Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lld / MachO / UnwindInfoSection.cpp
blob1466e7b4fb394f5081fe42825617e32ef50575db
1 //===- UnwindInfoSection.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "UnwindInfoSection.h"
10 #include "InputSection.h"
11 #include "Layout.h"
12 #include "OutputSection.h"
13 #include "OutputSegment.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "SyntheticSections.h"
17 #include "Target.h"
19 #include "lld/Common/ErrorHandler.h"
20 #include "lld/Common/Memory.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/Support/Parallel.h"
26 #include "mach-o/compact_unwind_encoding.h"
28 #include <numeric>
30 using namespace llvm;
31 using namespace llvm::MachO;
32 using namespace llvm::support::endian;
33 using namespace lld;
34 using namespace lld::macho;
36 #define COMMON_ENCODINGS_MAX 127
37 #define COMPACT_ENCODINGS_MAX 256
39 #define SECOND_LEVEL_PAGE_BYTES 4096
40 #define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
41 #define REGULAR_SECOND_LEVEL_ENTRIES_MAX \
42 ((SECOND_LEVEL_PAGE_BYTES - \
43 sizeof(unwind_info_regular_second_level_page_header)) / \
44 sizeof(unwind_info_regular_second_level_entry))
45 #define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX \
46 ((SECOND_LEVEL_PAGE_BYTES - \
47 sizeof(unwind_info_compressed_second_level_page_header)) / \
48 sizeof(uint32_t))
50 #define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
51 #define COMPRESSED_ENTRY_FUNC_OFFSET_MASK \
52 UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
54 static_assert(static_cast<uint32_t>(UNWIND_X86_64_DWARF_SECTION_OFFSET) ==
55 static_cast<uint32_t>(UNWIND_ARM64_DWARF_SECTION_OFFSET) &&
56 static_cast<uint32_t>(UNWIND_X86_64_DWARF_SECTION_OFFSET) ==
57 static_cast<uint32_t>(UNWIND_X86_DWARF_SECTION_OFFSET));
59 constexpr uint64_t DWARF_SECTION_OFFSET = UNWIND_X86_64_DWARF_SECTION_OFFSET;
61 // Compact Unwind format is a Mach-O evolution of DWARF Unwind that
62 // optimizes space and exception-time lookup. Most DWARF unwind
63 // entries can be replaced with Compact Unwind entries, but the ones
64 // that cannot are retained in DWARF form.
66 // This comment will address macro-level organization of the pre-link
67 // and post-link compact unwind tables. For micro-level organization
68 // pertaining to the bitfield layout of the 32-bit compact unwind
69 // entries, see libunwind/include/mach-o/compact_unwind_encoding.h
71 // Important clarifying factoids:
73 // * __LD,__compact_unwind is the compact unwind format for compiler
74 // output and linker input. It is never a final output. It could be
75 // an intermediate output with the `-r` option which retains relocs.
77 // * __TEXT,__unwind_info is the compact unwind format for final
78 // linker output. It is never an input.
80 // * __TEXT,__eh_frame is the DWARF format for both linker input and output.
82 // * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
83 // level) by ascending address, and the pages are referenced by an
84 // index (1st level) in the section header.
86 // * Following the headers in __TEXT,__unwind_info, the bulk of the
87 // section contains a vector of compact unwind entries
88 // `{functionOffset, encoding}` sorted by ascending `functionOffset`.
89 // Adjacent entries with the same encoding can be folded to great
90 // advantage, achieving a 3-order-of-magnitude reduction in the
91 // number of entries.
93 // Refer to the definition of unwind_info_section_header in
94 // compact_unwind_encoding.h for an overview of the format we are encoding
95 // here.
97 // TODO(gkm): how do we align the 2nd-level pages?
99 // The various fields in the on-disk representation of each compact unwind
100 // entry.
101 #define FOR_EACH_CU_FIELD(DO) \
102 DO(Ptr, functionAddress) \
103 DO(uint32_t, functionLength) \
104 DO(compact_unwind_encoding_t, encoding) \
105 DO(Ptr, personality) \
106 DO(Ptr, lsda)
108 CREATE_LAYOUT_CLASS(CompactUnwind, FOR_EACH_CU_FIELD);
110 #undef FOR_EACH_CU_FIELD
112 // LLD's internal representation of a compact unwind entry.
113 struct CompactUnwindEntry {
114 uint64_t functionAddress;
115 uint32_t functionLength;
116 compact_unwind_encoding_t encoding;
117 Symbol *personality;
118 InputSection *lsda;
121 using EncodingMap = DenseMap<compact_unwind_encoding_t, size_t>;
123 struct SecondLevelPage {
124 uint32_t kind;
125 size_t entryIndex;
126 size_t entryCount;
127 size_t byteCount;
128 std::vector<compact_unwind_encoding_t> localEncodings;
129 EncodingMap localEncodingIndexes;
132 // UnwindInfoSectionImpl allows us to avoid cluttering our header file with a
133 // lengthy definition of UnwindInfoSection.
134 class UnwindInfoSectionImpl final : public UnwindInfoSection {
135 public:
136 UnwindInfoSectionImpl() : cuLayout(target->wordSize) {}
137 uint64_t getSize() const override { return unwindInfoSize; }
138 void prepare() override;
139 void finalize() override;
140 void writeTo(uint8_t *buf) const override;
142 private:
143 void prepareRelocations(ConcatInputSection *);
144 void relocateCompactUnwind(std::vector<CompactUnwindEntry> &);
145 void encodePersonalities();
146 Symbol *canonicalizePersonality(Symbol *);
148 uint64_t unwindInfoSize = 0;
149 SmallVector<decltype(symbols)::value_type, 0> symbolsVec;
150 CompactUnwindLayout cuLayout;
151 std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
152 EncodingMap commonEncodingIndexes;
153 // The entries here will be in the same order as their originating symbols
154 // in symbolsVec.
155 std::vector<CompactUnwindEntry> cuEntries;
156 // Indices into the cuEntries vector.
157 std::vector<size_t> cuIndices;
158 std::vector<Symbol *> personalities;
159 SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
160 personalityTable;
161 // Indices into cuEntries for CUEs with a non-null LSDA.
162 std::vector<size_t> entriesWithLsda;
163 // Map of cuEntries index to an index within the LSDA array.
164 DenseMap<size_t, uint32_t> lsdaIndex;
165 std::vector<SecondLevelPage> secondLevelPages;
166 uint64_t level2PagesOffset = 0;
167 // The highest-address function plus its size. The unwinder needs this to
168 // determine the address range that is covered by unwind info.
169 uint64_t cueEndBoundary = 0;
172 UnwindInfoSection::UnwindInfoSection()
173 : SyntheticSection(segment_names::text, section_names::unwindInfo) {
174 align = 4;
177 // Record function symbols that may need entries emitted in __unwind_info, which
178 // stores unwind data for address ranges.
180 // Note that if several adjacent functions have the same unwind encoding and
181 // personality function and no LSDA, they share one unwind entry. For this to
182 // work, functions without unwind info need explicit "no unwind info" unwind
183 // entries -- else the unwinder would think they have the unwind info of the
184 // closest function with unwind info right before in the image. Thus, we add
185 // function symbols for each unique address regardless of whether they have
186 // associated unwind info.
187 void UnwindInfoSection::addSymbol(const Defined *d) {
188 if (d->unwindEntry)
189 allEntriesAreOmitted = false;
190 // We don't yet know the final output address of this symbol, but we know that
191 // they are uniquely determined by a combination of the isec and value, so
192 // we use that as the key here.
193 auto p = symbols.insert({{d->isec, d->value}, d});
194 // If we have multiple symbols at the same address, only one of them can have
195 // an associated unwind entry.
196 if (!p.second && d->unwindEntry) {
197 assert(p.first->second == d || !p.first->second->unwindEntry);
198 p.first->second = d;
202 void UnwindInfoSectionImpl::prepare() {
203 // This iteration needs to be deterministic, since prepareRelocations may add
204 // entries to the GOT. Hence the use of a MapVector for
205 // UnwindInfoSection::symbols.
206 for (const Defined *d : make_second_range(symbols))
207 if (d->unwindEntry) {
208 if (d->unwindEntry->getName() == section_names::compactUnwind) {
209 prepareRelocations(d->unwindEntry);
210 } else {
211 // We don't have to add entries to the GOT here because FDEs have
212 // explicit GOT relocations, so Writer::scanRelocations() will add those
213 // GOT entries. However, we still need to canonicalize the personality
214 // pointers (like prepareRelocations() does for CU entries) in order
215 // to avoid overflowing the 3-personality limit.
216 FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
217 fde.personality = canonicalizePersonality(fde.personality);
222 // Compact unwind relocations have different semantics, so we handle them in a
223 // separate code path from regular relocations. First, we do not wish to add
224 // rebase opcodes for __LD,__compact_unwind, because that section doesn't
225 // actually end up in the final binary. Second, personality pointers always
226 // reside in the GOT and must be treated specially.
227 void UnwindInfoSectionImpl::prepareRelocations(ConcatInputSection *isec) {
228 assert(!isec->shouldOmitFromOutput() &&
229 "__compact_unwind section should not be omitted");
231 // FIXME: Make this skip relocations for CompactUnwindEntries that
232 // point to dead-stripped functions. That might save some amount of
233 // work. But since there are usually just few personality functions
234 // that are referenced from many places, at least some of them likely
235 // live, it wouldn't reduce number of got entries.
236 for (size_t i = 0; i < isec->relocs.size(); ++i) {
237 Reloc &r = isec->relocs[i];
238 assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
239 // Since compact unwind sections aren't part of the inputSections vector,
240 // they don't get canonicalized by scanRelocations(), so we have to do the
241 // canonicalization here.
242 if (auto *referentIsec = r.referent.dyn_cast<InputSection *>())
243 r.referent = referentIsec->canonical();
245 // Functions and LSDA entries always reside in the same object file as the
246 // compact unwind entries that references them, and thus appear as section
247 // relocs. There is no need to prepare them. We only prepare relocs for
248 // personality functions.
249 if (r.offset != cuLayout.personalityOffset)
250 continue;
252 if (auto *s = r.referent.dyn_cast<Symbol *>()) {
253 // Personality functions are nearly always system-defined (e.g.,
254 // ___gxx_personality_v0 for C++) and relocated as dylib symbols. When an
255 // application provides its own personality function, it might be
256 // referenced by an extern Defined symbol reloc, or a local section reloc.
257 if (auto *defined = dyn_cast<Defined>(s)) {
258 // XXX(vyng) This is a special case for handling duplicate personality
259 // symbols. Note that LD64's behavior is a bit different and it is
260 // inconsistent with how symbol resolution usually work
262 // So we've decided not to follow it. Instead, simply pick the symbol
263 // with the same name from the symbol table to replace the local one.
265 // (See discussions/alternatives already considered on D107533)
266 if (!defined->isExternal())
267 if (Symbol *sym = symtab->find(defined->getName()))
268 if (!sym->isLazy())
269 r.referent = s = sym;
271 if (auto *undefined = dyn_cast<Undefined>(s)) {
272 treatUndefinedSymbol(*undefined, isec, r.offset);
273 // treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
274 if (isa<Undefined>(s))
275 continue;
278 // Similar to canonicalizePersonality(), but we also register a GOT entry.
279 if (auto *defined = dyn_cast<Defined>(s)) {
280 // Check if we have created a synthetic symbol at the same address.
281 Symbol *&personality =
282 personalityTable[{defined->isec, defined->value}];
283 if (personality == nullptr) {
284 personality = defined;
285 in.got->addEntry(defined);
286 } else if (personality != defined) {
287 r.referent = personality;
289 continue;
292 assert(isa<DylibSymbol>(s));
293 in.got->addEntry(s);
294 continue;
297 if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
298 assert(!isCoalescedWeak(referentIsec));
299 // Personality functions can be referenced via section relocations
300 // if they live in the same object file. Create placeholder synthetic
301 // symbols for them in the GOT.
302 Symbol *&s = personalityTable[{referentIsec, r.addend}];
303 if (s == nullptr) {
304 // This runs after dead stripping, so the noDeadStrip argument does not
305 // matter.
306 s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
307 r.addend, /*size=*/0, /*isWeakDef=*/false,
308 /*isExternal=*/false, /*isPrivateExtern=*/false,
309 /*includeInSymtab=*/true,
310 /*isReferencedDynamically=*/false,
311 /*noDeadStrip=*/false);
312 s->used = true;
313 in.got->addEntry(s);
315 r.referent = s;
316 r.addend = 0;
321 Symbol *UnwindInfoSectionImpl::canonicalizePersonality(Symbol *personality) {
322 if (auto *defined = dyn_cast_or_null<Defined>(personality)) {
323 // Check if we have created a synthetic symbol at the same address.
324 Symbol *&synth = personalityTable[{defined->isec, defined->value}];
325 if (synth == nullptr)
326 synth = defined;
327 else if (synth != defined)
328 return synth;
330 return personality;
333 // We need to apply the relocations to the pre-link compact unwind section
334 // before converting it to post-link form. There should only be absolute
335 // relocations here: since we are not emitting the pre-link CU section, there
336 // is no source address to make a relative location meaningful.
337 void UnwindInfoSectionImpl::relocateCompactUnwind(
338 std::vector<CompactUnwindEntry> &cuEntries) {
339 parallelFor(0, symbolsVec.size(), [&](size_t i) {
340 CompactUnwindEntry &cu = cuEntries[i];
341 const Defined *d = symbolsVec[i].second;
342 cu.functionAddress = d->getVA();
343 if (!d->unwindEntry)
344 return;
346 // If we have DWARF unwind info, create a slimmed-down CU entry that points
347 // to it.
348 if (d->unwindEntry->getName() == section_names::ehFrame) {
349 // The unwinder will look for the DWARF entry starting at the hint,
350 // assuming the hint points to a valid CFI record start. If it
351 // fails to find the record, it proceeds in a linear search through the
352 // contiguous CFI records from the hint until the end of the section.
353 // Ideally, in the case where the offset is too large to be encoded, we
354 // would instead encode the largest possible offset to a valid CFI record,
355 // but since we don't keep track of that, just encode zero -- the start of
356 // the section is always the start of a CFI record.
357 uint64_t dwarfOffsetHint =
358 d->unwindEntry->outSecOff <= DWARF_SECTION_OFFSET
359 ? d->unwindEntry->outSecOff
360 : 0;
361 cu.encoding = target->modeDwarfEncoding | dwarfOffsetHint;
362 const FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
363 cu.functionLength = fde.funcLength;
364 // Omit the DWARF personality from compact-unwind entry so that we
365 // don't need to encode it.
366 cu.personality = nullptr;
367 cu.lsda = fde.lsda;
368 return;
371 assert(d->unwindEntry->getName() == section_names::compactUnwind);
373 auto buf = reinterpret_cast<const uint8_t *>(d->unwindEntry->data.data()) -
374 target->wordSize;
375 cu.functionLength =
376 support::endian::read32le(buf + cuLayout.functionLengthOffset);
377 cu.encoding = support::endian::read32le(buf + cuLayout.encodingOffset);
378 for (const Reloc &r : d->unwindEntry->relocs) {
379 if (r.offset == cuLayout.personalityOffset)
380 cu.personality = r.referent.get<Symbol *>();
381 else if (r.offset == cuLayout.lsdaOffset)
382 cu.lsda = r.getReferentInputSection();
387 // There should only be a handful of unique personality pointers, so we can
388 // encode them as 2-bit indices into a small array.
389 void UnwindInfoSectionImpl::encodePersonalities() {
390 for (size_t idx : cuIndices) {
391 CompactUnwindEntry &cu = cuEntries[idx];
392 if (cu.personality == nullptr)
393 continue;
394 // Linear search is fast enough for a small array.
395 auto it = find(personalities, cu.personality);
396 uint32_t personalityIndex; // 1-based index
397 if (it != personalities.end()) {
398 personalityIndex = std::distance(personalities.begin(), it) + 1;
399 } else {
400 personalities.push_back(cu.personality);
401 personalityIndex = personalities.size();
403 cu.encoding |=
404 personalityIndex << llvm::countr_zero(
405 static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
407 if (personalities.size() > 3)
408 error("too many personalities (" + Twine(personalities.size()) +
409 ") for compact unwind to encode");
412 static bool canFoldEncoding(compact_unwind_encoding_t encoding) {
413 // From compact_unwind_encoding.h:
414 // UNWIND_X86_64_MODE_STACK_IND:
415 // A "frameless" (RBP not used as frame pointer) function large constant
416 // stack size. This case is like the previous, except the stack size is too
417 // large to encode in the compact unwind encoding. Instead it requires that
418 // the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
419 // encoding contains the offset to the nnnnnnnn value in the function in
420 // UNWIND_X86_64_FRAMELESS_STACK_SIZE.
421 // Since this means the unwinder has to look at the `subq` in the function
422 // of the unwind info's unwind address, two functions that have identical
423 // unwind info can't be folded if it's using this encoding since both
424 // entries need unique addresses.
425 static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_STACK_IND) ==
426 static_cast<uint32_t>(UNWIND_X86_MODE_STACK_IND));
427 if ((target->cpuType == CPU_TYPE_X86_64 || target->cpuType == CPU_TYPE_X86) &&
428 (encoding & UNWIND_MODE_MASK) == UNWIND_X86_64_MODE_STACK_IND) {
429 // FIXME: Consider passing in the two function addresses and getting
430 // their two stack sizes off the `subq` and only returning false if they're
431 // actually different.
432 return false;
434 return true;
437 // Scan the __LD,__compact_unwind entries and compute the space needs of
438 // __TEXT,__unwind_info and __TEXT,__eh_frame.
439 void UnwindInfoSectionImpl::finalize() {
440 if (symbols.empty())
441 return;
443 // At this point, the address space for __TEXT,__text has been
444 // assigned, so we can relocate the __LD,__compact_unwind entries
445 // into a temporary buffer. Relocation is necessary in order to sort
446 // the CU entries by function address. Sorting is necessary so that
447 // we can fold adjacent CU entries with identical encoding+personality
448 // and without any LSDA. Folding is necessary because it reduces the
449 // number of CU entries by as much as 3 orders of magnitude!
450 cuEntries.resize(symbols.size());
451 // The "map" part of the symbols MapVector was only needed for deduplication
452 // in addSymbol(). Now that we are done adding, move the contents to a plain
453 // std::vector for indexed access.
454 symbolsVec = symbols.takeVector();
455 relocateCompactUnwind(cuEntries);
457 // Rather than sort & fold the 32-byte entries directly, we create a
458 // vector of indices to entries and sort & fold that instead.
459 cuIndices.resize(cuEntries.size());
460 std::iota(cuIndices.begin(), cuIndices.end(), 0);
461 llvm::sort(cuIndices, [&](size_t a, size_t b) {
462 return cuEntries[a].functionAddress < cuEntries[b].functionAddress;
465 // Record the ending boundary before we fold the entries.
466 cueEndBoundary = cuEntries[cuIndices.back()].functionAddress +
467 cuEntries[cuIndices.back()].functionLength;
469 // Fold adjacent entries with matching encoding+personality and without LSDA
470 // We use three iterators on the same cuIndices to fold in-situ:
471 // (1) `foldBegin` is the first of a potential sequence of matching entries
472 // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
473 // The semi-open interval [ foldBegin .. foldEnd ) contains a range
474 // entries that can be folded into a single entry and written to ...
475 // (3) `foldWrite`
476 auto foldWrite = cuIndices.begin();
477 for (auto foldBegin = cuIndices.begin(); foldBegin < cuIndices.end();) {
478 auto foldEnd = foldBegin;
479 // Common LSDA encodings (e.g. for C++ and Objective-C) contain offsets from
480 // a base address. The base address is normally not contained directly in
481 // the LSDA, and in that case, the personality function treats the starting
482 // address of the function (which is computed by the unwinder) as the base
483 // address and interprets the LSDA accordingly. The unwinder computes the
484 // starting address of a function as the address associated with its CU
485 // entry. For this reason, we cannot fold adjacent entries if they have an
486 // LSDA, because folding would make the unwinder compute the wrong starting
487 // address for the functions with the folded entries, which in turn would
488 // cause the personality function to misinterpret the LSDA for those
489 // functions. In the very rare case where the base address is encoded
490 // directly in the LSDA, two functions at different addresses would
491 // necessarily have different LSDAs, so their CU entries would not have been
492 // folded anyway.
493 while (++foldEnd < cuIndices.end() &&
494 cuEntries[*foldBegin].encoding == cuEntries[*foldEnd].encoding &&
495 !cuEntries[*foldBegin].lsda && !cuEntries[*foldEnd].lsda &&
496 // If we've gotten to this point, we don't have an LSDA, which should
497 // also imply that we don't have a personality function, since in all
498 // likelihood a personality function needs the LSDA to do anything
499 // useful. It can be technically valid to have a personality function
500 // and no LSDA though (e.g. the C++ personality __gxx_personality_v0
501 // is just a no-op without LSDA), so we still check for personality
502 // function equivalence to handle that case.
503 cuEntries[*foldBegin].personality ==
504 cuEntries[*foldEnd].personality &&
505 canFoldEncoding(cuEntries[*foldEnd].encoding))
507 *foldWrite++ = *foldBegin;
508 foldBegin = foldEnd;
510 cuIndices.erase(foldWrite, cuIndices.end());
512 encodePersonalities();
514 // Count frequencies of the folded encodings
515 EncodingMap encodingFrequencies;
516 for (size_t idx : cuIndices)
517 encodingFrequencies[cuEntries[idx].encoding]++;
519 // Make a vector of encodings, sorted by descending frequency
520 for (const auto &frequency : encodingFrequencies)
521 commonEncodings.emplace_back(frequency);
522 llvm::sort(commonEncodings,
523 [](const std::pair<compact_unwind_encoding_t, size_t> &a,
524 const std::pair<compact_unwind_encoding_t, size_t> &b) {
525 if (a.second == b.second)
526 // When frequencies match, secondarily sort on encoding
527 // to maintain parity with validate-unwind-info.py
528 return a.first > b.first;
529 return a.second > b.second;
532 // Truncate the vector to 127 elements.
533 // Common encoding indexes are limited to 0..126, while encoding
534 // indexes 127..255 are local to each second-level page
535 if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
536 commonEncodings.resize(COMMON_ENCODINGS_MAX);
538 // Create a map from encoding to common-encoding-table index
539 for (size_t i = 0; i < commonEncodings.size(); i++)
540 commonEncodingIndexes[commonEncodings[i].first] = i;
542 // Split folded encodings into pages, where each page is limited by ...
543 // (a) 4 KiB capacity
544 // (b) 24-bit difference between first & final function address
545 // (c) 8-bit compact-encoding-table index,
546 // for which 0..126 references the global common-encodings table,
547 // and 127..255 references a local per-second-level-page table.
548 // First we try the compact format and determine how many entries fit.
549 // If more entries fit in the regular format, we use that.
550 for (size_t i = 0; i < cuIndices.size();) {
551 size_t idx = cuIndices[i];
552 secondLevelPages.emplace_back();
553 SecondLevelPage &page = secondLevelPages.back();
554 page.entryIndex = i;
555 uint64_t functionAddressMax =
556 cuEntries[idx].functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
557 size_t n = commonEncodings.size();
558 size_t wordsRemaining =
559 SECOND_LEVEL_PAGE_WORDS -
560 sizeof(unwind_info_compressed_second_level_page_header) /
561 sizeof(uint32_t);
562 while (wordsRemaining >= 1 && i < cuIndices.size()) {
563 idx = cuIndices[i];
564 const CompactUnwindEntry *cuPtr = &cuEntries[idx];
565 if (cuPtr->functionAddress >= functionAddressMax)
566 break;
567 if (commonEncodingIndexes.count(cuPtr->encoding) ||
568 page.localEncodingIndexes.count(cuPtr->encoding)) {
569 i++;
570 wordsRemaining--;
571 } else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
572 page.localEncodings.emplace_back(cuPtr->encoding);
573 page.localEncodingIndexes[cuPtr->encoding] = n++;
574 i++;
575 wordsRemaining -= 2;
576 } else {
577 break;
580 page.entryCount = i - page.entryIndex;
582 // If this is not the final page, see if it's possible to fit more entries
583 // by using the regular format. This can happen when there are many unique
584 // encodings, and we saturated the local encoding table early.
585 if (i < cuIndices.size() &&
586 page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
587 page.kind = UNWIND_SECOND_LEVEL_REGULAR;
588 page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
589 cuIndices.size() - page.entryIndex);
590 i = page.entryIndex + page.entryCount;
591 } else {
592 page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
596 for (size_t idx : cuIndices) {
597 lsdaIndex[idx] = entriesWithLsda.size();
598 if (cuEntries[idx].lsda)
599 entriesWithLsda.push_back(idx);
602 // compute size of __TEXT,__unwind_info section
603 level2PagesOffset = sizeof(unwind_info_section_header) +
604 commonEncodings.size() * sizeof(uint32_t) +
605 personalities.size() * sizeof(uint32_t) +
606 // The extra second-level-page entry is for the sentinel
607 (secondLevelPages.size() + 1) *
608 sizeof(unwind_info_section_header_index_entry) +
609 entriesWithLsda.size() *
610 sizeof(unwind_info_section_header_lsda_index_entry);
611 unwindInfoSize =
612 level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
615 // All inputs are relocated and output addresses are known, so write!
617 void UnwindInfoSectionImpl::writeTo(uint8_t *buf) const {
618 assert(!cuIndices.empty() && "call only if there is unwind info");
620 // section header
621 auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
622 uip->version = 1;
623 uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
624 uip->commonEncodingsArrayCount = commonEncodings.size();
625 uip->personalityArraySectionOffset =
626 uip->commonEncodingsArraySectionOffset +
627 (uip->commonEncodingsArrayCount * sizeof(uint32_t));
628 uip->personalityArrayCount = personalities.size();
629 uip->indexSectionOffset = uip->personalityArraySectionOffset +
630 (uip->personalityArrayCount * sizeof(uint32_t));
631 uip->indexCount = secondLevelPages.size() + 1;
633 // Common encodings
634 auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
635 for (const auto &encoding : commonEncodings)
636 *i32p++ = encoding.first;
638 // Personalities
639 for (const Symbol *personality : personalities)
640 *i32p++ = personality->getGotVA() - in.header->addr;
642 // FIXME: LD64 checks and warns aboutgaps or overlapse in cuEntries address
643 // ranges. We should do the same too
645 // Level-1 index
646 uint32_t lsdaOffset =
647 uip->indexSectionOffset +
648 uip->indexCount * sizeof(unwind_info_section_header_index_entry);
649 uint64_t l2PagesOffset = level2PagesOffset;
650 auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
651 for (const SecondLevelPage &page : secondLevelPages) {
652 size_t idx = cuIndices[page.entryIndex];
653 iep->functionOffset = cuEntries[idx].functionAddress - in.header->addr;
654 iep->secondLevelPagesSectionOffset = l2PagesOffset;
655 iep->lsdaIndexArraySectionOffset =
656 lsdaOffset + lsdaIndex.lookup(idx) *
657 sizeof(unwind_info_section_header_lsda_index_entry);
658 iep++;
659 l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
661 // Level-1 sentinel
662 // XXX(vyng): Note that LD64 adds +1 here.
663 // Unsure whether it's a bug or it's their workaround for something else.
664 // See comments from https://reviews.llvm.org/D138320.
665 iep->functionOffset = cueEndBoundary - in.header->addr;
666 iep->secondLevelPagesSectionOffset = 0;
667 iep->lsdaIndexArraySectionOffset =
668 lsdaOffset + entriesWithLsda.size() *
669 sizeof(unwind_info_section_header_lsda_index_entry);
670 iep++;
672 // LSDAs
673 auto *lep =
674 reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
675 for (size_t idx : entriesWithLsda) {
676 const CompactUnwindEntry &cu = cuEntries[idx];
677 lep->lsdaOffset = cu.lsda->getVA(/*off=*/0) - in.header->addr;
678 lep->functionOffset = cu.functionAddress - in.header->addr;
679 lep++;
682 // Level-2 pages
683 auto *pp = reinterpret_cast<uint32_t *>(lep);
684 for (const SecondLevelPage &page : secondLevelPages) {
685 if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
686 uintptr_t functionAddressBase =
687 cuEntries[cuIndices[page.entryIndex]].functionAddress;
688 auto *p2p =
689 reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
690 pp);
691 p2p->kind = page.kind;
692 p2p->entryPageOffset =
693 sizeof(unwind_info_compressed_second_level_page_header);
694 p2p->entryCount = page.entryCount;
695 p2p->encodingsPageOffset =
696 p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
697 p2p->encodingsCount = page.localEncodings.size();
698 auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
699 for (size_t i = 0; i < page.entryCount; i++) {
700 const CompactUnwindEntry &cue =
701 cuEntries[cuIndices[page.entryIndex + i]];
702 auto it = commonEncodingIndexes.find(cue.encoding);
703 if (it == commonEncodingIndexes.end())
704 it = page.localEncodingIndexes.find(cue.encoding);
705 *ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
706 (cue.functionAddress - functionAddressBase);
708 if (!page.localEncodings.empty())
709 memcpy(ep, page.localEncodings.data(),
710 page.localEncodings.size() * sizeof(uint32_t));
711 } else {
712 auto *p2p =
713 reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
714 p2p->kind = page.kind;
715 p2p->entryPageOffset =
716 sizeof(unwind_info_regular_second_level_page_header);
717 p2p->entryCount = page.entryCount;
718 auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
719 for (size_t i = 0; i < page.entryCount; i++) {
720 const CompactUnwindEntry &cue =
721 cuEntries[cuIndices[page.entryIndex + i]];
722 *ep++ = cue.functionAddress;
723 *ep++ = cue.encoding;
726 pp += SECOND_LEVEL_PAGE_WORDS;
730 UnwindInfoSection *macho::makeUnwindInfoSection() {
731 return make<UnwindInfoSectionImpl>();