Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / MachO / SyntheticSections.h
blobe9d564f3c836158e528a9aaac440c831433f3921
1 //===- SyntheticSections.h -------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_MACHO_SYNTHETIC_SECTIONS_H
10 #define LLD_MACHO_SYNTHETIC_SECTIONS_H
12 #include "Config.h"
13 #include "ExportTrie.h"
14 #include "InputSection.h"
15 #include "OutputSection.h"
16 #include "OutputSegment.h"
17 #include "Target.h"
18 #include "Writer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
27 #include <unordered_map>
29 namespace llvm {
30 class DWARFUnit;
31 } // namespace llvm
33 namespace lld::macho {
35 class Defined;
36 class DylibSymbol;
37 class LoadCommand;
38 class ObjFile;
39 class UnwindInfoSection;
41 class SyntheticSection : public OutputSection {
42 public:
43 SyntheticSection(const char *segname, const char *name);
44 virtual ~SyntheticSection() = default;
46 static bool classof(const OutputSection *sec) {
47 return sec->kind() == SyntheticKind;
50 StringRef segname;
51 // This fake InputSection makes it easier for us to write code that applies
52 // generically to both user inputs and synthetics.
53 InputSection *isec;
56 // All sections in __LINKEDIT should inherit from this.
57 class LinkEditSection : public SyntheticSection {
58 public:
59 LinkEditSection(const char *segname, const char *name)
60 : SyntheticSection(segname, name) {
61 align = target->wordSize;
64 // Implementations of this method can assume that the regular (non-__LINKEDIT)
65 // sections already have their addresses assigned.
66 virtual void finalizeContents() {}
68 // Sections in __LINKEDIT are special: their offsets are recorded in the
69 // load commands like LC_DYLD_INFO_ONLY and LC_SYMTAB, instead of in section
70 // headers.
71 bool isHidden() const final { return true; }
73 virtual uint64_t getRawSize() const = 0;
75 // codesign (or more specifically libstuff) checks that each section in
76 // __LINKEDIT ends where the next one starts -- no gaps are permitted. We
77 // therefore align every section's start and end points to WordSize.
79 // NOTE: This assumes that the extra bytes required for alignment can be
80 // zero-valued bytes.
81 uint64_t getSize() const final { return llvm::alignTo(getRawSize(), align); }
84 // The header of the Mach-O file, which must have a file offset of zero.
85 class MachHeaderSection final : public SyntheticSection {
86 public:
87 MachHeaderSection();
88 bool isHidden() const override { return true; }
89 uint64_t getSize() const override;
90 void writeTo(uint8_t *buf) const override;
92 void addLoadCommand(LoadCommand *);
94 protected:
95 std::vector<LoadCommand *> loadCommands;
96 uint32_t sizeOfCmds = 0;
99 // A hidden section that exists solely for the purpose of creating the
100 // __PAGEZERO segment, which is used to catch null pointer dereferences.
101 class PageZeroSection final : public SyntheticSection {
102 public:
103 PageZeroSection();
104 bool isHidden() const override { return true; }
105 bool isNeeded() const override { return target->pageZeroSize != 0; }
106 uint64_t getSize() const override { return target->pageZeroSize; }
107 uint64_t getFileSize() const override { return 0; }
108 void writeTo(uint8_t *buf) const override {}
111 // This is the base class for the GOT and TLVPointer sections, which are nearly
112 // functionally identical -- they will both be populated by dyld with addresses
113 // to non-lazily-loaded dylib symbols. The main difference is that the
114 // TLVPointerSection stores references to thread-local variables.
115 class NonLazyPointerSectionBase : public SyntheticSection {
116 public:
117 NonLazyPointerSectionBase(const char *segname, const char *name);
118 const llvm::SetVector<const Symbol *> &getEntries() const { return entries; }
119 bool isNeeded() const override { return !entries.empty(); }
120 uint64_t getSize() const override {
121 return entries.size() * target->wordSize;
123 void writeTo(uint8_t *buf) const override;
124 void addEntry(Symbol *sym);
125 uint64_t getVA(uint32_t gotIndex) const {
126 return addr + gotIndex * target->wordSize;
129 private:
130 llvm::SetVector<const Symbol *> entries;
133 class GotSection final : public NonLazyPointerSectionBase {
134 public:
135 GotSection();
138 class TlvPointerSection final : public NonLazyPointerSectionBase {
139 public:
140 TlvPointerSection();
143 struct Location {
144 const InputSection *isec;
145 uint64_t offset;
147 Location(const InputSection *isec, uint64_t offset)
148 : isec(isec), offset(offset) {}
149 uint64_t getVA() const { return isec->getVA(offset); }
152 // Stores rebase opcodes, which tell dyld where absolute addresses have been
153 // encoded in the binary. If the binary is not loaded at its preferred address,
154 // dyld has to rebase these addresses by adding an offset to them.
155 class RebaseSection final : public LinkEditSection {
156 public:
157 RebaseSection();
158 void finalizeContents() override;
159 uint64_t getRawSize() const override { return contents.size(); }
160 bool isNeeded() const override { return !locations.empty(); }
161 void writeTo(uint8_t *buf) const override;
163 void addEntry(const InputSection *isec, uint64_t offset) {
164 if (config->isPic)
165 locations.emplace_back(isec, offset);
168 private:
169 std::vector<Location> locations;
170 SmallVector<char, 128> contents;
173 struct BindingEntry {
174 int64_t addend;
175 Location target;
176 BindingEntry(int64_t addend, Location target)
177 : addend(addend), target(target) {}
180 template <class Sym>
181 using BindingsMap = llvm::DenseMap<Sym, std::vector<BindingEntry>>;
183 // Stores bind opcodes for telling dyld which symbols to load non-lazily.
184 class BindingSection final : public LinkEditSection {
185 public:
186 BindingSection();
187 void finalizeContents() override;
188 uint64_t getRawSize() const override { return contents.size(); }
189 bool isNeeded() const override { return !bindingsMap.empty(); }
190 void writeTo(uint8_t *buf) const override;
192 void addEntry(const Symbol *dysym, const InputSection *isec, uint64_t offset,
193 int64_t addend = 0) {
194 bindingsMap[dysym].emplace_back(addend, Location(isec, offset));
197 private:
198 BindingsMap<const Symbol *> bindingsMap;
199 SmallVector<char, 128> contents;
202 // Stores bind opcodes for telling dyld which weak symbols need coalescing.
203 // There are two types of entries in this section:
205 // 1) Non-weak definitions: This is a symbol definition that weak symbols in
206 // other dylibs should coalesce to.
208 // 2) Weak bindings: These tell dyld that a given symbol reference should
209 // coalesce to a non-weak definition if one is found. Note that unlike the
210 // entries in the BindingSection, the bindings here only refer to these
211 // symbols by name, but do not specify which dylib to load them from.
212 class WeakBindingSection final : public LinkEditSection {
213 public:
214 WeakBindingSection();
215 void finalizeContents() override;
216 uint64_t getRawSize() const override { return contents.size(); }
217 bool isNeeded() const override {
218 return !bindingsMap.empty() || !definitions.empty();
221 void writeTo(uint8_t *buf) const override;
223 void addEntry(const Symbol *symbol, const InputSection *isec, uint64_t offset,
224 int64_t addend = 0) {
225 bindingsMap[symbol].emplace_back(addend, Location(isec, offset));
228 bool hasEntry() const { return !bindingsMap.empty(); }
230 void addNonWeakDefinition(const Defined *defined) {
231 definitions.emplace_back(defined);
234 bool hasNonWeakDefinition() const { return !definitions.empty(); }
236 private:
237 BindingsMap<const Symbol *> bindingsMap;
238 std::vector<const Defined *> definitions;
239 SmallVector<char, 128> contents;
242 // The following sections implement lazy symbol binding -- very similar to the
243 // PLT mechanism in ELF.
245 // ELF's .plt section is broken up into two sections in Mach-O: StubsSection
246 // and StubHelperSection. Calls to functions in dylibs will end up calling into
247 // StubsSection, which contains indirect jumps to addresses stored in the
248 // LazyPointerSection (the counterpart to ELF's .plt.got).
250 // We will first describe how non-weak symbols are handled.
252 // At program start, the LazyPointerSection contains addresses that point into
253 // one of the entry points in the middle of the StubHelperSection. The code in
254 // StubHelperSection will push on the stack an offset into the
255 // LazyBindingSection. The push is followed by a jump to the beginning of the
256 // StubHelperSection (similar to PLT0), which then calls into dyld_stub_binder.
257 // dyld_stub_binder is a non-lazily-bound symbol, so this call looks it up in
258 // the GOT.
260 // The stub binder will look up the bind opcodes in the LazyBindingSection at
261 // the given offset. The bind opcodes will tell the binder to update the
262 // address in the LazyPointerSection to point to the symbol, so that subsequent
263 // calls don't have to redo the symbol resolution. The binder will then jump to
264 // the resolved symbol.
266 // With weak symbols, the situation is slightly different. Since there is no
267 // "weak lazy" lookup, function calls to weak symbols are always non-lazily
268 // bound. We emit both regular non-lazy bindings as well as weak bindings, in
269 // order that the weak bindings may overwrite the non-lazy bindings if an
270 // appropriate symbol is found at runtime. However, the bound addresses will
271 // still be written (non-lazily) into the LazyPointerSection.
273 // Symbols are always bound eagerly when chained fixups are used. In that case,
274 // StubsSection contains indirect jumps to addresses stored in the GotSection.
275 // The GOT directly contains the fixup entries, which will be replaced by the
276 // address of the target symbols on load. LazyPointerSection and
277 // StubHelperSection are not used.
279 class StubsSection final : public SyntheticSection {
280 public:
281 StubsSection();
282 uint64_t getSize() const override;
283 bool isNeeded() const override { return !entries.empty(); }
284 void finalize() override;
285 void writeTo(uint8_t *buf) const override;
286 const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
287 // Creates a stub for the symbol and the corresponding entry in the
288 // LazyPointerSection.
289 void addEntry(Symbol *);
290 uint64_t getVA(uint32_t stubsIndex) const {
291 assert(isFinal || target->usesThunks());
292 // ConcatOutputSection::finalize() can seek the address of a
293 // stub before its address is assigned. Before __stubs is
294 // finalized, return a contrived out-of-range address.
295 return isFinal ? addr + stubsIndex * target->stubSize
296 : TargetInfo::outOfRangeVA;
299 bool isFinal = false; // is address assigned?
301 private:
302 llvm::SetVector<Symbol *> entries;
305 class StubHelperSection final : public SyntheticSection {
306 public:
307 StubHelperSection();
308 uint64_t getSize() const override;
309 bool isNeeded() const override;
310 void writeTo(uint8_t *buf) const override;
312 void setUp();
314 DylibSymbol *stubBinder = nullptr;
315 Defined *dyldPrivate = nullptr;
318 // Objective-C stubs are hoisted objc_msgSend calls per selector called in the
319 // program. Apple Clang produces undefined symbols to each stub, such as
320 // '_objc_msgSend$foo', which are then synthesized by the linker. The stubs
321 // load the particular selector 'foo' from __objc_selrefs, setting it to the
322 // first argument of the objc_msgSend call, and then jumps to objc_msgSend. The
323 // actual stub contents are mirrored from ld64.
324 class ObjCStubsSection final : public SyntheticSection {
325 public:
326 ObjCStubsSection();
327 void addEntry(Symbol *sym);
328 uint64_t getSize() const override;
329 bool isNeeded() const override { return !symbols.empty(); }
330 void finalize() override { isec->isFinal = true; }
331 void writeTo(uint8_t *buf) const override;
332 void setUp();
334 static constexpr llvm::StringLiteral symbolPrefix = "_objc_msgSend$";
336 private:
337 std::vector<Defined *> symbols;
338 std::vector<uint32_t> offsets;
339 int objcMsgSendGotIndex = 0;
342 // Note that this section may also be targeted by non-lazy bindings. In
343 // particular, this happens when branch relocations target weak symbols.
344 class LazyPointerSection final : public SyntheticSection {
345 public:
346 LazyPointerSection();
347 uint64_t getSize() const override;
348 bool isNeeded() const override;
349 void writeTo(uint8_t *buf) const override;
350 uint64_t getVA(uint32_t index) const {
351 return addr + (index << target->p2WordSize);
355 class LazyBindingSection final : public LinkEditSection {
356 public:
357 LazyBindingSection();
358 void finalizeContents() override;
359 uint64_t getRawSize() const override { return contents.size(); }
360 bool isNeeded() const override { return !entries.empty(); }
361 void writeTo(uint8_t *buf) const override;
362 // Note that every entry here will by referenced by a corresponding entry in
363 // the StubHelperSection.
364 void addEntry(Symbol *dysym);
365 const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
367 private:
368 uint32_t encode(const Symbol &);
370 llvm::SetVector<Symbol *> entries;
371 SmallVector<char, 128> contents;
372 llvm::raw_svector_ostream os{contents};
375 // Stores a trie that describes the set of exported symbols.
376 class ExportSection final : public LinkEditSection {
377 public:
378 ExportSection();
379 void finalizeContents() override;
380 uint64_t getRawSize() const override { return size; }
381 bool isNeeded() const override { return size; }
382 void writeTo(uint8_t *buf) const override;
384 bool hasWeakSymbol = false;
386 private:
387 TrieBuilder trieBuilder;
388 size_t size = 0;
391 // Stores 'data in code' entries that describe the locations of data regions
392 // inside code sections. This is used by llvm-objdump to distinguish jump tables
393 // and stop them from being disassembled as instructions.
394 class DataInCodeSection final : public LinkEditSection {
395 public:
396 DataInCodeSection();
397 void finalizeContents() override;
398 uint64_t getRawSize() const override {
399 return sizeof(llvm::MachO::data_in_code_entry) * entries.size();
401 void writeTo(uint8_t *buf) const override;
403 private:
404 std::vector<llvm::MachO::data_in_code_entry> entries;
407 // Stores ULEB128 delta encoded addresses of functions.
408 class FunctionStartsSection final : public LinkEditSection {
409 public:
410 FunctionStartsSection();
411 void finalizeContents() override;
412 uint64_t getRawSize() const override { return contents.size(); }
413 void writeTo(uint8_t *buf) const override;
415 private:
416 SmallVector<char, 128> contents;
419 // Stores the strings referenced by the symbol table.
420 class StringTableSection final : public LinkEditSection {
421 public:
422 StringTableSection();
423 // Returns the start offset of the added string.
424 uint32_t addString(StringRef);
425 uint64_t getRawSize() const override { return size; }
426 void writeTo(uint8_t *buf) const override;
428 static constexpr size_t emptyStringIndex = 1;
430 private:
431 // ld64 emits string tables which start with a space and a zero byte. We
432 // match its behavior here since some tools depend on it.
433 // Consequently, the empty string will be at index 1, not zero.
434 std::vector<StringRef> strings{" "};
435 size_t size = 2;
438 struct SymtabEntry {
439 Symbol *sym;
440 size_t strx;
443 struct StabsEntry {
444 uint8_t type = 0;
445 uint32_t strx = StringTableSection::emptyStringIndex;
446 uint8_t sect = 0;
447 uint16_t desc = 0;
448 uint64_t value = 0;
450 StabsEntry() = default;
451 explicit StabsEntry(uint8_t type) : type(type) {}
454 // Symbols of the same type must be laid out contiguously: we choose to emit
455 // all local symbols first, then external symbols, and finally undefined
456 // symbols. For each symbol type, the LC_DYSYMTAB load command will record the
457 // range (start index and total number) of those symbols in the symbol table.
458 class SymtabSection : public LinkEditSection {
459 public:
460 void finalizeContents() override;
461 uint32_t getNumSymbols() const;
462 uint32_t getNumLocalSymbols() const {
463 return stabs.size() + localSymbols.size();
465 uint32_t getNumExternalSymbols() const { return externalSymbols.size(); }
466 uint32_t getNumUndefinedSymbols() const { return undefinedSymbols.size(); }
468 private:
469 void emitBeginSourceStab(StringRef);
470 void emitEndSourceStab();
471 void emitObjectFileStab(ObjFile *);
472 void emitEndFunStab(Defined *);
473 void emitStabs();
475 protected:
476 SymtabSection(StringTableSection &);
478 StringTableSection &stringTableSection;
479 // STABS symbols are always local symbols, but we represent them with special
480 // entries because they may use fields like n_sect and n_desc differently.
481 std::vector<StabsEntry> stabs;
482 std::vector<SymtabEntry> localSymbols;
483 std::vector<SymtabEntry> externalSymbols;
484 std::vector<SymtabEntry> undefinedSymbols;
487 template <class LP> SymtabSection *makeSymtabSection(StringTableSection &);
489 // The indirect symbol table is a list of 32-bit integers that serve as indices
490 // into the (actual) symbol table. The indirect symbol table is a
491 // concatenation of several sub-arrays of indices, each sub-array belonging to
492 // a separate section. The starting offset of each sub-array is stored in the
493 // reserved1 header field of the respective section.
495 // These sub-arrays provide symbol information for sections that store
496 // contiguous sequences of symbol references. These references can be pointers
497 // (e.g. those in the GOT and TLVP sections) or assembly sequences (e.g.
498 // function stubs).
499 class IndirectSymtabSection final : public LinkEditSection {
500 public:
501 IndirectSymtabSection();
502 void finalizeContents() override;
503 uint32_t getNumSymbols() const;
504 uint64_t getRawSize() const override {
505 return getNumSymbols() * sizeof(uint32_t);
507 bool isNeeded() const override;
508 void writeTo(uint8_t *buf) const override;
511 // The code signature comes at the very end of the linked output file.
512 class CodeSignatureSection final : public LinkEditSection {
513 public:
514 // NOTE: These values are duplicated in llvm-objcopy's MachO/Object.h file
515 // and any changes here, should be repeated there.
516 static constexpr uint8_t blockSizeShift = 12;
517 static constexpr size_t blockSize = (1 << blockSizeShift); // 4 KiB
518 static constexpr size_t hashSize = 256 / 8;
519 static constexpr size_t blobHeadersSize = llvm::alignTo<8>(
520 sizeof(llvm::MachO::CS_SuperBlob) + sizeof(llvm::MachO::CS_BlobIndex));
521 static constexpr uint32_t fixedHeadersSize =
522 blobHeadersSize + sizeof(llvm::MachO::CS_CodeDirectory);
524 uint32_t fileNamePad = 0;
525 uint32_t allHeadersSize = 0;
526 StringRef fileName;
528 CodeSignatureSection();
529 uint64_t getRawSize() const override;
530 bool isNeeded() const override { return true; }
531 void writeTo(uint8_t *buf) const override;
532 uint32_t getBlockCount() const;
533 void writeHashes(uint8_t *buf) const;
536 class CStringSection : public SyntheticSection {
537 public:
538 CStringSection(const char *name);
539 void addInput(CStringInputSection *);
540 uint64_t getSize() const override { return size; }
541 virtual void finalizeContents();
542 bool isNeeded() const override { return !inputs.empty(); }
543 void writeTo(uint8_t *buf) const override;
545 std::vector<CStringInputSection *> inputs;
547 private:
548 uint64_t size;
551 class DeduplicatedCStringSection final : public CStringSection {
552 public:
553 DeduplicatedCStringSection(const char *name) : CStringSection(name){};
554 uint64_t getSize() const override { return size; }
555 void finalizeContents() override;
556 void writeTo(uint8_t *buf) const override;
558 struct StringOffset {
559 uint8_t trailingZeros;
560 uint64_t outSecOff = UINT64_MAX;
562 explicit StringOffset(uint8_t zeros) : trailingZeros(zeros) {}
565 StringOffset getStringOffset(StringRef str) const;
567 private:
568 llvm::DenseMap<llvm::CachedHashStringRef, StringOffset> stringOffsetMap;
569 size_t size = 0;
573 * This section contains deduplicated literal values. The 16-byte values are
574 * laid out first, followed by the 8- and then the 4-byte ones.
576 class WordLiteralSection final : public SyntheticSection {
577 public:
578 using UInt128 = std::pair<uint64_t, uint64_t>;
579 // I don't think the standard guarantees the size of a pair, so let's make
580 // sure it's exact -- that way we can construct it via `mmap`.
581 static_assert(sizeof(UInt128) == 16);
583 WordLiteralSection();
584 void addInput(WordLiteralInputSection *);
585 void finalizeContents();
586 void writeTo(uint8_t *buf) const override;
588 uint64_t getSize() const override {
589 return literal16Map.size() * 16 + literal8Map.size() * 8 +
590 literal4Map.size() * 4;
593 bool isNeeded() const override {
594 return !literal16Map.empty() || !literal4Map.empty() ||
595 !literal8Map.empty();
598 uint64_t getLiteral16Offset(uintptr_t buf) const {
599 return literal16Map.at(*reinterpret_cast<const UInt128 *>(buf)) * 16;
602 uint64_t getLiteral8Offset(uintptr_t buf) const {
603 return literal16Map.size() * 16 +
604 literal8Map.at(*reinterpret_cast<const uint64_t *>(buf)) * 8;
607 uint64_t getLiteral4Offset(uintptr_t buf) const {
608 return literal16Map.size() * 16 + literal8Map.size() * 8 +
609 literal4Map.at(*reinterpret_cast<const uint32_t *>(buf)) * 4;
612 private:
613 std::vector<WordLiteralInputSection *> inputs;
615 template <class T> struct Hasher {
616 llvm::hash_code operator()(T v) const { return llvm::hash_value(v); }
618 // We're using unordered_map instead of DenseMap here because we need to
619 // support all possible integer values -- there are no suitable tombstone
620 // values for DenseMap.
621 std::unordered_map<UInt128, uint64_t, Hasher<UInt128>> literal16Map;
622 std::unordered_map<uint64_t, uint64_t> literal8Map;
623 std::unordered_map<uint32_t, uint64_t> literal4Map;
626 class ObjCImageInfoSection final : public SyntheticSection {
627 public:
628 ObjCImageInfoSection();
629 bool isNeeded() const override { return !files.empty(); }
630 uint64_t getSize() const override { return 8; }
631 void addFile(const InputFile *file) {
632 assert(!file->objCImageInfo.empty());
633 files.push_back(file);
635 void finalizeContents();
636 void writeTo(uint8_t *buf) const override;
638 private:
639 struct ImageInfo {
640 uint8_t swiftVersion = 0;
641 bool hasCategoryClassProperties = false;
642 } info;
643 static ImageInfo parseImageInfo(const InputFile *);
644 std::vector<const InputFile *> files; // files with image info
647 // This section stores 32-bit __TEXT segment offsets of initializer functions.
649 // The compiler stores pointers to initializers in __mod_init_func. These need
650 // to be fixed up at load time, which takes time and dirties memory. By
651 // synthesizing InitOffsetsSection from them, this data can live in the
652 // read-only __TEXT segment instead. This section is used by default when
653 // chained fixups are enabled.
655 // There is no similar counterpart to __mod_term_func, as that section is
656 // deprecated, and static destructors are instead handled by registering them
657 // via __cxa_atexit from an autogenerated initializer function (see D121736).
658 class InitOffsetsSection final : public SyntheticSection {
659 public:
660 InitOffsetsSection();
661 bool isNeeded() const override { return !sections.empty(); }
662 uint64_t getSize() const override;
663 void writeTo(uint8_t *buf) const override;
664 void setUp();
666 void addInput(ConcatInputSection *isec) { sections.push_back(isec); }
667 const std::vector<ConcatInputSection *> &inputs() const { return sections; }
669 private:
670 std::vector<ConcatInputSection *> sections;
673 // Chained fixups are a replacement for classic dyld opcodes. In this format,
674 // most of the metadata necessary for binding symbols and rebasing addresses is
675 // stored directly in the memory location that will have the fixup applied.
677 // The fixups form singly linked lists; each one covering a single page in
678 // memory. The __LINKEDIT,__chainfixups section stores the page offset of the
679 // first fixup of each page; the rest can be found by walking the chain using
680 // the offset that is embedded in each entry.
682 // This setup allows pages to be relocated lazily at page-in time and without
683 // being dirtied. The kernel can discard and load them again as needed. This
684 // technique, called page-in linking, was introduced in macOS 13.
686 // The benefits of this format are:
687 // - smaller __LINKEDIT segment, as most of the fixup information is stored in
688 // the data segment
689 // - faster startup, since not all relocations need to be done upfront
690 // - slightly lower memory usage, as fewer pages are dirtied
692 // Userspace x86_64 and arm64 binaries have two types of fixup entries:
693 // - Rebase entries contain an absolute address, to which the object's load
694 // address will be added to get the final value. This is used for loading
695 // the address of a symbol defined in the same binary.
696 // - Binding entries are mostly used for symbols imported from other dylibs,
697 // but for weakly bound and interposable symbols as well. They are looked up
698 // by a (symbol name, library) pair stored in __chainfixups. This import
699 // entry also encodes whether the import is weak (i.e. if the symbol is
700 // missing, it should be set to null instead of producing a load error).
701 // The fixup encodes an ordinal associated with the import, and an optional
702 // addend.
704 // The entries are tightly packed 64-bit bitfields. One of the bits specifies
705 // which kind of fixup to interpret them as.
707 // LLD generates the fixup data in 5 stages:
708 // 1. While scanning relocations, we make a note of each location that needs
709 // a fixup by calling addRebase() or addBinding(). During this, we assign
710 // a unique ordinal for each (symbol name, library, addend) import tuple.
711 // 2. After addresses have been assigned to all sections, and thus the memory
712 // layout of the linked image is final; finalizeContents() is called. Here,
713 // the page offsets of the chain start entries are calculated.
714 // 3. ChainedFixupsSection::writeTo() writes the page start offsets and the
715 // imports table to the output file.
716 // 4. Each section's fixup entries are encoded and written to disk in
717 // ConcatInputSection::writeTo(), but without writing the offsets that form
718 // the chain.
719 // 5. Finally, each page's (which might correspond to multiple sections)
720 // fixups are linked together in Writer::buildFixupChains().
721 class ChainedFixupsSection final : public LinkEditSection {
722 public:
723 ChainedFixupsSection();
724 void finalizeContents() override;
725 uint64_t getRawSize() const override { return size; }
726 bool isNeeded() const override;
727 void writeTo(uint8_t *buf) const override;
729 void addRebase(const InputSection *isec, uint64_t offset) {
730 locations.emplace_back(isec, offset);
732 void addBinding(const Symbol *dysym, const InputSection *isec,
733 uint64_t offset, int64_t addend = 0);
735 void setHasNonWeakDefinition() { hasNonWeakDef = true; }
737 // Returns an (ordinal, inline addend) tuple used by dyld_chained_ptr_64_bind.
738 std::pair<uint32_t, uint8_t> getBinding(const Symbol *sym,
739 int64_t addend) const;
741 const std::vector<Location> &getLocations() const { return locations; }
743 bool hasWeakBinding() const { return hasWeakBind; }
744 bool hasNonWeakDefinition() const { return hasNonWeakDef; }
746 private:
747 // Location::offset initially stores the offset within an InputSection, but
748 // contains output segment offsets after finalizeContents().
749 std::vector<Location> locations;
750 // (target symbol, addend) => import ordinal
751 llvm::MapVector<std::pair<const Symbol *, int64_t>, uint32_t> bindings;
753 struct SegmentInfo {
754 SegmentInfo(const OutputSegment *oseg) : oseg(oseg) {}
756 const OutputSegment *oseg;
757 // (page index, fixup starts offset)
758 llvm::SmallVector<std::pair<uint16_t, uint16_t>> pageStarts;
760 size_t getSize() const;
761 size_t writeTo(uint8_t *buf) const;
763 llvm::SmallVector<SegmentInfo, 4> fixupSegments;
765 size_t symtabSize = 0;
766 size_t size = 0;
768 bool needsAddend = false;
769 bool needsLargeAddend = false;
770 bool hasWeakBind = false;
771 bool hasNonWeakDef = false;
772 llvm::MachO::ChainedImportFormat importFormat;
775 void writeChainedRebase(uint8_t *buf, uint64_t targetVA);
776 void writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend);
778 struct InStruct {
779 const uint8_t *bufferStart = nullptr;
780 MachHeaderSection *header = nullptr;
781 CStringSection *cStringSection = nullptr;
782 DeduplicatedCStringSection *objcMethnameSection = nullptr;
783 WordLiteralSection *wordLiteralSection = nullptr;
784 RebaseSection *rebase = nullptr;
785 BindingSection *binding = nullptr;
786 WeakBindingSection *weakBinding = nullptr;
787 LazyBindingSection *lazyBinding = nullptr;
788 ExportSection *exports = nullptr;
789 GotSection *got = nullptr;
790 TlvPointerSection *tlvPointers = nullptr;
791 LazyPointerSection *lazyPointers = nullptr;
792 StubsSection *stubs = nullptr;
793 StubHelperSection *stubHelper = nullptr;
794 ObjCStubsSection *objcStubs = nullptr;
795 ConcatInputSection *objcSelrefs = nullptr;
796 UnwindInfoSection *unwindInfo = nullptr;
797 ObjCImageInfoSection *objCImageInfo = nullptr;
798 ConcatInputSection *imageLoaderCache = nullptr;
799 InitOffsetsSection *initOffsets = nullptr;
800 ChainedFixupsSection *chainedFixups = nullptr;
803 extern InStruct in;
804 extern std::vector<SyntheticSection *> syntheticSections;
806 void createSyntheticSymbols();
808 } // namespace lld::macho
810 #endif