verneed;
3214 // Create the Elf_Vernauxs for this Elf_Verneed.
3215 for (auto &vna : vn.vernauxs) {
3216 vernaux->vna_hash = vna.hash;
3217 vernaux->vna_flags = 0;
3218 vernaux->vna_other = vna.verneedIndex;
3219 vernaux->vna_name = vna.nameStrTab;
3220 vernaux->vna_next = sizeof(Elf_Vernaux);
3221 ++vernaux;
3224 vernaux[-1].vna_next = 0;
3226 verneed[-1].vn_next = 0;
3229 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3230 return verneeds.size() * sizeof(Elf_Verneed) +
3231 SharedFile::vernauxNum * sizeof(Elf_Vernaux);
3234 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3235 return isLive() && SharedFile::vernauxNum != 0;
3238 void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3239 ms->parent = this;
3240 sections.push_back(ms);
3241 assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS));
3242 addralign = std::max(addralign, ms->addralign);
3245 MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
3246 uint64_t flags, uint32_t alignment)
3247 : MergeSyntheticSection(name, type, flags, alignment),
3248 builder(StringTableBuilder::RAW, llvm::Align(alignment)) {}
3250 size_t MergeTailSection::getSize() const { return builder.getSize(); }
3252 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3254 void MergeTailSection::finalizeContents() {
3255 // Add all string pieces to the string table builder to create section
3256 // contents.
3257 for (MergeInputSection *sec : sections)
3258 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3259 if (sec->pieces[i].live)
3260 builder.add(sec->getData(i));
3262 // Fix the string table content. After this, the contents will never change.
3263 builder.finalize();
3265 // finalize() fixed tail-optimized strings, so we can now get
3266 // offsets of strings. Get an offset for each string and save it
3267 // to a corresponding SectionPiece for easy access.
3268 for (MergeInputSection *sec : sections)
3269 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3270 if (sec->pieces[i].live)
3271 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3274 void MergeNoTailSection::writeTo(uint8_t *buf) {
3275 parallelFor(0, numShards,
3276 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); });
3279 // This function is very hot (i.e. it can take several seconds to finish)
3280 // because sometimes the number of inputs is in an order of magnitude of
3281 // millions. So, we use multi-threading.
3283 // For any strings S and T, we know S is not mergeable with T if S's hash
3284 // value is different from T's. If that's the case, we can safely put S and
3285 // T into different string builders without worrying about merge misses.
3286 // We do it in parallel.
3287 void MergeNoTailSection::finalizeContents() {
3288 // Initializes string table builders.
3289 for (size_t i = 0; i < numShards; ++i)
3290 shards.emplace_back(StringTableBuilder::RAW, llvm::Align(addralign));
3292 // Concurrency level. Must be a power of 2 to avoid expensive modulo
3293 // operations in the following tight loop.
3294 const size_t concurrency =
3295 llvm::bit_floor(std::min<size_t>(config->threadCount, numShards));
3297 // Add section pieces to the builders.
3298 parallelFor(0, concurrency, [&](size_t threadId) {
3299 for (MergeInputSection *sec : sections) {
3300 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3301 if (!sec->pieces[i].live)
3302 continue;
3303 size_t shardId = getShardId(sec->pieces[i].hash);
3304 if ((shardId & (concurrency - 1)) == threadId)
3305 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3310 // Compute an in-section offset for each shard.
3311 size_t off = 0;
3312 for (size_t i = 0; i < numShards; ++i) {
3313 shards[i].finalizeInOrder();
3314 if (shards[i].getSize() > 0)
3315 off = alignToPowerOf2(off, addralign);
3316 shardOffsets[i] = off;
3317 off += shards[i].getSize();
3319 size = off;
3321 // So far, section pieces have offsets from beginning of shards, but
3322 // we want offsets from beginning of the whole section. Fix them.
3323 parallelForEach(sections, [&](MergeInputSection *sec) {
3324 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3325 if (sec->pieces[i].live)
3326 sec->pieces[i].outputOff +=
3327 shardOffsets[getShardId(sec->pieces[i].hash)];
3331 template <class ELFT> void elf::splitSections() {
3332 llvm::TimeTraceScope timeScope("Split sections");
3333 // splitIntoPieces needs to be called on each MergeInputSection
3334 // before calling finalizeContents().
3335 parallelForEach(ctx.objectFiles, [](ELFFileBase *file) {
3336 for (InputSectionBase *sec : file->getSections()) {
3337 if (!sec)
3338 continue;
3339 if (auto *s = dyn_cast<MergeInputSection>(sec))
3340 s->splitIntoPieces();
3341 else if (auto *eh = dyn_cast<EhInputSection>(sec))
3342 eh->split<ELFT>();
3347 void elf::combineEhSections() {
3348 llvm::TimeTraceScope timeScope("Combine EH sections");
3349 for (EhInputSection *sec : ctx.ehInputSections) {
3350 EhFrameSection &eh = *sec->getPartition().ehFrame;
3351 sec->parent = &eh;
3352 eh.addralign = std::max(eh.addralign, sec->addralign);
3353 eh.sections.push_back(sec);
3354 llvm::append_range(eh.dependentSections, sec->dependentSections);
3357 if (!mainPart->armExidx)
3358 return;
3359 llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
3360 // Ignore dead sections and the partition end marker (.part.end),
3361 // whose partition number is out of bounds.
3362 if (!s->isLive() || s->partition == 255)
3363 return false;
3364 Partition &part = s->getPartition();
3365 return s->kind() == SectionBase::Regular && part.armExidx &&
3366 part.armExidx->addSection(cast<InputSection>(s));
3370 MipsRldMapSection::MipsRldMapSection()
3371 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
3372 ".rld_map") {}
3374 ARMExidxSyntheticSection::ARMExidxSyntheticSection()
3375 : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
3376 config->wordsize, ".ARM.exidx") {}
3378 static InputSection *findExidxSection(InputSection *isec) {
3379 for (InputSection *d : isec->dependentSections)
3380 if (d->type == SHT_ARM_EXIDX && d->isLive())
3381 return d;
3382 return nullptr;
3385 static bool isValidExidxSectionDep(InputSection *isec) {
3386 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
3387 isec->getSize() > 0;
3390 bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
3391 if (isec->type == SHT_ARM_EXIDX) {
3392 if (InputSection *dep = isec->getLinkOrderDep())
3393 if (isValidExidxSectionDep(dep)) {
3394 exidxSections.push_back(isec);
3395 // Every exidxSection is 8 bytes, we need an estimate of
3396 // size before assignAddresses can be called. Final size
3397 // will only be known after finalize is called.
3398 size += 8;
3400 return true;
3403 if (isValidExidxSectionDep(isec)) {
3404 executableSections.push_back(isec);
3405 return false;
3408 // FIXME: we do not output a relocation section when --emit-relocs is used
3409 // as we do not have relocation sections for linker generated table entries
3410 // and we would have to erase at a late stage relocations from merged entries.
3411 // Given that exception tables are already position independent and a binary
3412 // analyzer could derive the relocations we choose to erase the relocations.
3413 if (config->emitRelocs && isec->type == SHT_REL)
3414 if (InputSectionBase *ex = isec->getRelocatedSection())
3415 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
3416 return true;
3418 return false;
3421 // References to .ARM.Extab Sections have bit 31 clear and are not the
3422 // special EXIDX_CANTUNWIND bit-pattern.
3423 static bool isExtabRef(uint32_t unwind) {
3424 return (unwind & 0x80000000) == 0 && unwind != 0x1;
3427 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
3428 // section Prev, where Cur follows Prev in the table. This can be done if the
3429 // unwinding instructions in Cur are identical to Prev. Linker generated
3430 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
3431 // InputSection.
3432 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
3433 // Get the last table Entry from the previous .ARM.exidx section. If Prev is
3434 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
3435 uint32_t prevUnwind = 1;
3436 if (prev)
3437 prevUnwind = read32(prev->content().data() + prev->content().size() - 4);
3438 if (isExtabRef(prevUnwind))
3439 return false;
3441 // We consider the unwind instructions of an .ARM.exidx table entry
3442 // a duplicate if the previous unwind instructions if:
3443 // - Both are the special EXIDX_CANTUNWIND.
3444 // - Both are the same inline unwind instructions.
3445 // We do not attempt to follow and check links into .ARM.extab tables as
3446 // consecutive identical entries are rare and the effort to check that they
3447 // are identical is high.
3449 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
3450 if (cur == nullptr)
3451 return prevUnwind == 1;
3453 for (uint32_t offset = 4; offset < (uint32_t)cur->content().size(); offset +=8) {
3454 uint32_t curUnwind = read32(cur->content().data() + offset);
3455 if (isExtabRef(curUnwind) || curUnwind != prevUnwind)
3456 return false;
3458 // All table entries in this .ARM.exidx Section can be merged into the
3459 // previous Section.
3460 return true;
3463 // The .ARM.exidx table must be sorted in ascending order of the address of the
3464 // functions the table describes. std::optionally duplicate adjacent table
3465 // entries can be removed. At the end of the function the executableSections
3466 // must be sorted in ascending order of address, Sentinel is set to the
3467 // InputSection with the highest address and any InputSections that have
3468 // mergeable .ARM.exidx table entries are removed from it.
3469 void ARMExidxSyntheticSection::finalizeContents() {
3470 // The executableSections and exidxSections that we use to derive the final
3471 // contents of this SyntheticSection are populated before
3472 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
3473 // ICF may remove executable InputSections and their dependent .ARM.exidx
3474 // section that we recorded earlier.
3475 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
3476 llvm::erase_if(exidxSections, isDiscarded);
3477 // We need to remove discarded InputSections and InputSections without
3478 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
3479 // of range.
3480 auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
3481 if (!isec->isLive())
3482 return true;
3483 if (findExidxSection(isec))
3484 return false;
3485 int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
3486 return off != llvm::SignExtend64(off, 31);
3488 llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
3490 // Sort the executable sections that may or may not have associated
3491 // .ARM.exidx sections by order of ascending address. This requires the
3492 // relative positions of InputSections and OutputSections to be known.
3493 auto compareByFilePosition = [](const InputSection *a,
3494 const InputSection *b) {
3495 OutputSection *aOut = a->getParent();
3496 OutputSection *bOut = b->getParent();
3498 if (aOut != bOut)
3499 return aOut->addr < bOut->addr;
3500 return a->outSecOff < b->outSecOff;
3502 llvm::stable_sort(executableSections, compareByFilePosition);
3503 sentinel = executableSections.back();
3504 // std::optionally merge adjacent duplicate entries.
3505 if (config->mergeArmExidx) {
3506 SmallVector<InputSection *, 0> selectedSections;
3507 selectedSections.reserve(executableSections.size());
3508 selectedSections.push_back(executableSections[0]);
3509 size_t prev = 0;
3510 for (size_t i = 1; i < executableSections.size(); ++i) {
3511 InputSection *ex1 = findExidxSection(executableSections[prev]);
3512 InputSection *ex2 = findExidxSection(executableSections[i]);
3513 if (!isDuplicateArmExidxSec(ex1, ex2)) {
3514 selectedSections.push_back(executableSections[i]);
3515 prev = i;
3518 executableSections = std::move(selectedSections);
3520 // offset is within the SyntheticSection.
3521 size_t offset = 0;
3522 size = 0;
3523 for (InputSection *isec : executableSections) {
3524 if (InputSection *d = findExidxSection(isec)) {
3525 d->outSecOff = offset;
3526 d->parent = getParent();
3527 offset += d->getSize();
3528 } else {
3529 offset += 8;
3532 // Size includes Sentinel.
3533 size = offset + 8;
3536 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
3537 return executableSections.front();
3540 // To write the .ARM.exidx table from the ExecutableSections we have three cases
3541 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
3542 // We write the .ARM.exidx section contents and apply its relocations.
3543 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
3544 // must write the contents of an EXIDX_CANTUNWIND directly. We use the
3545 // start of the InputSection as the purpose of the linker generated
3546 // section is to terminate the address range of the previous entry.
3547 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
3548 // the table to terminate the address range of the final entry.
3549 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
3551 // A linker generated CANTUNWIND entry is made up of two words:
3552 // 0x0 with R_ARM_PREL31 relocation to target.
3553 // 0x1 with EXIDX_CANTUNWIND.
3554 uint64_t offset = 0;
3555 for (InputSection *isec : executableSections) {
3556 assert(isec->getParent() != nullptr);
3557 if (InputSection *d = findExidxSection(isec)) {
3558 for (int dataOffset = 0; dataOffset != (int)d->content().size();
3559 dataOffset += 4)
3560 write32(buf + offset + dataOffset,
3561 read32(d->content().data() + dataOffset));
3562 // Recalculate outSecOff as finalizeAddressDependentContent()
3563 // may have altered syntheticSection outSecOff.
3564 d->outSecOff = offset + outSecOff;
3565 target->relocateAlloc(*d, buf + offset);
3566 offset += d->getSize();
3567 } else {
3568 // A Linker generated CANTUNWIND section.
3569 write32(buf + offset + 0, 0x0);
3570 write32(buf + offset + 4, 0x1);
3571 uint64_t s = isec->getVA();
3572 uint64_t p = getVA() + offset;
3573 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3574 offset += 8;
3577 // Write Sentinel CANTUNWIND entry.
3578 write32(buf + offset + 0, 0x0);
3579 write32(buf + offset + 4, 0x1);
3580 uint64_t s = sentinel->getVA(sentinel->getSize());
3581 uint64_t p = getVA() + offset;
3582 target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3583 assert(size == offset + 8);
3586 bool ARMExidxSyntheticSection::isNeeded() const {
3587 return llvm::any_of(exidxSections,
3588 [](InputSection *isec) { return isec->isLive(); });
3591 ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
3592 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS,
3593 config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") {
3594 this->parent = os;
3595 this->outSecOff = off;
3598 size_t ThunkSection::getSize() const {
3599 if (roundUpSizeForErrata)
3600 return alignTo(size, 4096);
3601 return size;
3604 void ThunkSection::addThunk(Thunk *t) {
3605 thunks.push_back(t);
3606 t->addSymbols(*this);
3609 void ThunkSection::writeTo(uint8_t *buf) {
3610 for (Thunk *t : thunks)
3611 t->writeTo(buf + t->offset);
3614 InputSection *ThunkSection::getTargetInputSection() const {
3615 if (thunks.empty())
3616 return nullptr;
3617 const Thunk *t = thunks.front();
3618 return t->getTargetInputSection();
3621 bool ThunkSection::assignOffsets() {
3622 uint64_t off = 0;
3623 for (Thunk *t : thunks) {
3624 off = alignToPowerOf2(off, t->alignment);
3625 t->setOffset(off);
3626 uint32_t size = t->size();
3627 t->getThunkTargetSym()->size = size;
3628 off += size;
3630 bool changed = off != size;
3631 size = off;
3632 return changed;
3635 PPC32Got2Section::PPC32Got2Section()
3636 : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
3638 bool PPC32Got2Section::isNeeded() const {
3639 // See the comment below. This is not needed if there is no other
3640 // InputSection.
3641 for (SectionCommand *cmd : getParent()->commands)
3642 if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
3643 for (InputSection *isec : isd->sections)
3644 if (isec != this)
3645 return true;
3646 return false;
3649 void PPC32Got2Section::finalizeContents() {
3650 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
3651 // .got2 . This function computes outSecOff of each .got2 to be used in
3652 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
3653 // to collect input sections named ".got2".
3654 for (SectionCommand *cmd : getParent()->commands)
3655 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
3656 for (InputSection *isec : isd->sections) {
3657 // isec->file may be nullptr for MergeSyntheticSection.
3658 if (isec != this && isec->file)
3659 isec->file->ppc32Got2 = isec;
3664 // If linking position-dependent code then the table will store the addresses
3665 // directly in the binary so the section has type SHT_PROGBITS. If linking
3666 // position-independent code the section has type SHT_NOBITS since it will be
3667 // allocated and filled in by the dynamic linker.
3668 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
3669 : SyntheticSection(SHF_ALLOC | SHF_WRITE,
3670 config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
3671 ".branch_lt") {}
3673 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
3674 int64_t addend) {
3675 return getVA() + entry_index.find({sym, addend})->second * 8;
3678 std::optional<uint32_t>
3679 PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) {
3680 auto res =
3681 entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
3682 if (!res.second)
3683 return std::nullopt;
3684 entries.emplace_back(sym, addend);
3685 return res.first->second;
3688 size_t PPC64LongBranchTargetSection::getSize() const {
3689 return entries.size() * 8;
3692 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
3693 // If linking non-pic we have the final addresses of the targets and they get
3694 // written to the table directly. For pic the dynamic linker will allocate
3695 // the section and fill it.
3696 if (config->isPic)
3697 return;
3699 for (auto entry : entries) {
3700 const Symbol *sym = entry.first;
3701 int64_t addend = entry.second;
3702 assert(sym->getVA());
3703 // Need calls to branch to the local entry-point since a long-branch
3704 // must be a local-call.
3705 write64(buf, sym->getVA(addend) +
3706 getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
3707 buf += 8;
3711 bool PPC64LongBranchTargetSection::isNeeded() const {
3712 // `removeUnusedSyntheticSections()` is called before thunk allocation which
3713 // is too early to determine if this section will be empty or not. We need
3714 // Finalized to keep the section alive until after thunk creation. Finalized
3715 // only gets set to true once `finalizeSections()` is called after thunk
3716 // creation. Because of this, if we don't create any long-branch thunks we end
3717 // up with an empty .branch_lt section in the binary.
3718 return !finalized || !entries.empty();
3721 static uint8_t getAbiVersion() {
3722 // MIPS non-PIC executable gets ABI version 1.
3723 if (config->emachine == EM_MIPS) {
3724 if (!config->isPic && !config->relocatable &&
3725 (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
3726 return 1;
3727 return 0;
3730 if (config->emachine == EM_AMDGPU && !ctx.objectFiles.empty()) {
3731 uint8_t ver = ctx.objectFiles[0]->abiVersion;
3732 for (InputFile *file : ArrayRef(ctx.objectFiles).slice(1))
3733 if (file->abiVersion != ver)
3734 error("incompatible ABI version: " + toString(file));
3735 return ver;
3738 return 0;
3741 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
3742 memcpy(buf, "\177ELF", 4);
3744 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3745 eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
3746 eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
3747 eHdr->e_ident[EI_VERSION] = EV_CURRENT;
3748 eHdr->e_ident[EI_OSABI] = config->osabi;
3749 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
3750 eHdr->e_machine = config->emachine;
3751 eHdr->e_version = EV_CURRENT;
3752 eHdr->e_flags = config->eflags;
3753 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
3754 eHdr->e_phnum = part.phdrs.size();
3755 eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
3757 if (!config->relocatable) {
3758 eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
3759 eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
3763 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
3764 // Write the program header table.
3765 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
3766 for (PhdrEntry *p : part.phdrs) {
3767 hBuf->p_type = p->p_type;
3768 hBuf->p_flags = p->p_flags;
3769 hBuf->p_offset = p->p_offset;
3770 hBuf->p_vaddr = p->p_vaddr;
3771 hBuf->p_paddr = p->p_paddr;
3772 hBuf->p_filesz = p->p_filesz;
3773 hBuf->p_memsz = p->p_memsz;
3774 hBuf->p_align = p->p_align;
3775 ++hBuf;
3779 template <typename ELFT>
3780 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
3781 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
3783 template <typename ELFT>
3784 size_t PartitionElfHeaderSection<ELFT>::getSize() const {
3785 return sizeof(typename ELFT::Ehdr);
3788 template <typename ELFT>
3789 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
3790 writeEhdr<ELFT>(buf, getPartition());
3792 // Loadable partitions are always ET_DYN.
3793 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3794 eHdr->e_type = ET_DYN;
3797 template <typename ELFT>
3798 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
3799 : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
3801 template <typename ELFT>
3802 size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
3803 return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
3806 template <typename ELFT>
3807 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
3808 writePhdrs<ELFT>(buf, getPartition());
3811 PartitionIndexSection::PartitionIndexSection()
3812 : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
3814 size_t PartitionIndexSection::getSize() const {
3815 return 12 * (partitions.size() - 1);
3818 void PartitionIndexSection::finalizeContents() {
3819 for (size_t i = 1; i != partitions.size(); ++i)
3820 partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
3823 void PartitionIndexSection::writeTo(uint8_t *buf) {
3824 uint64_t va = getVA();
3825 for (size_t i = 1; i != partitions.size(); ++i) {
3826 write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
3827 write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
3829 SyntheticSection *next = i == partitions.size() - 1
3830 ? in.partEnd.get()
3831 : partitions[i + 1].elfHeader.get();
3832 write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
3834 va += 12;
3835 buf += 12;
3839 void InStruct::reset() {
3840 attributes.reset();
3841 riscvAttributes.reset();
3842 bss.reset();
3843 bssRelRo.reset();
3844 got.reset();
3845 gotPlt.reset();
3846 igotPlt.reset();
3847 relroPadding.reset();
3848 armCmseSGSection.reset();
3849 ppc64LongBranchTarget.reset();
3850 mipsAbiFlags.reset();
3851 mipsGot.reset();
3852 mipsOptions.reset();
3853 mipsReginfo.reset();
3854 mipsRldMap.reset();
3855 partEnd.reset();
3856 partIndex.reset();
3857 plt.reset();
3858 iplt.reset();
3859 ppc32Got2.reset();
3860 ibtPlt.reset();
3861 relaPlt.reset();
3862 relaIplt.reset();
3863 shStrTab.reset();
3864 strTab.reset();
3865 symTab.reset();
3866 symTabShndx.reset();
3869 constexpr char kMemtagAndroidNoteName[] = "Android";
3870 void MemtagAndroidNote::writeTo(uint8_t *buf) {
3871 static_assert(
3872 sizeof(kMemtagAndroidNoteName) == 8,
3873 "Android 11 & 12 have an ABI that the note name is 8 bytes long. Keep it "
3874 "that way for backwards compatibility.");
3876 write32(buf, sizeof(kMemtagAndroidNoteName));
3877 write32(buf + 4, sizeof(uint32_t));
3878 write32(buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG);
3879 memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName));
3880 buf += 12 + alignTo(sizeof(kMemtagAndroidNoteName), 4);
3882 uint32_t value = 0;
3883 value |= config->androidMemtagMode;
3884 if (config->androidMemtagHeap)
3885 value |= ELF::NT_MEMTAG_HEAP;
3886 // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled
3887 // binary on Android 11 or 12 will result in a checkfail in the loader.
3888 if (config->androidMemtagStack)
3889 value |= ELF::NT_MEMTAG_STACK;
3890 write32(buf, value); // note value
3893 size_t MemtagAndroidNote::getSize() const {
3894 return sizeof(llvm::ELF::Elf64_Nhdr) +
3895 /*namesz=*/alignTo(sizeof(kMemtagAndroidNoteName), 4) +
3896 /*descsz=*/sizeof(uint32_t);
3899 void PackageMetadataNote::writeTo(uint8_t *buf) {
3900 write32(buf, 4);
3901 write32(buf + 4, config->packageMetadata.size() + 1);
3902 write32(buf + 8, FDO_PACKAGING_METADATA);
3903 memcpy(buf + 12, "FDO", 4);
3904 memcpy(buf + 16, config->packageMetadata.data(),
3905 config->packageMetadata.size());
3908 size_t PackageMetadataNote::getSize() const {
3909 return sizeof(llvm::ELF::Elf64_Nhdr) + 4 +
3910 alignTo(config->packageMetadata.size() + 1, 4);
3913 // Helper function, return the size of the ULEB128 for 'v', optionally writing
3914 // it to `*(buf + offset)` if `buf` is non-null.
3915 static size_t computeOrWriteULEB128(uint64_t v, uint8_t *buf, size_t offset) {
3916 if (buf)
3917 return encodeULEB128(v, buf + offset);
3918 return getULEB128Size(v);
3921 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
3922 constexpr uint64_t kMemtagStepSizeBits = 3;
3923 constexpr uint64_t kMemtagGranuleSize = 16;
3924 static size_t createMemtagDescriptors(const SmallVector<const Symbol *, 0> &symbols,
3925 uint8_t *buf = nullptr) {
3926 size_t sectionSize = 0;
3927 uint64_t lastGlobalEnd = 0;
3929 for (const Symbol *sym : symbols) {
3930 if (!includeInSymtab(*sym))
3931 continue;
3932 const uint64_t addr = sym->getVA();
3933 const uint64_t size = sym->getSize();
3935 if (addr <= kMemtagGranuleSize && buf != nullptr)
3936 errorOrWarn("address of the tagged symbol \"" + sym->getName() +
3937 "\" falls in the ELF header. This is indicative of a "
3938 "compiler/linker bug");
3939 if (addr % kMemtagGranuleSize != 0)
3940 errorOrWarn("address of the tagged symbol \"" + sym->getName() +
3941 "\" at 0x" + Twine::utohexstr(addr) +
3942 "\" is not granule (16-byte) aligned");
3943 if (size == 0)
3944 errorOrWarn("size of the tagged symbol \"" + sym->getName() +
3945 "\" is not allowed to be zero");
3946 if (size % kMemtagGranuleSize != 0)
3947 errorOrWarn("size of the tagged symbol \"" + sym->getName() +
3948 "\" (size 0x" + Twine::utohexstr(size) +
3949 ") is not granule (16-byte) aligned");
3951 const uint64_t sizeToEncode = size / kMemtagGranuleSize;
3952 const uint64_t stepToEncode = ((addr - lastGlobalEnd) / kMemtagGranuleSize)
3953 << kMemtagStepSizeBits;
3954 if (sizeToEncode < (1 << kMemtagStepSizeBits)) {
3955 sectionSize += computeOrWriteULEB128(stepToEncode | sizeToEncode, buf, sectionSize);
3956 } else {
3957 sectionSize += computeOrWriteULEB128(stepToEncode, buf, sectionSize);
3958 sectionSize += computeOrWriteULEB128(sizeToEncode - 1, buf, sectionSize);
3960 lastGlobalEnd = addr + size;
3963 return sectionSize;
3966 bool MemtagDescriptors::updateAllocSize() {
3967 size_t oldSize = getSize();
3968 std::stable_sort(symbols.begin(), symbols.end(),
3969 [](const Symbol *s1, const Symbol *s2) {
3970 return s1->getVA() < s2->getVA();
3972 return oldSize != getSize();
3975 void MemtagDescriptors::writeTo(uint8_t *buf) {
3976 createMemtagDescriptors(symbols, buf);
3979 size_t MemtagDescriptors::getSize() const {
3980 return createMemtagDescriptors(symbols);
3983 InStruct elf::in;
3985 std::vector<Partition> elf::partitions;
3986 Partition *elf::mainPart;
3988 template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
3989 template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
3990 template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
3991 template GdbIndexSection *GdbIndexSection::create<ELF64BE>();
3993 template void elf::splitSections<ELF32LE>();
3994 template void elf::splitSections<ELF32BE>();
3995 template void elf::splitSections<ELF64LE>();
3996 template void elf::splitSections<ELF64BE>();
3998 template class elf::MipsAbiFlagsSection<ELF32LE>;
3999 template class elf::MipsAbiFlagsSection<ELF32BE>;
4000 template class elf::MipsAbiFlagsSection<ELF64LE>;
4001 template class elf::MipsAbiFlagsSection<ELF64BE>;
4003 template class elf::MipsOptionsSection<ELF32LE>;
4004 template class elf::MipsOptionsSection<ELF32BE>;
4005 template class elf::MipsOptionsSection<ELF64LE>;
4006 template class elf::MipsOptionsSection<ELF64BE>;
4008 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>(
4009 function_ref<void(InputSection &)>);
4010 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>(
4011 function_ref<void(InputSection &)>);
4012 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>(
4013 function_ref<void(InputSection &)>);
4014 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>(
4015 function_ref<void(InputSection &)>);
4017 template class elf::MipsReginfoSection<ELF32LE>;
4018 template class elf::MipsReginfoSection<ELF32BE>;
4019 template class elf::MipsReginfoSection<ELF64LE>;
4020 template class elf::MipsReginfoSection<ELF64BE>;
4022 template class elf::DynamicSection<ELF32LE>;
4023 template class elf::DynamicSection<ELF32BE>;
4024 template class elf::DynamicSection<ELF64LE>;
4025 template class elf::DynamicSection<ELF64BE>;
4027 template class elf::RelocationSection<ELF32LE>;
4028 template class elf::RelocationSection<ELF32BE>;
4029 template class elf::RelocationSection<ELF64LE>;
4030 template class elf::RelocationSection<ELF64BE>;
4032 template class elf::AndroidPackedRelocationSection<ELF32LE>;
4033 template class elf::AndroidPackedRelocationSection<ELF32BE>;
4034 template class elf::AndroidPackedRelocationSection<ELF64LE>;
4035 template class elf::AndroidPackedRelocationSection<ELF64BE>;
4037 template class elf::RelrSection<ELF32LE>;
4038 template class elf::RelrSection<ELF32BE>;
4039 template class elf::RelrSection<ELF64LE>;
4040 template class elf::RelrSection<ELF64BE>;
4042 template class elf::SymbolTableSection<ELF32LE>;
4043 template class elf::SymbolTableSection<ELF32BE>;
4044 template class elf::SymbolTableSection<ELF64LE>;
4045 template class elf::SymbolTableSection<ELF64BE>;
4047 template class elf::VersionNeedSection<ELF32LE>;
4048 template class elf::VersionNeedSection<ELF32BE>;
4049 template class elf::VersionNeedSection<ELF64LE>;
4050 template class elf::VersionNeedSection<ELF64BE>;
4052 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
4053 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
4054 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
4055 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
4057 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
4058 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
4059 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
4060 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
4062 template class elf::PartitionElfHeaderSection<ELF32LE>;
4063 template class elf::PartitionElfHeaderSection<ELF32BE>;
4064 template class elf::PartitionElfHeaderSection<ELF64LE>;
4065 template class elf::PartitionElfHeaderSection<ELF64BE>;
4067 template class elf::PartitionProgramHeadersSection<ELF32LE>;
4068 template class elf::PartitionProgramHeadersSection<ELF32BE>;
4069 template class elf::PartitionProgramHeadersSection<ELF64LE>;
4070 template class elf::PartitionProgramHeadersSection<ELF64BE>;