Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / MachO / SyntheticSections.cpp
blobe123dcb6803c1e2b78656886f92a33d93069d666
1 //===- SyntheticSections.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "SyntheticSections.h"
10 #include "ConcatOutputSection.h"
11 #include "Config.h"
12 #include "ExportTrie.h"
13 #include "InputFiles.h"
14 #include "MachOStructs.h"
15 #include "OutputSegment.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
19 #include "lld/Common/CommonLinkerContext.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/Support/EndianStream.h"
23 #include "llvm/Support/FileSystem.h"
24 #include "llvm/Support/LEB128.h"
25 #include "llvm/Support/Parallel.h"
26 #include "llvm/Support/Path.h"
27 #include "llvm/Support/xxhash.h"
29 #if defined(__APPLE__)
30 #include <sys/mman.h>
32 #define COMMON_DIGEST_FOR_OPENSSL
33 #include <CommonCrypto/CommonDigest.h>
34 #else
35 #include "llvm/Support/SHA256.h"
36 #endif
38 using namespace llvm;
39 using namespace llvm::MachO;
40 using namespace llvm::support;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::macho;
45 // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`.
46 static void sha256(const uint8_t *data, size_t len, uint8_t *output) {
47 #if defined(__APPLE__)
48 // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121
49 // for some notes on this.
50 CC_SHA256(data, len, output);
51 #else
52 ArrayRef<uint8_t> block(data, len);
53 std::array<uint8_t, 32> hash = SHA256::hash(block);
54 static_assert(hash.size() == CodeSignatureSection::hashSize);
55 memcpy(output, hash.data(), hash.size());
56 #endif
59 InStruct macho::in;
60 std::vector<SyntheticSection *> macho::syntheticSections;
62 SyntheticSection::SyntheticSection(const char *segname, const char *name)
63 : OutputSection(SyntheticKind, name) {
64 std::tie(this->segname, this->name) = maybeRenameSection({segname, name});
65 isec = makeSyntheticInputSection(segname, name);
66 isec->parent = this;
67 syntheticSections.push_back(this);
70 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
71 // from the beginning of the file (i.e. the header).
72 MachHeaderSection::MachHeaderSection()
73 : SyntheticSection(segment_names::text, section_names::header) {
74 // XXX: This is a hack. (See D97007)
75 // Setting the index to 1 to pretend that this section is the text
76 // section.
77 index = 1;
78 isec->isFinal = true;
81 void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
82 loadCommands.push_back(lc);
83 sizeOfCmds += lc->getSize();
86 uint64_t MachHeaderSection::getSize() const {
87 uint64_t size = target->headerSize + sizeOfCmds + config->headerPad;
88 // If we are emitting an encryptable binary, our load commands must have a
89 // separate (non-encrypted) page to themselves.
90 if (config->emitEncryptionInfo)
91 size = alignToPowerOf2(size, target->getPageSize());
92 return size;
95 static uint32_t cpuSubtype() {
96 uint32_t subtype = target->cpuSubtype;
98 if (config->outputType == MH_EXECUTE && !config->staticLink &&
99 target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL &&
100 config->platform() == PLATFORM_MACOS &&
101 config->platformInfo.target.MinDeployment >= VersionTuple(10, 5))
102 subtype |= CPU_SUBTYPE_LIB64;
104 return subtype;
107 static bool hasWeakBinding() {
108 return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding()
109 : in.weakBinding->hasEntry();
112 static bool hasNonWeakDefinition() {
113 return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition()
114 : in.weakBinding->hasNonWeakDefinition();
117 void MachHeaderSection::writeTo(uint8_t *buf) const {
118 auto *hdr = reinterpret_cast<mach_header *>(buf);
119 hdr->magic = target->magic;
120 hdr->cputype = target->cpuType;
121 hdr->cpusubtype = cpuSubtype();
122 hdr->filetype = config->outputType;
123 hdr->ncmds = loadCommands.size();
124 hdr->sizeofcmds = sizeOfCmds;
125 hdr->flags = MH_DYLDLINK;
127 if (config->namespaceKind == NamespaceKind::twolevel)
128 hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL;
130 if (config->outputType == MH_DYLIB && !config->hasReexports)
131 hdr->flags |= MH_NO_REEXPORTED_DYLIBS;
133 if (config->markDeadStrippableDylib)
134 hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB;
136 if (config->outputType == MH_EXECUTE && config->isPic)
137 hdr->flags |= MH_PIE;
139 if (config->outputType == MH_DYLIB && config->applicationExtension)
140 hdr->flags |= MH_APP_EXTENSION_SAFE;
142 if (in.exports->hasWeakSymbol || hasNonWeakDefinition())
143 hdr->flags |= MH_WEAK_DEFINES;
145 if (in.exports->hasWeakSymbol || hasWeakBinding())
146 hdr->flags |= MH_BINDS_TO_WEAK;
148 for (const OutputSegment *seg : outputSegments) {
149 for (const OutputSection *osec : seg->getSections()) {
150 if (isThreadLocalVariables(osec->flags)) {
151 hdr->flags |= MH_HAS_TLV_DESCRIPTORS;
152 break;
157 uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize;
158 for (const LoadCommand *lc : loadCommands) {
159 lc->writeTo(p);
160 p += lc->getSize();
164 PageZeroSection::PageZeroSection()
165 : SyntheticSection(segment_names::pageZero, section_names::pageZero) {}
167 RebaseSection::RebaseSection()
168 : LinkEditSection(segment_names::linkEdit, section_names::rebase) {}
170 namespace {
171 struct RebaseState {
172 uint64_t sequenceLength;
173 uint64_t skipLength;
175 } // namespace
177 static void emitIncrement(uint64_t incr, raw_svector_ostream &os) {
178 assert(incr != 0);
180 if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK &&
181 (incr % target->wordSize) == 0) {
182 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED |
183 (incr >> target->p2WordSize));
184 } else {
185 os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
186 encodeULEB128(incr, os);
190 static void flushRebase(const RebaseState &state, raw_svector_ostream &os) {
191 assert(state.sequenceLength > 0);
193 if (state.skipLength == target->wordSize) {
194 if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) {
195 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
196 state.sequenceLength);
197 } else {
198 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
199 encodeULEB128(state.sequenceLength, os);
201 } else if (state.sequenceLength == 1) {
202 os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB);
203 encodeULEB128(state.skipLength - target->wordSize, os);
204 } else {
205 os << static_cast<uint8_t>(
206 REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB);
207 encodeULEB128(state.sequenceLength, os);
208 encodeULEB128(state.skipLength - target->wordSize, os);
212 // Rebases are communicated to dyld using a bytecode, whose opcodes cause the
213 // memory location at a specific address to be rebased and/or the address to be
214 // incremented.
216 // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic
217 // one, encoding a series of evenly spaced addresses. This algorithm works by
218 // splitting up the sorted list of addresses into such chunks. If the locations
219 // are consecutive or the sequence consists of a single location, flushRebase
220 // will use a smaller, more specialized encoding.
221 static void encodeRebases(const OutputSegment *seg,
222 MutableArrayRef<Location> locations,
223 raw_svector_ostream &os) {
224 // dyld operates on segments. Translate section offsets into segment offsets.
225 for (Location &loc : locations)
226 loc.offset =
227 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
228 // The algorithm assumes that locations are unique.
229 Location *end =
230 llvm::unique(locations, [](const Location &a, const Location &b) {
231 return a.offset == b.offset;
233 size_t count = end - locations.begin();
235 os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
236 seg->index);
237 assert(!locations.empty());
238 uint64_t offset = locations[0].offset;
239 encodeULEB128(offset, os);
241 RebaseState state{1, target->wordSize};
243 for (size_t i = 1; i < count; ++i) {
244 offset = locations[i].offset;
246 uint64_t skip = offset - locations[i - 1].offset;
247 assert(skip != 0 && "duplicate locations should have been weeded out");
249 if (skip == state.skipLength) {
250 ++state.sequenceLength;
251 } else if (state.sequenceLength == 1) {
252 ++state.sequenceLength;
253 state.skipLength = skip;
254 } else if (skip < state.skipLength) {
255 // The address is lower than what the rebase pointer would be if the last
256 // location would be part of a sequence. We start a new sequence from the
257 // previous location.
258 --state.sequenceLength;
259 flushRebase(state, os);
261 state.sequenceLength = 2;
262 state.skipLength = skip;
263 } else {
264 // The address is at some positive offset from the rebase pointer. We
265 // start a new sequence which begins with the current location.
266 flushRebase(state, os);
267 emitIncrement(skip - state.skipLength, os);
268 state.sequenceLength = 1;
269 state.skipLength = target->wordSize;
272 flushRebase(state, os);
275 void RebaseSection::finalizeContents() {
276 if (locations.empty())
277 return;
279 raw_svector_ostream os{contents};
280 os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);
282 llvm::sort(locations, [](const Location &a, const Location &b) {
283 return a.isec->getVA(a.offset) < b.isec->getVA(b.offset);
286 for (size_t i = 0, count = locations.size(); i < count;) {
287 const OutputSegment *seg = locations[i].isec->parent->parent;
288 size_t j = i + 1;
289 while (j < count && locations[j].isec->parent->parent == seg)
290 ++j;
291 encodeRebases(seg, {locations.data() + i, locations.data() + j}, os);
292 i = j;
294 os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
297 void RebaseSection::writeTo(uint8_t *buf) const {
298 memcpy(buf, contents.data(), contents.size());
301 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
302 const char *name)
303 : SyntheticSection(segname, name) {
304 align = target->wordSize;
307 void macho::addNonLazyBindingEntries(const Symbol *sym,
308 const InputSection *isec, uint64_t offset,
309 int64_t addend) {
310 if (config->emitChainedFixups) {
311 if (needsBinding(sym))
312 in.chainedFixups->addBinding(sym, isec, offset, addend);
313 else if (isa<Defined>(sym))
314 in.chainedFixups->addRebase(isec, offset);
315 else
316 llvm_unreachable("cannot bind to an undefined symbol");
317 return;
320 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
321 in.binding->addEntry(dysym, isec, offset, addend);
322 if (dysym->isWeakDef())
323 in.weakBinding->addEntry(sym, isec, offset, addend);
324 } else if (const auto *defined = dyn_cast<Defined>(sym)) {
325 in.rebase->addEntry(isec, offset);
326 if (defined->isExternalWeakDef())
327 in.weakBinding->addEntry(sym, isec, offset, addend);
328 else if (defined->interposable)
329 in.binding->addEntry(sym, isec, offset, addend);
330 } else {
331 // Undefined symbols are filtered out in scanRelocations(); we should never
332 // get here
333 llvm_unreachable("cannot bind to an undefined symbol");
337 void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
338 if (entries.insert(sym)) {
339 assert(!sym->isInGot());
340 sym->gotIndex = entries.size() - 1;
342 addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize);
346 void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) {
347 assert(config->emitChainedFixups);
348 assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
349 auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf);
350 rebase->target = targetVA & 0xf'ffff'ffff;
351 rebase->high8 = (targetVA >> 56);
352 rebase->reserved = 0;
353 rebase->next = 0;
354 rebase->bind = 0;
356 // The fixup format places a 64 GiB limit on the output's size.
357 // Should we handle this gracefully?
358 uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56);
359 if (encodedVA != targetVA)
360 error("rebase target address 0x" + Twine::utohexstr(targetVA) +
361 " does not fit into chained fixup. Re-link with -no_fixup_chains");
364 static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) {
365 assert(config->emitChainedFixups);
366 assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
367 auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf);
368 auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend);
369 bind->ordinal = ordinal;
370 bind->addend = inlineAddend;
371 bind->reserved = 0;
372 bind->next = 0;
373 bind->bind = 1;
376 void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) {
377 if (needsBinding(sym))
378 writeChainedBind(buf, sym, addend);
379 else
380 writeChainedRebase(buf, sym->getVA() + addend);
383 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
384 if (config->emitChainedFixups) {
385 for (const auto &[i, entry] : llvm::enumerate(entries))
386 writeChainedFixup(&buf[i * target->wordSize], entry, 0);
387 } else {
388 for (const auto &[i, entry] : llvm::enumerate(entries))
389 if (auto *defined = dyn_cast<Defined>(entry))
390 write64le(&buf[i * target->wordSize], defined->getVA());
394 GotSection::GotSection()
395 : NonLazyPointerSectionBase(segment_names::data, section_names::got) {
396 flags = S_NON_LAZY_SYMBOL_POINTERS;
399 TlvPointerSection::TlvPointerSection()
400 : NonLazyPointerSectionBase(segment_names::data,
401 section_names::threadPtrs) {
402 flags = S_THREAD_LOCAL_VARIABLE_POINTERS;
405 BindingSection::BindingSection()
406 : LinkEditSection(segment_names::linkEdit, section_names::binding) {}
408 namespace {
409 struct Binding {
410 OutputSegment *segment = nullptr;
411 uint64_t offset = 0;
412 int64_t addend = 0;
414 struct BindIR {
415 // Default value of 0xF0 is not valid opcode and should make the program
416 // scream instead of accidentally writing "valid" values.
417 uint8_t opcode = 0xF0;
418 uint64_t data = 0;
419 uint64_t consecutiveCount = 0;
421 } // namespace
423 // Encode a sequence of opcodes that tell dyld to write the address of symbol +
424 // addend at osec->addr + outSecOff.
426 // The bind opcode "interpreter" remembers the values of each binding field, so
427 // we only need to encode the differences between bindings. Hence the use of
428 // lastBinding.
429 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff,
430 int64_t addend, Binding &lastBinding,
431 std::vector<BindIR> &opcodes) {
432 OutputSegment *seg = osec->parent;
433 uint64_t offset = osec->getSegmentOffset() + outSecOff;
434 if (lastBinding.segment != seg) {
435 opcodes.push_back(
436 {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
437 seg->index),
438 offset});
439 lastBinding.segment = seg;
440 lastBinding.offset = offset;
441 } else if (lastBinding.offset != offset) {
442 opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset});
443 lastBinding.offset = offset;
446 if (lastBinding.addend != addend) {
447 opcodes.push_back(
448 {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)});
449 lastBinding.addend = addend;
452 opcodes.push_back({BIND_OPCODE_DO_BIND, 0});
453 // DO_BIND causes dyld to both perform the binding and increment the offset
454 lastBinding.offset += target->wordSize;
457 static void optimizeOpcodes(std::vector<BindIR> &opcodes) {
458 // Pass 1: Combine bind/add pairs
459 size_t i;
460 int pWrite = 0;
461 for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
462 if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) &&
463 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) {
464 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
465 opcodes[pWrite].data = opcodes[i].data;
466 ++i;
467 } else {
468 opcodes[pWrite] = opcodes[i - 1];
471 if (i == opcodes.size())
472 opcodes[pWrite] = opcodes[i - 1];
473 opcodes.resize(pWrite + 1);
475 // Pass 2: Compress two or more bind_add opcodes
476 pWrite = 0;
477 for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
478 if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
479 (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
480 (opcodes[i].data == opcodes[i - 1].data)) {
481 opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
482 opcodes[pWrite].consecutiveCount = 2;
483 opcodes[pWrite].data = opcodes[i].data;
484 ++i;
485 while (i < opcodes.size() &&
486 (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
487 (opcodes[i].data == opcodes[i - 1].data)) {
488 opcodes[pWrite].consecutiveCount++;
489 ++i;
491 } else {
492 opcodes[pWrite] = opcodes[i - 1];
495 if (i == opcodes.size())
496 opcodes[pWrite] = opcodes[i - 1];
497 opcodes.resize(pWrite + 1);
499 // Pass 3: Use immediate encodings
500 // Every binding is the size of one pointer. If the next binding is a
501 // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the
502 // opcode can be scaled by wordSize into a single byte and dyld will
503 // expand it to the correct address.
504 for (auto &p : opcodes) {
505 // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK,
506 // but ld64 currently does this. This could be a potential bug, but
507 // for now, perform the same behavior to prevent mysterious bugs.
508 if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
509 ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) &&
510 ((p.data % target->wordSize) == 0)) {
511 p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
512 p.data /= target->wordSize;
517 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) {
518 uint8_t opcode = op.opcode & BIND_OPCODE_MASK;
519 switch (opcode) {
520 case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
521 case BIND_OPCODE_ADD_ADDR_ULEB:
522 case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
523 os << op.opcode;
524 encodeULEB128(op.data, os);
525 break;
526 case BIND_OPCODE_SET_ADDEND_SLEB:
527 os << op.opcode;
528 encodeSLEB128(static_cast<int64_t>(op.data), os);
529 break;
530 case BIND_OPCODE_DO_BIND:
531 os << op.opcode;
532 break;
533 case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
534 os << op.opcode;
535 encodeULEB128(op.consecutiveCount, os);
536 encodeULEB128(op.data, os);
537 break;
538 case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
539 os << static_cast<uint8_t>(op.opcode | op.data);
540 break;
541 default:
542 llvm_unreachable("cannot bind to an unrecognized symbol");
546 // Non-weak bindings need to have their dylib ordinal encoded as well.
547 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) {
548 if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup())
549 return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP);
550 assert(dysym.getFile()->isReferenced());
551 return dysym.getFile()->ordinal;
554 static int16_t ordinalForSymbol(const Symbol &sym) {
555 if (const auto *dysym = dyn_cast<DylibSymbol>(&sym))
556 return ordinalForDylibSymbol(*dysym);
557 assert(cast<Defined>(&sym)->interposable);
558 return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
561 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) {
562 if (ordinal <= 0) {
563 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM |
564 (ordinal & BIND_IMMEDIATE_MASK));
565 } else if (ordinal <= BIND_IMMEDIATE_MASK) {
566 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
567 } else {
568 os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
569 encodeULEB128(ordinal, os);
573 static void encodeWeakOverride(const Defined *defined,
574 raw_svector_ostream &os) {
575 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
576 BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
577 << defined->getName() << '\0';
580 // Organize the bindings so we can encoded them with fewer opcodes.
582 // First, all bindings for a given symbol should be grouped together.
583 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it
584 // has an associated symbol string), so we only want to emit it once per symbol.
586 // Within each group, we sort the bindings by address. Since bindings are
587 // delta-encoded, sorting them allows for a more compact result. Note that
588 // sorting by address alone ensures that bindings for the same segment / section
589 // are located together, minimizing the number of times we have to emit
590 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB.
592 // Finally, we sort the symbols by the address of their first binding, again
593 // to facilitate the delta-encoding process.
594 template <class Sym>
595 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>>
596 sortBindings(const BindingsMap<const Sym *> &bindingsMap) {
597 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec(
598 bindingsMap.begin(), bindingsMap.end());
599 for (auto &p : bindingsVec) {
600 std::vector<BindingEntry> &bindings = p.second;
601 llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
602 return a.target.getVA() < b.target.getVA();
605 llvm::sort(bindingsVec, [](const auto &a, const auto &b) {
606 return a.second[0].target.getVA() < b.second[0].target.getVA();
608 return bindingsVec;
611 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
612 // interprets to update a record with the following fields:
613 // * segment index (of the segment to write the symbol addresses to, typically
614 // the __DATA_CONST segment which contains the GOT)
615 // * offset within the segment, indicating the next location to write a binding
616 // * symbol type
617 // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
618 // * symbol name
619 // * addend
620 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
621 // a symbol in the GOT, and increments the segment offset to point to the next
622 // entry. It does *not* clear the record state after doing the bind, so
623 // subsequent opcodes only need to encode the differences between bindings.
624 void BindingSection::finalizeContents() {
625 raw_svector_ostream os{contents};
626 Binding lastBinding;
627 int16_t lastOrdinal = 0;
629 for (auto &p : sortBindings(bindingsMap)) {
630 const Symbol *sym = p.first;
631 std::vector<BindingEntry> &bindings = p.second;
632 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
633 if (sym->isWeakRef())
634 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
635 os << flags << sym->getName() << '\0'
636 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
637 int16_t ordinal = ordinalForSymbol(*sym);
638 if (ordinal != lastOrdinal) {
639 encodeDylibOrdinal(ordinal, os);
640 lastOrdinal = ordinal;
642 std::vector<BindIR> opcodes;
643 for (const BindingEntry &b : bindings)
644 encodeBinding(b.target.isec->parent,
645 b.target.isec->getOffset(b.target.offset), b.addend,
646 lastBinding, opcodes);
647 if (config->optimize > 1)
648 optimizeOpcodes(opcodes);
649 for (const auto &op : opcodes)
650 flushOpcodes(op, os);
652 if (!bindingsMap.empty())
653 os << static_cast<uint8_t>(BIND_OPCODE_DONE);
656 void BindingSection::writeTo(uint8_t *buf) const {
657 memcpy(buf, contents.data(), contents.size());
660 WeakBindingSection::WeakBindingSection()
661 : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}
663 void WeakBindingSection::finalizeContents() {
664 raw_svector_ostream os{contents};
665 Binding lastBinding;
667 for (const Defined *defined : definitions)
668 encodeWeakOverride(defined, os);
670 for (auto &p : sortBindings(bindingsMap)) {
671 const Symbol *sym = p.first;
672 std::vector<BindingEntry> &bindings = p.second;
673 os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM)
674 << sym->getName() << '\0'
675 << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
676 std::vector<BindIR> opcodes;
677 for (const BindingEntry &b : bindings)
678 encodeBinding(b.target.isec->parent,
679 b.target.isec->getOffset(b.target.offset), b.addend,
680 lastBinding, opcodes);
681 if (config->optimize > 1)
682 optimizeOpcodes(opcodes);
683 for (const auto &op : opcodes)
684 flushOpcodes(op, os);
686 if (!bindingsMap.empty() || !definitions.empty())
687 os << static_cast<uint8_t>(BIND_OPCODE_DONE);
690 void WeakBindingSection::writeTo(uint8_t *buf) const {
691 memcpy(buf, contents.data(), contents.size());
694 StubsSection::StubsSection()
695 : SyntheticSection(segment_names::text, section_names::stubs) {
696 flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
697 // The stubs section comprises machine instructions, which are aligned to
698 // 4 bytes on the archs we care about.
699 align = 4;
700 reserved2 = target->stubSize;
703 uint64_t StubsSection::getSize() const {
704 return entries.size() * target->stubSize;
707 void StubsSection::writeTo(uint8_t *buf) const {
708 size_t off = 0;
709 for (const Symbol *sym : entries) {
710 uint64_t pointerVA =
711 config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA();
712 target->writeStub(buf + off, *sym, pointerVA);
713 off += target->stubSize;
717 void StubsSection::finalize() { isFinal = true; }
719 static void addBindingsForStub(Symbol *sym) {
720 assert(!config->emitChainedFixups);
721 if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
722 if (sym->isWeakDef()) {
723 in.binding->addEntry(dysym, in.lazyPointers->isec,
724 sym->stubsIndex * target->wordSize);
725 in.weakBinding->addEntry(sym, in.lazyPointers->isec,
726 sym->stubsIndex * target->wordSize);
727 } else {
728 in.lazyBinding->addEntry(dysym);
730 } else if (auto *defined = dyn_cast<Defined>(sym)) {
731 if (defined->isExternalWeakDef()) {
732 in.rebase->addEntry(in.lazyPointers->isec,
733 sym->stubsIndex * target->wordSize);
734 in.weakBinding->addEntry(sym, in.lazyPointers->isec,
735 sym->stubsIndex * target->wordSize);
736 } else if (defined->interposable) {
737 in.lazyBinding->addEntry(sym);
738 } else {
739 llvm_unreachable("invalid stub target");
741 } else {
742 llvm_unreachable("invalid stub target symbol type");
746 void StubsSection::addEntry(Symbol *sym) {
747 bool inserted = entries.insert(sym);
748 if (inserted) {
749 sym->stubsIndex = entries.size() - 1;
751 if (config->emitChainedFixups)
752 in.got->addEntry(sym);
753 else
754 addBindingsForStub(sym);
758 StubHelperSection::StubHelperSection()
759 : SyntheticSection(segment_names::text, section_names::stubHelper) {
760 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
761 align = 4; // This section comprises machine instructions
764 uint64_t StubHelperSection::getSize() const {
765 return target->stubHelperHeaderSize +
766 in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
769 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }
771 void StubHelperSection::writeTo(uint8_t *buf) const {
772 target->writeStubHelperHeader(buf);
773 size_t off = target->stubHelperHeaderSize;
774 for (const Symbol *sym : in.lazyBinding->getEntries()) {
775 target->writeStubHelperEntry(buf + off, *sym, addr + off);
776 off += target->stubHelperEntrySize;
780 void StubHelperSection::setUp() {
781 Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr,
782 /*isWeakRef=*/false);
783 if (auto *undefined = dyn_cast<Undefined>(binder))
784 treatUndefinedSymbol(*undefined,
785 "lazy binding (normally in libSystem.dylib)");
787 // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check.
788 stubBinder = dyn_cast_or_null<DylibSymbol>(binder);
789 if (stubBinder == nullptr)
790 return;
792 in.got->addEntry(stubBinder);
794 in.imageLoaderCache->parent =
795 ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache);
796 inputSections.push_back(in.imageLoaderCache);
797 // Since this isn't in the symbol table or in any input file, the noDeadStrip
798 // argument doesn't matter.
799 dyldPrivate =
800 make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0,
801 /*isWeakDef=*/false,
802 /*isExternal=*/false, /*isPrivateExtern=*/false,
803 /*includeInSymtab=*/true,
804 /*isReferencedDynamically=*/false,
805 /*noDeadStrip=*/false);
806 dyldPrivate->used = true;
809 ObjCStubsSection::ObjCStubsSection()
810 : SyntheticSection(segment_names::text, section_names::objcStubs) {
811 flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
812 align = target->objcStubsAlignment;
815 void ObjCStubsSection::addEntry(Symbol *sym) {
816 assert(sym->getName().starts_with(symbolPrefix) && "not an objc stub");
817 StringRef methname = sym->getName().drop_front(symbolPrefix.size());
818 offsets.push_back(
819 in.objcMethnameSection->getStringOffset(methname).outSecOff);
820 Defined *newSym = replaceSymbol<Defined>(
821 sym, sym->getName(), nullptr, isec,
822 /*value=*/symbols.size() * target->objcStubsFastSize,
823 /*size=*/target->objcStubsFastSize,
824 /*isWeakDef=*/false, /*isExternal=*/true, /*isPrivateExtern=*/true,
825 /*includeInSymtab=*/true, /*isReferencedDynamically=*/false,
826 /*noDeadStrip=*/false);
827 symbols.push_back(newSym);
830 void ObjCStubsSection::setUp() {
831 Symbol *objcMsgSend = symtab->addUndefined("_objc_msgSend", /*file=*/nullptr,
832 /*isWeakRef=*/false);
833 objcMsgSend->used = true;
834 in.got->addEntry(objcMsgSend);
835 assert(objcMsgSend->isInGot());
836 objcMsgSendGotIndex = objcMsgSend->gotIndex;
838 size_t size = offsets.size() * target->wordSize;
839 uint8_t *selrefsData = bAlloc().Allocate<uint8_t>(size);
840 for (size_t i = 0, n = offsets.size(); i < n; ++i)
841 write64le(&selrefsData[i * target->wordSize], offsets[i]);
843 in.objcSelrefs =
844 makeSyntheticInputSection(segment_names::data, section_names::objcSelrefs,
845 S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP,
846 ArrayRef<uint8_t>{selrefsData, size},
847 /*align=*/target->wordSize);
848 in.objcSelrefs->live = true;
850 for (size_t i = 0, n = offsets.size(); i < n; ++i) {
851 in.objcSelrefs->relocs.push_back(
852 {/*type=*/target->unsignedRelocType,
853 /*pcrel=*/false, /*length=*/3,
854 /*offset=*/static_cast<uint32_t>(i * target->wordSize),
855 /*addend=*/offsets[i] * in.objcMethnameSection->align,
856 /*referent=*/in.objcMethnameSection->isec});
859 in.objcSelrefs->parent =
860 ConcatOutputSection::getOrCreateForInput(in.objcSelrefs);
861 inputSections.push_back(in.objcSelrefs);
862 in.objcSelrefs->isFinal = true;
865 uint64_t ObjCStubsSection::getSize() const {
866 return target->objcStubsFastSize * symbols.size();
869 void ObjCStubsSection::writeTo(uint8_t *buf) const {
870 assert(in.objcSelrefs->live);
871 assert(in.objcSelrefs->isFinal);
873 uint64_t stubOffset = 0;
874 for (size_t i = 0, n = symbols.size(); i < n; ++i) {
875 Defined *sym = symbols[i];
876 target->writeObjCMsgSendStub(buf + stubOffset, sym, in.objcStubs->addr,
877 stubOffset, in.objcSelrefs->getVA(), i,
878 in.got->addr, objcMsgSendGotIndex);
879 stubOffset += target->objcStubsFastSize;
883 LazyPointerSection::LazyPointerSection()
884 : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) {
885 align = target->wordSize;
886 flags = S_LAZY_SYMBOL_POINTERS;
889 uint64_t LazyPointerSection::getSize() const {
890 return in.stubs->getEntries().size() * target->wordSize;
893 bool LazyPointerSection::isNeeded() const {
894 return !in.stubs->getEntries().empty();
897 void LazyPointerSection::writeTo(uint8_t *buf) const {
898 size_t off = 0;
899 for (const Symbol *sym : in.stubs->getEntries()) {
900 if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
901 if (dysym->hasStubsHelper()) {
902 uint64_t stubHelperOffset =
903 target->stubHelperHeaderSize +
904 dysym->stubsHelperIndex * target->stubHelperEntrySize;
905 write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
907 } else {
908 write64le(buf + off, sym->getVA());
910 off += target->wordSize;
914 LazyBindingSection::LazyBindingSection()
915 : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}
917 void LazyBindingSection::finalizeContents() {
918 // TODO: Just precompute output size here instead of writing to a temporary
919 // buffer
920 for (Symbol *sym : entries)
921 sym->lazyBindOffset = encode(*sym);
924 void LazyBindingSection::writeTo(uint8_t *buf) const {
925 memcpy(buf, contents.data(), contents.size());
928 void LazyBindingSection::addEntry(Symbol *sym) {
929 assert(!config->emitChainedFixups && "Chained fixups always bind eagerly");
930 if (entries.insert(sym)) {
931 sym->stubsHelperIndex = entries.size() - 1;
932 in.rebase->addEntry(in.lazyPointers->isec,
933 sym->stubsIndex * target->wordSize);
937 // Unlike the non-lazy binding section, the bind opcodes in this section aren't
938 // interpreted all at once. Rather, dyld will start interpreting opcodes at a
939 // given offset, typically only binding a single symbol before it finds a
940 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
941 // we cannot encode just the differences between symbols; we have to emit the
942 // complete bind information for each symbol.
943 uint32_t LazyBindingSection::encode(const Symbol &sym) {
944 uint32_t opstreamOffset = contents.size();
945 OutputSegment *dataSeg = in.lazyPointers->parent;
946 os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
947 dataSeg->index);
948 uint64_t offset =
949 in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize;
950 encodeULEB128(offset, os);
951 encodeDylibOrdinal(ordinalForSymbol(sym), os);
953 uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
954 if (sym.isWeakRef())
955 flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
957 os << flags << sym.getName() << '\0'
958 << static_cast<uint8_t>(BIND_OPCODE_DO_BIND)
959 << static_cast<uint8_t>(BIND_OPCODE_DONE);
960 return opstreamOffset;
963 ExportSection::ExportSection()
964 : LinkEditSection(segment_names::linkEdit, section_names::export_) {}
966 void ExportSection::finalizeContents() {
967 trieBuilder.setImageBase(in.header->addr);
968 for (const Symbol *sym : symtab->getSymbols()) {
969 if (const auto *defined = dyn_cast<Defined>(sym)) {
970 if (defined->privateExtern || !defined->isLive())
971 continue;
972 trieBuilder.addSymbol(*defined);
973 hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
974 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
975 if (dysym->shouldReexport)
976 trieBuilder.addSymbol(*dysym);
979 size = trieBuilder.build();
982 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }
984 DataInCodeSection::DataInCodeSection()
985 : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {}
987 template <class LP>
988 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() {
989 std::vector<MachO::data_in_code_entry> dataInCodeEntries;
990 for (const InputFile *inputFile : inputFiles) {
991 if (!isa<ObjFile>(inputFile))
992 continue;
993 const ObjFile *objFile = cast<ObjFile>(inputFile);
994 ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode();
995 if (entries.empty())
996 continue;
998 assert(is_sorted(entries, [](const data_in_code_entry &lhs,
999 const data_in_code_entry &rhs) {
1000 return lhs.offset < rhs.offset;
1001 }));
1002 // For each code subsection find 'data in code' entries residing in it.
1003 // Compute the new offset values as
1004 // <offset within subsection> + <subsection address> - <__TEXT address>.
1005 for (const Section *section : objFile->sections) {
1006 for (const Subsection &subsec : section->subsections) {
1007 const InputSection *isec = subsec.isec;
1008 if (!isCodeSection(isec))
1009 continue;
1010 if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput())
1011 continue;
1012 const uint64_t beginAddr = section->addr + subsec.offset;
1013 auto it = llvm::lower_bound(
1014 entries, beginAddr,
1015 [](const MachO::data_in_code_entry &entry, uint64_t addr) {
1016 return entry.offset < addr;
1018 const uint64_t endAddr = beginAddr + isec->getSize();
1019 for (const auto end = entries.end();
1020 it != end && it->offset + it->length <= endAddr; ++it)
1021 dataInCodeEntries.push_back(
1022 {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) -
1023 in.header->addr),
1024 it->length, it->kind});
1029 // ld64 emits the table in sorted order too.
1030 llvm::sort(dataInCodeEntries,
1031 [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) {
1032 return lhs.offset < rhs.offset;
1034 return dataInCodeEntries;
1037 void DataInCodeSection::finalizeContents() {
1038 entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>()
1039 : collectDataInCodeEntries<ILP32>();
1042 void DataInCodeSection::writeTo(uint8_t *buf) const {
1043 if (!entries.empty())
1044 memcpy(buf, entries.data(), getRawSize());
1047 FunctionStartsSection::FunctionStartsSection()
1048 : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {}
1050 void FunctionStartsSection::finalizeContents() {
1051 raw_svector_ostream os{contents};
1052 std::vector<uint64_t> addrs;
1053 for (const InputFile *file : inputFiles) {
1054 if (auto *objFile = dyn_cast<ObjFile>(file)) {
1055 for (const Symbol *sym : objFile->symbols) {
1056 if (const auto *defined = dyn_cast_or_null<Defined>(sym)) {
1057 if (!defined->isec || !isCodeSection(defined->isec) ||
1058 !defined->isLive())
1059 continue;
1060 addrs.push_back(defined->getVA());
1065 llvm::sort(addrs);
1066 uint64_t addr = in.header->addr;
1067 for (uint64_t nextAddr : addrs) {
1068 uint64_t delta = nextAddr - addr;
1069 if (delta == 0)
1070 continue;
1071 encodeULEB128(delta, os);
1072 addr = nextAddr;
1074 os << '\0';
1077 void FunctionStartsSection::writeTo(uint8_t *buf) const {
1078 memcpy(buf, contents.data(), contents.size());
1081 SymtabSection::SymtabSection(StringTableSection &stringTableSection)
1082 : LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
1083 stringTableSection(stringTableSection) {}
1085 void SymtabSection::emitBeginSourceStab(StringRef sourceFile) {
1086 StabsEntry stab(N_SO);
1087 stab.strx = stringTableSection.addString(saver().save(sourceFile));
1088 stabs.emplace_back(std::move(stab));
1091 void SymtabSection::emitEndSourceStab() {
1092 StabsEntry stab(N_SO);
1093 stab.sect = 1;
1094 stabs.emplace_back(std::move(stab));
1097 void SymtabSection::emitObjectFileStab(ObjFile *file) {
1098 StabsEntry stab(N_OSO);
1099 stab.sect = target->cpuSubtype;
1100 SmallString<261> path(!file->archiveName.empty() ? file->archiveName
1101 : file->getName());
1102 std::error_code ec = sys::fs::make_absolute(path);
1103 if (ec)
1104 fatal("failed to get absolute path for " + path);
1106 if (!file->archiveName.empty())
1107 path.append({"(", file->getName(), ")"});
1109 StringRef adjustedPath = saver().save(path.str());
1110 adjustedPath.consume_front(config->osoPrefix);
1112 stab.strx = stringTableSection.addString(adjustedPath);
1113 stab.desc = 1;
1114 stab.value = file->modTime;
1115 stabs.emplace_back(std::move(stab));
1118 void SymtabSection::emitEndFunStab(Defined *defined) {
1119 StabsEntry stab(N_FUN);
1120 stab.value = defined->size;
1121 stabs.emplace_back(std::move(stab));
1124 void SymtabSection::emitStabs() {
1125 if (config->omitDebugInfo)
1126 return;
1128 for (const std::string &s : config->astPaths) {
1129 StabsEntry astStab(N_AST);
1130 astStab.strx = stringTableSection.addString(s);
1131 stabs.emplace_back(std::move(astStab));
1134 // Cache the file ID for each symbol in an std::pair for faster sorting.
1135 using SortingPair = std::pair<Defined *, int>;
1136 std::vector<SortingPair> symbolsNeedingStabs;
1137 for (const SymtabEntry &entry :
1138 concat<SymtabEntry>(localSymbols, externalSymbols)) {
1139 Symbol *sym = entry.sym;
1140 assert(sym->isLive() &&
1141 "dead symbols should not be in localSymbols, externalSymbols");
1142 if (auto *defined = dyn_cast<Defined>(sym)) {
1143 // Excluded symbols should have been filtered out in finalizeContents().
1144 assert(defined->includeInSymtab);
1146 if (defined->isAbsolute())
1147 continue;
1149 // Constant-folded symbols go in the executable's symbol table, but don't
1150 // get a stabs entry.
1151 if (defined->wasIdenticalCodeFolded)
1152 continue;
1154 ObjFile *file = defined->getObjectFile();
1155 if (!file || !file->compileUnit)
1156 continue;
1158 symbolsNeedingStabs.emplace_back(defined, defined->isec->getFile()->id);
1162 llvm::stable_sort(symbolsNeedingStabs,
1163 [&](const SortingPair &a, const SortingPair &b) {
1164 return a.second < b.second;
1167 // Emit STABS symbols so that dsymutil and/or the debugger can map address
1168 // regions in the final binary to the source and object files from which they
1169 // originated.
1170 InputFile *lastFile = nullptr;
1171 for (SortingPair &pair : symbolsNeedingStabs) {
1172 Defined *defined = pair.first;
1173 InputSection *isec = defined->isec;
1174 ObjFile *file = cast<ObjFile>(isec->getFile());
1176 if (lastFile == nullptr || lastFile != file) {
1177 if (lastFile != nullptr)
1178 emitEndSourceStab();
1179 lastFile = file;
1181 emitBeginSourceStab(file->sourceFile());
1182 emitObjectFileStab(file);
1185 StabsEntry symStab;
1186 symStab.sect = defined->isec->parent->index;
1187 symStab.strx = stringTableSection.addString(defined->getName());
1188 symStab.value = defined->getVA();
1190 if (isCodeSection(isec)) {
1191 symStab.type = N_FUN;
1192 stabs.emplace_back(std::move(symStab));
1193 emitEndFunStab(defined);
1194 } else {
1195 symStab.type = defined->isExternal() ? N_GSYM : N_STSYM;
1196 stabs.emplace_back(std::move(symStab));
1200 if (!stabs.empty())
1201 emitEndSourceStab();
1204 void SymtabSection::finalizeContents() {
1205 auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
1206 uint32_t strx = stringTableSection.addString(sym->getName());
1207 symbols.push_back({sym, strx});
1210 std::function<void(Symbol *)> localSymbolsHandler;
1211 switch (config->localSymbolsPresence) {
1212 case SymtabPresence::All:
1213 localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); };
1214 break;
1215 case SymtabPresence::None:
1216 localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ };
1217 break;
1218 case SymtabPresence::SelectivelyIncluded:
1219 localSymbolsHandler = [&](Symbol *sym) {
1220 if (config->localSymbolPatterns.match(sym->getName()))
1221 addSymbol(localSymbols, sym);
1223 break;
1224 case SymtabPresence::SelectivelyExcluded:
1225 localSymbolsHandler = [&](Symbol *sym) {
1226 if (!config->localSymbolPatterns.match(sym->getName()))
1227 addSymbol(localSymbols, sym);
1229 break;
1232 // Local symbols aren't in the SymbolTable, so we walk the list of object
1233 // files to gather them.
1234 // But if `-x` is set, then we don't need to. localSymbolsHandler() will do
1235 // the right thing regardless, but this check is a perf optimization because
1236 // iterating through all the input files and their symbols is expensive.
1237 if (config->localSymbolsPresence != SymtabPresence::None) {
1238 for (const InputFile *file : inputFiles) {
1239 if (auto *objFile = dyn_cast<ObjFile>(file)) {
1240 for (Symbol *sym : objFile->symbols) {
1241 if (auto *defined = dyn_cast_or_null<Defined>(sym)) {
1242 if (defined->isExternal() || !defined->isLive() ||
1243 !defined->includeInSymtab)
1244 continue;
1245 localSymbolsHandler(sym);
1252 // __dyld_private is a local symbol too. It's linker-created and doesn't
1253 // exist in any object file.
1254 if (in.stubHelper && in.stubHelper->dyldPrivate)
1255 localSymbolsHandler(in.stubHelper->dyldPrivate);
1257 for (Symbol *sym : symtab->getSymbols()) {
1258 if (!sym->isLive())
1259 continue;
1260 if (auto *defined = dyn_cast<Defined>(sym)) {
1261 if (!defined->includeInSymtab)
1262 continue;
1263 assert(defined->isExternal());
1264 if (defined->privateExtern)
1265 localSymbolsHandler(defined);
1266 else
1267 addSymbol(externalSymbols, defined);
1268 } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
1269 if (dysym->isReferenced())
1270 addSymbol(undefinedSymbols, sym);
1274 emitStabs();
1275 uint32_t symtabIndex = stabs.size();
1276 for (const SymtabEntry &entry :
1277 concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
1278 entry.sym->symtabIndex = symtabIndex++;
1282 uint32_t SymtabSection::getNumSymbols() const {
1283 return stabs.size() + localSymbols.size() + externalSymbols.size() +
1284 undefinedSymbols.size();
1287 // This serves to hide (type-erase) the template parameter from SymtabSection.
1288 template <class LP> class SymtabSectionImpl final : public SymtabSection {
1289 public:
1290 SymtabSectionImpl(StringTableSection &stringTableSection)
1291 : SymtabSection(stringTableSection) {}
1292 uint64_t getRawSize() const override;
1293 void writeTo(uint8_t *buf) const override;
1296 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const {
1297 return getNumSymbols() * sizeof(typename LP::nlist);
1300 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const {
1301 auto *nList = reinterpret_cast<typename LP::nlist *>(buf);
1302 // Emit the stabs entries before the "real" symbols. We cannot emit them
1303 // after as that would render Symbol::symtabIndex inaccurate.
1304 for (const StabsEntry &entry : stabs) {
1305 nList->n_strx = entry.strx;
1306 nList->n_type = entry.type;
1307 nList->n_sect = entry.sect;
1308 nList->n_desc = entry.desc;
1309 nList->n_value = entry.value;
1310 ++nList;
1313 for (const SymtabEntry &entry : concat<const SymtabEntry>(
1314 localSymbols, externalSymbols, undefinedSymbols)) {
1315 nList->n_strx = entry.strx;
1316 // TODO populate n_desc with more flags
1317 if (auto *defined = dyn_cast<Defined>(entry.sym)) {
1318 uint8_t scope = 0;
1319 if (defined->privateExtern) {
1320 // Private external -- dylib scoped symbol.
1321 // Promote to non-external at link time.
1322 scope = N_PEXT;
1323 } else if (defined->isExternal()) {
1324 // Normal global symbol.
1325 scope = N_EXT;
1326 } else {
1327 // TU-local symbol from localSymbols.
1328 scope = 0;
1331 if (defined->isAbsolute()) {
1332 nList->n_type = scope | N_ABS;
1333 nList->n_sect = NO_SECT;
1334 nList->n_value = defined->value;
1335 } else {
1336 nList->n_type = scope | N_SECT;
1337 nList->n_sect = defined->isec->parent->index;
1338 // For the N_SECT symbol type, n_value is the address of the symbol
1339 nList->n_value = defined->getVA();
1341 nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0;
1342 nList->n_desc |=
1343 defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0;
1344 } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
1345 uint16_t n_desc = nList->n_desc;
1346 int16_t ordinal = ordinalForDylibSymbol(*dysym);
1347 if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
1348 SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL);
1349 else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
1350 SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL);
1351 else {
1352 assert(ordinal > 0);
1353 SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal));
1356 nList->n_type = N_EXT;
1357 n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0;
1358 n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0;
1359 nList->n_desc = n_desc;
1361 ++nList;
1365 template <class LP>
1366 SymtabSection *
1367 macho::makeSymtabSection(StringTableSection &stringTableSection) {
1368 return make<SymtabSectionImpl<LP>>(stringTableSection);
1371 IndirectSymtabSection::IndirectSymtabSection()
1372 : LinkEditSection(segment_names::linkEdit,
1373 section_names::indirectSymbolTable) {}
1375 uint32_t IndirectSymtabSection::getNumSymbols() const {
1376 uint32_t size = in.got->getEntries().size() +
1377 in.tlvPointers->getEntries().size() +
1378 in.stubs->getEntries().size();
1379 if (!config->emitChainedFixups)
1380 size += in.stubs->getEntries().size();
1381 return size;
1384 bool IndirectSymtabSection::isNeeded() const {
1385 return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
1386 in.stubs->isNeeded();
1389 void IndirectSymtabSection::finalizeContents() {
1390 uint32_t off = 0;
1391 in.got->reserved1 = off;
1392 off += in.got->getEntries().size();
1393 in.tlvPointers->reserved1 = off;
1394 off += in.tlvPointers->getEntries().size();
1395 in.stubs->reserved1 = off;
1396 if (in.lazyPointers) {
1397 off += in.stubs->getEntries().size();
1398 in.lazyPointers->reserved1 = off;
1402 static uint32_t indirectValue(const Symbol *sym) {
1403 if (sym->symtabIndex == UINT32_MAX)
1404 return INDIRECT_SYMBOL_LOCAL;
1405 if (auto *defined = dyn_cast<Defined>(sym))
1406 if (defined->privateExtern)
1407 return INDIRECT_SYMBOL_LOCAL;
1408 return sym->symtabIndex;
1411 void IndirectSymtabSection::writeTo(uint8_t *buf) const {
1412 uint32_t off = 0;
1413 for (const Symbol *sym : in.got->getEntries()) {
1414 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1415 ++off;
1417 for (const Symbol *sym : in.tlvPointers->getEntries()) {
1418 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1419 ++off;
1421 for (const Symbol *sym : in.stubs->getEntries()) {
1422 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1423 ++off;
1426 if (in.lazyPointers) {
1427 // There is a 1:1 correspondence between stubs and LazyPointerSection
1428 // entries. But giving __stubs and __la_symbol_ptr the same reserved1
1429 // (the offset into the indirect symbol table) so that they both refer
1430 // to the same range of offsets confuses `strip`, so write the stubs
1431 // symbol table offsets a second time.
1432 for (const Symbol *sym : in.stubs->getEntries()) {
1433 write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1434 ++off;
1439 StringTableSection::StringTableSection()
1440 : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}
1442 uint32_t StringTableSection::addString(StringRef str) {
1443 uint32_t strx = size;
1444 strings.push_back(str); // TODO: consider deduplicating strings
1445 size += str.size() + 1; // account for null terminator
1446 return strx;
1449 void StringTableSection::writeTo(uint8_t *buf) const {
1450 uint32_t off = 0;
1451 for (StringRef str : strings) {
1452 memcpy(buf + off, str.data(), str.size());
1453 off += str.size() + 1; // account for null terminator
1457 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0);
1458 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0);
1460 CodeSignatureSection::CodeSignatureSection()
1461 : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) {
1462 align = 16; // required by libstuff
1464 // XXX: This mimics LD64, where it uses the install-name as codesign
1465 // identifier, if available.
1466 if (!config->installName.empty())
1467 fileName = config->installName;
1468 else
1469 // FIXME: Consider using finalOutput instead of outputFile.
1470 fileName = config->outputFile;
1472 size_t slashIndex = fileName.rfind("/");
1473 if (slashIndex != std::string::npos)
1474 fileName = fileName.drop_front(slashIndex + 1);
1476 // NOTE: Any changes to these calculations should be repeated
1477 // in llvm-objcopy's MachOLayoutBuilder::layoutTail.
1478 allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1);
1479 fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size();
1482 uint32_t CodeSignatureSection::getBlockCount() const {
1483 return (fileOff + blockSize - 1) / blockSize;
1486 uint64_t CodeSignatureSection::getRawSize() const {
1487 return allHeadersSize + getBlockCount() * hashSize;
1490 void CodeSignatureSection::writeHashes(uint8_t *buf) const {
1491 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
1492 // MachOWriter::writeSignatureData.
1493 uint8_t *hashes = buf + fileOff + allHeadersSize;
1494 parallelFor(0, getBlockCount(), [&](size_t i) {
1495 sha256(buf + i * blockSize,
1496 std::min(static_cast<size_t>(fileOff - i * blockSize), blockSize),
1497 hashes + i * hashSize);
1499 #if defined(__APPLE__)
1500 // This is macOS-specific work-around and makes no sense for any
1501 // other host OS. See https://openradar.appspot.com/FB8914231
1503 // The macOS kernel maintains a signature-verification cache to
1504 // quickly validate applications at time of execve(2). The trouble
1505 // is that for the kernel creates the cache entry at the time of the
1506 // mmap(2) call, before we have a chance to write either the code to
1507 // sign or the signature header+hashes. The fix is to invalidate
1508 // all cached data associated with the output file, thus discarding
1509 // the bogus prematurely-cached signature.
1510 msync(buf, fileOff + getSize(), MS_INVALIDATE);
1511 #endif
1514 void CodeSignatureSection::writeTo(uint8_t *buf) const {
1515 // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
1516 // MachOWriter::writeSignatureData.
1517 uint32_t signatureSize = static_cast<uint32_t>(getSize());
1518 auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf);
1519 write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE);
1520 write32be(&superBlob->length, signatureSize);
1521 write32be(&superBlob->count, 1);
1522 auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]);
1523 write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY);
1524 write32be(&blobIndex->offset, blobHeadersSize);
1525 auto *codeDirectory =
1526 reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize);
1527 write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY);
1528 write32be(&codeDirectory->length, signatureSize - blobHeadersSize);
1529 write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG);
1530 write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED);
1531 write32be(&codeDirectory->hashOffset,
1532 sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad);
1533 write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory));
1534 codeDirectory->nSpecialSlots = 0;
1535 write32be(&codeDirectory->nCodeSlots, getBlockCount());
1536 write32be(&codeDirectory->codeLimit, fileOff);
1537 codeDirectory->hashSize = static_cast<uint8_t>(hashSize);
1538 codeDirectory->hashType = kSecCodeSignatureHashSHA256;
1539 codeDirectory->platform = 0;
1540 codeDirectory->pageSize = blockSizeShift;
1541 codeDirectory->spare2 = 0;
1542 codeDirectory->scatterOffset = 0;
1543 codeDirectory->teamOffset = 0;
1544 codeDirectory->spare3 = 0;
1545 codeDirectory->codeLimit64 = 0;
1546 OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text);
1547 write64be(&codeDirectory->execSegBase, textSeg->fileOff);
1548 write64be(&codeDirectory->execSegLimit, textSeg->fileSize);
1549 write64be(&codeDirectory->execSegFlags,
1550 config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0);
1551 auto *id = reinterpret_cast<char *>(&codeDirectory[1]);
1552 memcpy(id, fileName.begin(), fileName.size());
1553 memset(id + fileName.size(), 0, fileNamePad);
1556 CStringSection::CStringSection(const char *name)
1557 : SyntheticSection(segment_names::text, name) {
1558 flags = S_CSTRING_LITERALS;
1561 void CStringSection::addInput(CStringInputSection *isec) {
1562 isec->parent = this;
1563 inputs.push_back(isec);
1564 if (isec->align > align)
1565 align = isec->align;
1568 void CStringSection::writeTo(uint8_t *buf) const {
1569 for (const CStringInputSection *isec : inputs) {
1570 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1571 if (!piece.live)
1572 continue;
1573 StringRef string = isec->getStringRef(i);
1574 memcpy(buf + piece.outSecOff, string.data(), string.size());
1579 void CStringSection::finalizeContents() {
1580 uint64_t offset = 0;
1581 for (CStringInputSection *isec : inputs) {
1582 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1583 if (!piece.live)
1584 continue;
1585 // See comment above DeduplicatedCStringSection for how alignment is
1586 // handled.
1587 uint32_t pieceAlign = 1
1588 << llvm::countr_zero(isec->align | piece.inSecOff);
1589 offset = alignToPowerOf2(offset, pieceAlign);
1590 piece.outSecOff = offset;
1591 isec->isFinal = true;
1592 StringRef string = isec->getStringRef(i);
1593 offset += string.size() + 1; // account for null terminator
1596 size = offset;
1599 // Mergeable cstring literals are found under the __TEXT,__cstring section. In
1600 // contrast to ELF, which puts strings that need different alignments into
1601 // different sections, clang's Mach-O backend puts them all in one section.
1602 // Strings that need to be aligned have the .p2align directive emitted before
1603 // them, which simply translates into zero padding in the object file. In other
1604 // words, we have to infer the desired alignment of these cstrings from their
1605 // addresses.
1607 // We differ slightly from ld64 in how we've chosen to align these cstrings.
1608 // Both LLD and ld64 preserve the number of trailing zeros in each cstring's
1609 // address in the input object files. When deduplicating identical cstrings,
1610 // both linkers pick the cstring whose address has more trailing zeros, and
1611 // preserve the alignment of that address in the final binary. However, ld64
1612 // goes a step further and also preserves the offset of the cstring from the
1613 // last section-aligned address. I.e. if a cstring is at offset 18 in the
1614 // input, with a section alignment of 16, then both LLD and ld64 will ensure the
1615 // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also
1616 // ensure that the final address is of the form 16 * k + 2 for some k.
1618 // Note that ld64's heuristic means that a dedup'ed cstring's final address is
1619 // dependent on the order of the input object files. E.g. if in addition to the
1620 // cstring at offset 18 above, we have a duplicate one in another file with a
1621 // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
1622 // the cstring from the object file earlier on the command line (since both have
1623 // the same number of trailing zeros in their address). So the final cstring may
1624 // either be at some address `16 * k + 2` or at some address `2 * k`.
1626 // I've opted not to follow this behavior primarily for implementation
1627 // simplicity, and secondarily to save a few more bytes. It's not clear to me
1628 // that preserving the section alignment + offset is ever necessary, and there
1629 // are many cases that are clearly redundant. In particular, if an x86_64 object
1630 // file contains some strings that are accessed via SIMD instructions, then the
1631 // .cstring section in the object file will be 16-byte-aligned (since SIMD
1632 // requires its operand addresses to be 16-byte aligned). However, there will
1633 // typically also be other cstrings in the same file that aren't used via SIMD
1634 // and don't need this alignment. They will be emitted at some arbitrary address
1635 // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16
1636 // % A`.
1637 void DeduplicatedCStringSection::finalizeContents() {
1638 // Find the largest alignment required for each string.
1639 for (const CStringInputSection *isec : inputs) {
1640 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1641 if (!piece.live)
1642 continue;
1643 auto s = isec->getCachedHashStringRef(i);
1644 assert(isec->align != 0);
1645 uint8_t trailingZeros = llvm::countr_zero(isec->align | piece.inSecOff);
1646 auto it = stringOffsetMap.insert(
1647 std::make_pair(s, StringOffset(trailingZeros)));
1648 if (!it.second && it.first->second.trailingZeros < trailingZeros)
1649 it.first->second.trailingZeros = trailingZeros;
1653 // Assign an offset for each string and save it to the corresponding
1654 // StringPieces for easy access.
1655 for (CStringInputSection *isec : inputs) {
1656 for (const auto &[i, piece] : llvm::enumerate(isec->pieces)) {
1657 if (!piece.live)
1658 continue;
1659 auto s = isec->getCachedHashStringRef(i);
1660 auto it = stringOffsetMap.find(s);
1661 assert(it != stringOffsetMap.end());
1662 StringOffset &offsetInfo = it->second;
1663 if (offsetInfo.outSecOff == UINT64_MAX) {
1664 offsetInfo.outSecOff =
1665 alignToPowerOf2(size, 1ULL << offsetInfo.trailingZeros);
1666 size =
1667 offsetInfo.outSecOff + s.size() + 1; // account for null terminator
1669 piece.outSecOff = offsetInfo.outSecOff;
1671 isec->isFinal = true;
1675 void DeduplicatedCStringSection::writeTo(uint8_t *buf) const {
1676 for (const auto &p : stringOffsetMap) {
1677 StringRef data = p.first.val();
1678 uint64_t off = p.second.outSecOff;
1679 if (!data.empty())
1680 memcpy(buf + off, data.data(), data.size());
1684 DeduplicatedCStringSection::StringOffset
1685 DeduplicatedCStringSection::getStringOffset(StringRef str) const {
1686 // StringPiece uses 31 bits to store the hashes, so we replicate that
1687 uint32_t hash = xxh3_64bits(str) & 0x7fffffff;
1688 auto offset = stringOffsetMap.find(CachedHashStringRef(str, hash));
1689 assert(offset != stringOffsetMap.end() &&
1690 "Looked-up strings should always exist in section");
1691 return offset->second;
1694 // This section is actually emitted as __TEXT,__const by ld64, but clang may
1695 // emit input sections of that name, and LLD doesn't currently support mixing
1696 // synthetic and concat-type OutputSections. To work around this, I've given
1697 // our merged-literals section a different name.
1698 WordLiteralSection::WordLiteralSection()
1699 : SyntheticSection(segment_names::text, section_names::literals) {
1700 align = 16;
1703 void WordLiteralSection::addInput(WordLiteralInputSection *isec) {
1704 isec->parent = this;
1705 inputs.push_back(isec);
1708 void WordLiteralSection::finalizeContents() {
1709 for (WordLiteralInputSection *isec : inputs) {
1710 // We do all processing of the InputSection here, so it will be effectively
1711 // finalized.
1712 isec->isFinal = true;
1713 const uint8_t *buf = isec->data.data();
1714 switch (sectionType(isec->getFlags())) {
1715 case S_4BYTE_LITERALS: {
1716 for (size_t off = 0, e = isec->data.size(); off < e; off += 4) {
1717 if (!isec->isLive(off))
1718 continue;
1719 uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off);
1720 literal4Map.emplace(value, literal4Map.size());
1722 break;
1724 case S_8BYTE_LITERALS: {
1725 for (size_t off = 0, e = isec->data.size(); off < e; off += 8) {
1726 if (!isec->isLive(off))
1727 continue;
1728 uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off);
1729 literal8Map.emplace(value, literal8Map.size());
1731 break;
1733 case S_16BYTE_LITERALS: {
1734 for (size_t off = 0, e = isec->data.size(); off < e; off += 16) {
1735 if (!isec->isLive(off))
1736 continue;
1737 UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off);
1738 literal16Map.emplace(value, literal16Map.size());
1740 break;
1742 default:
1743 llvm_unreachable("invalid literal section type");
1748 void WordLiteralSection::writeTo(uint8_t *buf) const {
1749 // Note that we don't attempt to do any endianness conversion in addInput(),
1750 // so we don't do it here either -- just write out the original value,
1751 // byte-for-byte.
1752 for (const auto &p : literal16Map)
1753 memcpy(buf + p.second * 16, &p.first, 16);
1754 buf += literal16Map.size() * 16;
1756 for (const auto &p : literal8Map)
1757 memcpy(buf + p.second * 8, &p.first, 8);
1758 buf += literal8Map.size() * 8;
1760 for (const auto &p : literal4Map)
1761 memcpy(buf + p.second * 4, &p.first, 4);
1764 ObjCImageInfoSection::ObjCImageInfoSection()
1765 : SyntheticSection(segment_names::data, section_names::objCImageInfo) {}
1767 ObjCImageInfoSection::ImageInfo
1768 ObjCImageInfoSection::parseImageInfo(const InputFile *file) {
1769 ImageInfo info;
1770 ArrayRef<uint8_t> data = file->objCImageInfo;
1771 // The image info struct has the following layout:
1772 // struct {
1773 // uint32_t version;
1774 // uint32_t flags;
1775 // };
1776 if (data.size() < 8) {
1777 warn(toString(file) + ": invalid __objc_imageinfo size");
1778 return info;
1781 auto *buf = reinterpret_cast<const uint32_t *>(data.data());
1782 if (read32le(buf) != 0) {
1783 warn(toString(file) + ": invalid __objc_imageinfo version");
1784 return info;
1787 uint32_t flags = read32le(buf + 1);
1788 info.swiftVersion = (flags >> 8) & 0xff;
1789 info.hasCategoryClassProperties = flags & 0x40;
1790 return info;
1793 static std::string swiftVersionString(uint8_t version) {
1794 switch (version) {
1795 case 1:
1796 return "1.0";
1797 case 2:
1798 return "1.1";
1799 case 3:
1800 return "2.0";
1801 case 4:
1802 return "3.0";
1803 case 5:
1804 return "4.0";
1805 default:
1806 return ("0x" + Twine::utohexstr(version)).str();
1810 // Validate each object file's __objc_imageinfo and use them to generate the
1811 // image info for the output binary. Only two pieces of info are relevant:
1812 // 1. The Swift version (should be identical across inputs)
1813 // 2. `bool hasCategoryClassProperties` (true only if true for all inputs)
1814 void ObjCImageInfoSection::finalizeContents() {
1815 assert(files.size() != 0); // should have already been checked via isNeeded()
1817 info.hasCategoryClassProperties = true;
1818 const InputFile *firstFile;
1819 for (const InputFile *file : files) {
1820 ImageInfo inputInfo = parseImageInfo(file);
1821 info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties;
1823 // swiftVersion 0 means no Swift is present, so no version checking required
1824 if (inputInfo.swiftVersion == 0)
1825 continue;
1827 if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) {
1828 error("Swift version mismatch: " + toString(firstFile) + " has version " +
1829 swiftVersionString(info.swiftVersion) + " but " + toString(file) +
1830 " has version " + swiftVersionString(inputInfo.swiftVersion));
1831 } else {
1832 info.swiftVersion = inputInfo.swiftVersion;
1833 firstFile = file;
1838 void ObjCImageInfoSection::writeTo(uint8_t *buf) const {
1839 uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0;
1840 flags |= info.swiftVersion << 8;
1841 write32le(buf + 4, flags);
1844 InitOffsetsSection::InitOffsetsSection()
1845 : SyntheticSection(segment_names::text, section_names::initOffsets) {
1846 flags = S_INIT_FUNC_OFFSETS;
1847 align = 4; // This section contains 32-bit integers.
1850 uint64_t InitOffsetsSection::getSize() const {
1851 size_t count = 0;
1852 for (const ConcatInputSection *isec : sections)
1853 count += isec->relocs.size();
1854 return count * sizeof(uint32_t);
1857 void InitOffsetsSection::writeTo(uint8_t *buf) const {
1858 // FIXME: Add function specified by -init when that argument is implemented.
1859 for (ConcatInputSection *isec : sections) {
1860 for (const Reloc &rel : isec->relocs) {
1861 const Symbol *referent = rel.referent.dyn_cast<Symbol *>();
1862 assert(referent && "section relocation should have been rejected");
1863 uint64_t offset = referent->getVA() - in.header->addr;
1864 // FIXME: Can we handle this gracefully?
1865 if (offset > UINT32_MAX)
1866 fatal(isec->getLocation(rel.offset) + ": offset to initializer " +
1867 referent->getName() + " (" + utohexstr(offset) +
1868 ") does not fit in 32 bits");
1870 // Entries need to be added in the order they appear in the section, but
1871 // relocations aren't guaranteed to be sorted.
1872 size_t index = rel.offset >> target->p2WordSize;
1873 write32le(&buf[index * sizeof(uint32_t)], offset);
1875 buf += isec->relocs.size() * sizeof(uint32_t);
1879 // The inputs are __mod_init_func sections, which contain pointers to
1880 // initializer functions, therefore all relocations should be of the UNSIGNED
1881 // type. InitOffsetsSection stores offsets, so if the initializer's address is
1882 // not known at link time, stub-indirection has to be used.
1883 void InitOffsetsSection::setUp() {
1884 for (const ConcatInputSection *isec : sections) {
1885 for (const Reloc &rel : isec->relocs) {
1886 RelocAttrs attrs = target->getRelocAttrs(rel.type);
1887 if (!attrs.hasAttr(RelocAttrBits::UNSIGNED))
1888 error(isec->getLocation(rel.offset) +
1889 ": unsupported relocation type: " + attrs.name);
1890 if (rel.addend != 0)
1891 error(isec->getLocation(rel.offset) +
1892 ": relocation addend is not representable in __init_offsets");
1893 if (rel.referent.is<InputSection *>())
1894 error(isec->getLocation(rel.offset) +
1895 ": unexpected section relocation");
1897 Symbol *sym = rel.referent.dyn_cast<Symbol *>();
1898 if (auto *undefined = dyn_cast<Undefined>(sym))
1899 treatUndefinedSymbol(*undefined, isec, rel.offset);
1900 if (needsBinding(sym))
1901 in.stubs->addEntry(sym);
1906 void macho::createSyntheticSymbols() {
1907 auto addHeaderSymbol = [](const char *name) {
1908 symtab->addSynthetic(name, in.header->isec, /*value=*/0,
1909 /*isPrivateExtern=*/true, /*includeInSymtab=*/false,
1910 /*referencedDynamically=*/false);
1913 switch (config->outputType) {
1914 // FIXME: Assign the right address value for these symbols
1915 // (rather than 0). But we need to do that after assignAddresses().
1916 case MH_EXECUTE:
1917 // If linking PIE, __mh_execute_header is a defined symbol in
1918 // __TEXT, __text)
1919 // Otherwise, it's an absolute symbol.
1920 if (config->isPic)
1921 symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0,
1922 /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
1923 /*referencedDynamically=*/true);
1924 else
1925 symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0,
1926 /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
1927 /*referencedDynamically=*/true);
1928 break;
1930 // The following symbols are N_SECT symbols, even though the header is not
1931 // part of any section and that they are private to the bundle/dylib/object
1932 // they are part of.
1933 case MH_BUNDLE:
1934 addHeaderSymbol("__mh_bundle_header");
1935 break;
1936 case MH_DYLIB:
1937 addHeaderSymbol("__mh_dylib_header");
1938 break;
1939 case MH_DYLINKER:
1940 addHeaderSymbol("__mh_dylinker_header");
1941 break;
1942 case MH_OBJECT:
1943 addHeaderSymbol("__mh_object_header");
1944 break;
1945 default:
1946 llvm_unreachable("unexpected outputType");
1947 break;
1950 // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit
1951 // which does e.g. cleanup of static global variables. The ABI document
1952 // says that the pointer can point to any address in one of the dylib's
1953 // segments, but in practice ld64 seems to set it to point to the header,
1954 // so that's what's implemented here.
1955 addHeaderSymbol("___dso_handle");
1958 ChainedFixupsSection::ChainedFixupsSection()
1959 : LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {}
1961 bool ChainedFixupsSection::isNeeded() const {
1962 assert(config->emitChainedFixups);
1963 // dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid
1964 // dyld_chained_fixups_header, so we create this section even if there aren't
1965 // any fixups.
1966 return true;
1969 static bool needsWeakBind(const Symbol &sym) {
1970 if (auto *dysym = dyn_cast<DylibSymbol>(&sym))
1971 return dysym->isWeakDef();
1972 if (auto *defined = dyn_cast<Defined>(&sym))
1973 return defined->isExternalWeakDef();
1974 return false;
1977 void ChainedFixupsSection::addBinding(const Symbol *sym,
1978 const InputSection *isec, uint64_t offset,
1979 int64_t addend) {
1980 locations.emplace_back(isec, offset);
1981 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
1982 auto [it, inserted] = bindings.insert(
1983 {{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())});
1985 if (inserted) {
1986 symtabSize += sym->getName().size() + 1;
1987 hasWeakBind = hasWeakBind || needsWeakBind(*sym);
1988 if (!isInt<23>(outlineAddend))
1989 needsLargeAddend = true;
1990 else if (outlineAddend != 0)
1991 needsAddend = true;
1995 std::pair<uint32_t, uint8_t>
1996 ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const {
1997 int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0;
1998 auto it = bindings.find({sym, outlineAddend});
1999 assert(it != bindings.end() && "binding not found in the imports table");
2000 if (outlineAddend == 0)
2001 return {it->second, addend};
2002 return {it->second, 0};
2005 static size_t writeImport(uint8_t *buf, int format, uint32_t libOrdinal,
2006 bool weakRef, uint32_t nameOffset, int64_t addend) {
2007 switch (format) {
2008 case DYLD_CHAINED_IMPORT: {
2009 auto *import = reinterpret_cast<dyld_chained_import *>(buf);
2010 import->lib_ordinal = libOrdinal;
2011 import->weak_import = weakRef;
2012 import->name_offset = nameOffset;
2013 return sizeof(dyld_chained_import);
2015 case DYLD_CHAINED_IMPORT_ADDEND: {
2016 auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf);
2017 import->lib_ordinal = libOrdinal;
2018 import->weak_import = weakRef;
2019 import->name_offset = nameOffset;
2020 import->addend = addend;
2021 return sizeof(dyld_chained_import_addend);
2023 case DYLD_CHAINED_IMPORT_ADDEND64: {
2024 auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf);
2025 import->lib_ordinal = libOrdinal;
2026 import->weak_import = weakRef;
2027 import->name_offset = nameOffset;
2028 import->addend = addend;
2029 return sizeof(dyld_chained_import_addend64);
2031 default:
2032 llvm_unreachable("Unknown import format");
2036 size_t ChainedFixupsSection::SegmentInfo::getSize() const {
2037 assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?");
2038 return alignTo<8>(sizeof(dyld_chained_starts_in_segment) +
2039 pageStarts.back().first * sizeof(uint16_t));
2042 size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const {
2043 auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf);
2044 segInfo->size = getSize();
2045 segInfo->page_size = target->getPageSize();
2046 // FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions.
2047 segInfo->pointer_format = DYLD_CHAINED_PTR_64;
2048 segInfo->segment_offset = oseg->addr - in.header->addr;
2049 segInfo->max_valid_pointer = 0; // not used on 64-bit
2050 segInfo->page_count = pageStarts.back().first + 1;
2052 uint16_t *starts = segInfo->page_start;
2053 for (size_t i = 0; i < segInfo->page_count; ++i)
2054 starts[i] = DYLD_CHAINED_PTR_START_NONE;
2056 for (auto [pageIdx, startAddr] : pageStarts)
2057 starts[pageIdx] = startAddr;
2058 return segInfo->size;
2061 static size_t importEntrySize(int format) {
2062 switch (format) {
2063 case DYLD_CHAINED_IMPORT:
2064 return sizeof(dyld_chained_import);
2065 case DYLD_CHAINED_IMPORT_ADDEND:
2066 return sizeof(dyld_chained_import_addend);
2067 case DYLD_CHAINED_IMPORT_ADDEND64:
2068 return sizeof(dyld_chained_import_addend64);
2069 default:
2070 llvm_unreachable("Unknown import format");
2074 // This is step 3 of the algorithm described in the class comment of
2075 // ChainedFixupsSection.
2077 // LC_DYLD_CHAINED_FIXUPS data consists of (in this order):
2078 // * A dyld_chained_fixups_header
2079 // * A dyld_chained_starts_in_image
2080 // * One dyld_chained_starts_in_segment per segment
2081 // * List of all imports (dyld_chained_import, dyld_chained_import_addend, or
2082 // dyld_chained_import_addend64)
2083 // * Names of imported symbols
2084 void ChainedFixupsSection::writeTo(uint8_t *buf) const {
2085 auto *header = reinterpret_cast<dyld_chained_fixups_header *>(buf);
2086 header->fixups_version = 0;
2087 header->imports_count = bindings.size();
2088 header->imports_format = importFormat;
2089 header->symbols_format = 0;
2091 buf += alignTo<8>(sizeof(*header));
2093 auto curOffset = [&buf, &header]() -> uint32_t {
2094 return buf - reinterpret_cast<uint8_t *>(header);
2097 header->starts_offset = curOffset();
2099 auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf);
2100 imageInfo->seg_count = outputSegments.size();
2101 uint32_t *segStarts = imageInfo->seg_info_offset;
2103 // dyld_chained_starts_in_image ends in a flexible array member containing an
2104 // uint32_t for each segment. Leave room for it, and fill it via segStarts.
2105 buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
2106 outputSegments.size() * sizeof(uint32_t));
2108 // Initialize all offsets to 0, which indicates that the segment does not have
2109 // fixups. Those that do have them will be filled in below.
2110 for (size_t i = 0; i < outputSegments.size(); ++i)
2111 segStarts[i] = 0;
2113 for (const SegmentInfo &seg : fixupSegments) {
2114 segStarts[seg.oseg->index] = curOffset() - header->starts_offset;
2115 buf += seg.writeTo(buf);
2118 // Write imports table.
2119 header->imports_offset = curOffset();
2120 uint64_t nameOffset = 0;
2121 for (auto [import, idx] : bindings) {
2122 const Symbol &sym = *import.first;
2123 int16_t libOrdinal = needsWeakBind(sym)
2124 ? (int64_t)BIND_SPECIAL_DYLIB_WEAK_LOOKUP
2125 : ordinalForSymbol(sym);
2126 buf += writeImport(buf, importFormat, libOrdinal, sym.isWeakRef(),
2127 nameOffset, import.second);
2128 nameOffset += sym.getName().size() + 1;
2131 // Write imported symbol names.
2132 header->symbols_offset = curOffset();
2133 for (auto [import, idx] : bindings) {
2134 StringRef name = import.first->getName();
2135 memcpy(buf, name.data(), name.size());
2136 buf += name.size() + 1; // account for null terminator
2139 assert(curOffset() == getRawSize());
2142 // This is step 2 of the algorithm described in the class comment of
2143 // ChainedFixupsSection.
2144 void ChainedFixupsSection::finalizeContents() {
2145 assert(target->wordSize == 8 && "Only 64-bit platforms are supported");
2146 assert(config->emitChainedFixups);
2148 if (!isUInt<32>(symtabSize))
2149 error("cannot encode chained fixups: imported symbols table size " +
2150 Twine(symtabSize) + " exceeds 4 GiB");
2152 if (needsLargeAddend || !isUInt<23>(symtabSize))
2153 importFormat = DYLD_CHAINED_IMPORT_ADDEND64;
2154 else if (needsAddend)
2155 importFormat = DYLD_CHAINED_IMPORT_ADDEND;
2156 else
2157 importFormat = DYLD_CHAINED_IMPORT;
2159 for (Location &loc : locations)
2160 loc.offset =
2161 loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
2163 llvm::sort(locations, [](const Location &a, const Location &b) {
2164 const OutputSegment *segA = a.isec->parent->parent;
2165 const OutputSegment *segB = b.isec->parent->parent;
2166 if (segA == segB)
2167 return a.offset < b.offset;
2168 return segA->addr < segB->addr;
2171 auto sameSegment = [](const Location &a, const Location &b) {
2172 return a.isec->parent->parent == b.isec->parent->parent;
2175 const uint64_t pageSize = target->getPageSize();
2176 for (size_t i = 0, count = locations.size(); i < count;) {
2177 const Location &firstLoc = locations[i];
2178 fixupSegments.emplace_back(firstLoc.isec->parent->parent);
2179 while (i < count && sameSegment(locations[i], firstLoc)) {
2180 uint32_t pageIdx = locations[i].offset / pageSize;
2181 fixupSegments.back().pageStarts.emplace_back(
2182 pageIdx, locations[i].offset % pageSize);
2183 ++i;
2184 while (i < count && sameSegment(locations[i], firstLoc) &&
2185 locations[i].offset / pageSize == pageIdx)
2186 ++i;
2190 // Compute expected encoded size.
2191 size = alignTo<8>(sizeof(dyld_chained_fixups_header));
2192 size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) +
2193 outputSegments.size() * sizeof(uint32_t));
2194 for (const SegmentInfo &seg : fixupSegments)
2195 size += seg.getSize();
2196 size += importEntrySize(importFormat) * bindings.size();
2197 size += symtabSize;
2200 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &);
2201 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);