Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lldb / source / Plugins / ABI / Mips / ABISysV_mips64.cpp
blob82529a3165c8f0c2b4172abe6f71cefe6419bc5f
1 //===-- ABISysV_mips64.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "ABISysV_mips64.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/TargetParser/Triple.h"
14 #include "lldb/Core/Module.h"
15 #include "lldb/Core/PluginManager.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/ValueObjectConstResult.h"
18 #include "lldb/Core/ValueObjectMemory.h"
19 #include "lldb/Core/ValueObjectRegister.h"
20 #include "lldb/Symbol/UnwindPlan.h"
21 #include "lldb/Target/Process.h"
22 #include "lldb/Target/RegisterContext.h"
23 #include "lldb/Target/StackFrame.h"
24 #include "lldb/Target/Target.h"
25 #include "lldb/Target/Thread.h"
26 #include "lldb/Utility/ConstString.h"
27 #include "lldb/Utility/DataExtractor.h"
28 #include "lldb/Utility/LLDBLog.h"
29 #include "lldb/Utility/Log.h"
30 #include "lldb/Utility/RegisterValue.h"
31 #include "lldb/Utility/Status.h"
32 #include <optional>
34 using namespace lldb;
35 using namespace lldb_private;
37 LLDB_PLUGIN_DEFINE(ABISysV_mips64)
39 enum dwarf_regnums {
40 dwarf_r0 = 0,
41 dwarf_r1,
42 dwarf_r2,
43 dwarf_r3,
44 dwarf_r4,
45 dwarf_r5,
46 dwarf_r6,
47 dwarf_r7,
48 dwarf_r8,
49 dwarf_r9,
50 dwarf_r10,
51 dwarf_r11,
52 dwarf_r12,
53 dwarf_r13,
54 dwarf_r14,
55 dwarf_r15,
56 dwarf_r16,
57 dwarf_r17,
58 dwarf_r18,
59 dwarf_r19,
60 dwarf_r20,
61 dwarf_r21,
62 dwarf_r22,
63 dwarf_r23,
64 dwarf_r24,
65 dwarf_r25,
66 dwarf_r26,
67 dwarf_r27,
68 dwarf_r28,
69 dwarf_r29,
70 dwarf_r30,
71 dwarf_r31,
72 dwarf_sr,
73 dwarf_lo,
74 dwarf_hi,
75 dwarf_bad,
76 dwarf_cause,
77 dwarf_pc
80 static const RegisterInfo g_register_infos_mips64[] = {
81 // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME
82 // DWARF GENERIC PROCESS PLUGIN
83 // LLDB NATIVE
84 // ======== ====== == === ============= ========== =============
85 // ================= ==================== =================
86 // ====================
87 {"r0",
88 "zero",
91 eEncodingUint,
92 eFormatHex,
93 {dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
94 LLDB_INVALID_REGNUM},
95 nullptr,
96 nullptr,
97 nullptr,
99 {"r1",
100 "AT",
103 eEncodingUint,
104 eFormatHex,
105 {dwarf_r1, dwarf_r1, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
106 LLDB_INVALID_REGNUM},
107 nullptr,
108 nullptr,
109 nullptr,
112 {"r2",
113 "v0",
116 eEncodingUint,
117 eFormatHex,
118 {dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
119 LLDB_INVALID_REGNUM},
120 nullptr,
121 nullptr,
122 nullptr,
124 {"r3",
125 "v1",
128 eEncodingUint,
129 eFormatHex,
130 {dwarf_r3, dwarf_r3, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
131 LLDB_INVALID_REGNUM},
132 nullptr,
133 nullptr,
134 nullptr,
136 {"r4",
137 nullptr,
140 eEncodingUint,
141 eFormatHex,
142 {dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG1, LLDB_INVALID_REGNUM,
143 LLDB_INVALID_REGNUM},
144 nullptr,
145 nullptr,
146 nullptr,
148 {"r5",
149 nullptr,
152 eEncodingUint,
153 eFormatHex,
154 {dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG2, LLDB_INVALID_REGNUM,
155 LLDB_INVALID_REGNUM},
156 nullptr,
157 nullptr,
158 nullptr,
160 {"r6",
161 nullptr,
164 eEncodingUint,
165 eFormatHex,
166 {dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG3, LLDB_INVALID_REGNUM,
167 LLDB_INVALID_REGNUM},
168 nullptr,
169 nullptr,
170 nullptr,
172 {"r7",
173 nullptr,
176 eEncodingUint,
177 eFormatHex,
178 {dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG4, LLDB_INVALID_REGNUM,
179 LLDB_INVALID_REGNUM},
180 nullptr,
181 nullptr,
182 nullptr,
184 {"r8",
185 nullptr,
188 eEncodingUint,
189 eFormatHex,
190 {dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG5, LLDB_INVALID_REGNUM,
191 LLDB_INVALID_REGNUM},
192 nullptr,
193 nullptr,
194 nullptr,
196 {"r9",
197 nullptr,
200 eEncodingUint,
201 eFormatHex,
202 {dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG6, LLDB_INVALID_REGNUM,
203 LLDB_INVALID_REGNUM},
204 nullptr,
205 nullptr,
206 nullptr,
208 {"r10",
209 nullptr,
212 eEncodingUint,
213 eFormatHex,
214 {dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG7, LLDB_INVALID_REGNUM,
215 LLDB_INVALID_REGNUM},
216 nullptr,
217 nullptr,
218 nullptr,
220 {"r11",
221 nullptr,
224 eEncodingUint,
225 eFormatHex,
226 {dwarf_r11, dwarf_r11, LLDB_REGNUM_GENERIC_ARG8, LLDB_INVALID_REGNUM,
227 LLDB_INVALID_REGNUM},
228 nullptr,
229 nullptr,
230 nullptr,
232 {"r12",
233 nullptr,
236 eEncodingUint,
237 eFormatHex,
238 {dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
239 LLDB_INVALID_REGNUM},
240 nullptr,
241 nullptr,
242 nullptr,
244 {"r13",
245 nullptr,
248 eEncodingUint,
249 eFormatHex,
250 {dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
251 LLDB_INVALID_REGNUM},
252 nullptr,
253 nullptr,
254 nullptr,
256 {"r14",
257 nullptr,
260 eEncodingUint,
261 eFormatHex,
262 {dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
263 LLDB_INVALID_REGNUM},
264 nullptr,
265 nullptr,
266 nullptr,
268 {"r15",
269 nullptr,
272 eEncodingUint,
273 eFormatHex,
274 {dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
275 LLDB_INVALID_REGNUM},
276 nullptr,
277 nullptr,
278 nullptr,
280 {"r16",
281 nullptr,
284 eEncodingUint,
285 eFormatHex,
286 {dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
287 LLDB_INVALID_REGNUM},
288 nullptr,
289 nullptr,
290 nullptr,
292 {"r17",
293 nullptr,
296 eEncodingUint,
297 eFormatHex,
298 {dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
299 LLDB_INVALID_REGNUM},
300 nullptr,
301 nullptr,
302 nullptr,
304 {"r18",
305 nullptr,
308 eEncodingUint,
309 eFormatHex,
310 {dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
311 LLDB_INVALID_REGNUM},
312 nullptr,
313 nullptr,
314 nullptr,
316 {"r19",
317 nullptr,
320 eEncodingUint,
321 eFormatHex,
322 {dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
323 LLDB_INVALID_REGNUM},
324 nullptr,
325 nullptr,
326 nullptr,
328 {"r20",
329 nullptr,
332 eEncodingUint,
333 eFormatHex,
334 {dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
335 LLDB_INVALID_REGNUM},
336 nullptr,
337 nullptr,
338 nullptr,
340 {"r21",
341 nullptr,
344 eEncodingUint,
345 eFormatHex,
346 {dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
347 LLDB_INVALID_REGNUM},
348 nullptr,
349 nullptr,
350 nullptr,
352 {"r22",
353 nullptr,
356 eEncodingUint,
357 eFormatHex,
358 {dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
359 LLDB_INVALID_REGNUM},
360 nullptr,
361 nullptr,
362 nullptr,
364 {"r23",
365 nullptr,
368 eEncodingUint,
369 eFormatHex,
370 {dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
371 LLDB_INVALID_REGNUM},
372 nullptr,
373 nullptr,
374 nullptr,
376 {"r24",
377 nullptr,
380 eEncodingUint,
381 eFormatHex,
382 {dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
383 LLDB_INVALID_REGNUM},
384 nullptr,
385 nullptr,
386 nullptr,
388 {"r25",
389 nullptr,
392 eEncodingUint,
393 eFormatHex,
394 {dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
395 LLDB_INVALID_REGNUM},
396 nullptr,
397 nullptr,
398 nullptr,
400 {"r26",
401 nullptr,
404 eEncodingUint,
405 eFormatHex,
406 {dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
407 LLDB_INVALID_REGNUM},
408 nullptr,
409 nullptr,
410 nullptr,
412 {"r27",
413 nullptr,
416 eEncodingUint,
417 eFormatHex,
418 {dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
419 LLDB_INVALID_REGNUM},
420 nullptr,
421 nullptr,
422 nullptr,
424 {"r28",
425 "gp",
428 eEncodingUint,
429 eFormatHex,
430 {dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
431 LLDB_INVALID_REGNUM},
432 nullptr,
433 nullptr,
434 nullptr,
436 {"r29",
437 nullptr,
440 eEncodingUint,
441 eFormatHex,
442 {dwarf_r29, dwarf_r29, LLDB_REGNUM_GENERIC_SP, LLDB_INVALID_REGNUM,
443 LLDB_INVALID_REGNUM},
444 nullptr,
445 nullptr,
446 nullptr,
448 {"r30",
449 nullptr,
452 eEncodingUint,
453 eFormatHex,
454 {dwarf_r30, dwarf_r30, LLDB_REGNUM_GENERIC_FP, LLDB_INVALID_REGNUM,
455 LLDB_INVALID_REGNUM},
456 nullptr,
457 nullptr,
458 nullptr,
460 {"r31",
461 nullptr,
464 eEncodingUint,
465 eFormatHex,
466 {dwarf_r31, dwarf_r31, LLDB_REGNUM_GENERIC_RA, LLDB_INVALID_REGNUM,
467 LLDB_INVALID_REGNUM},
468 nullptr,
469 nullptr,
470 nullptr,
472 {"sr",
473 nullptr,
476 eEncodingUint,
477 eFormatHex,
478 {dwarf_sr, dwarf_sr, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM,
479 LLDB_INVALID_REGNUM},
480 nullptr,
481 nullptr,
482 nullptr,
484 {"lo",
485 nullptr,
488 eEncodingUint,
489 eFormatHex,
490 {dwarf_lo, dwarf_lo, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
491 LLDB_INVALID_REGNUM},
492 nullptr,
493 nullptr,
494 nullptr,
496 {"hi",
497 nullptr,
500 eEncodingUint,
501 eFormatHex,
502 {dwarf_hi, dwarf_hi, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
503 LLDB_INVALID_REGNUM},
504 nullptr,
505 nullptr,
506 nullptr,
508 {"bad",
509 nullptr,
512 eEncodingUint,
513 eFormatHex,
514 {dwarf_bad, dwarf_bad, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
515 LLDB_INVALID_REGNUM},
516 nullptr,
517 nullptr,
518 nullptr,
520 {"cause",
521 nullptr,
524 eEncodingUint,
525 eFormatHex,
526 {dwarf_cause, dwarf_cause, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
527 LLDB_INVALID_REGNUM},
528 nullptr,
529 nullptr,
530 nullptr,
532 {"pc",
533 nullptr,
536 eEncodingUint,
537 eFormatHex,
538 {dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_REGNUM,
539 LLDB_INVALID_REGNUM},
540 nullptr,
541 nullptr,
542 nullptr,
546 static const uint32_t k_num_register_infos = std::size(g_register_infos_mips64);
548 const lldb_private::RegisterInfo *
549 ABISysV_mips64::GetRegisterInfoArray(uint32_t &count) {
550 count = k_num_register_infos;
551 return g_register_infos_mips64;
554 size_t ABISysV_mips64::GetRedZoneSize() const { return 0; }
556 // Static Functions
558 ABISP
559 ABISysV_mips64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
560 if (arch.GetTriple().isMIPS64())
561 return ABISP(
562 new ABISysV_mips64(std::move(process_sp), MakeMCRegisterInfo(arch)));
563 return ABISP();
566 bool ABISysV_mips64::PrepareTrivialCall(Thread &thread, addr_t sp,
567 addr_t func_addr, addr_t return_addr,
568 llvm::ArrayRef<addr_t> args) const {
569 Log *log = GetLog(LLDBLog::Expressions);
571 if (log) {
572 StreamString s;
573 s.Printf("ABISysV_mips64::PrepareTrivialCall (tid = 0x%" PRIx64
574 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
575 ", return_addr = 0x%" PRIx64,
576 thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
577 (uint64_t)return_addr);
579 for (size_t i = 0; i < args.size(); ++i)
580 s.Printf(", arg%zd = 0x%" PRIx64, i + 1, args[i]);
581 s.PutCString(")");
582 log->PutString(s.GetString());
585 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
586 if (!reg_ctx)
587 return false;
589 const RegisterInfo *reg_info = nullptr;
591 if (args.size() > 8) // TODO handle more than 8 arguments
592 return false;
594 for (size_t i = 0; i < args.size(); ++i) {
595 reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
596 LLDB_REGNUM_GENERIC_ARG1 + i);
597 LLDB_LOGF(log, "About to write arg%zd (0x%" PRIx64 ") into %s", i + 1,
598 args[i], reg_info->name);
599 if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
600 return false;
603 // First, align the SP
605 LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
606 (uint64_t)sp, (uint64_t)(sp & ~0xfull));
608 sp &= ~(0xfull); // 16-byte alignment
610 Status error;
611 const RegisterInfo *pc_reg_info =
612 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
613 const RegisterInfo *sp_reg_info =
614 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
615 const RegisterInfo *ra_reg_info =
616 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA);
617 const RegisterInfo *r25_info = reg_ctx->GetRegisterInfoByName("r25", 0);
618 const RegisterInfo *r0_info = reg_ctx->GetRegisterInfoByName("zero", 0);
620 LLDB_LOGF(log, "Writing R0: 0x%" PRIx64, (uint64_t)0);
622 /* Write r0 with 0, in case we are stopped in syscall,
623 * such setting prevents automatic decrement of the PC.
624 * This clears the bug 23659 for MIPS.
626 if (!reg_ctx->WriteRegisterFromUnsigned(r0_info, (uint64_t)0))
627 return false;
629 LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
631 // Set "sp" to the requested value
632 if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
633 return false;
635 LLDB_LOGF(log, "Writing RA: 0x%" PRIx64, (uint64_t)return_addr);
637 // Set "ra" to the return address
638 if (!reg_ctx->WriteRegisterFromUnsigned(ra_reg_info, return_addr))
639 return false;
641 LLDB_LOGF(log, "Writing PC: 0x%" PRIx64, (uint64_t)func_addr);
643 // Set pc to the address of the called function.
644 if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
645 return false;
647 LLDB_LOGF(log, "Writing r25: 0x%" PRIx64, (uint64_t)func_addr);
649 // All callers of position independent functions must place the address of
650 // the called function in t9 (r25)
651 if (!reg_ctx->WriteRegisterFromUnsigned(r25_info, func_addr))
652 return false;
654 return true;
657 bool ABISysV_mips64::GetArgumentValues(Thread &thread,
658 ValueList &values) const {
659 return false;
662 Status ABISysV_mips64::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
663 lldb::ValueObjectSP &new_value_sp) {
664 Status error;
665 if (!new_value_sp) {
666 error.SetErrorString("Empty value object for return value.");
667 return error;
670 CompilerType compiler_type = new_value_sp->GetCompilerType();
671 if (!compiler_type) {
672 error.SetErrorString("Null clang type for return value.");
673 return error;
676 Thread *thread = frame_sp->GetThread().get();
678 RegisterContext *reg_ctx = thread->GetRegisterContext().get();
680 if (!reg_ctx)
681 error.SetErrorString("no registers are available");
683 DataExtractor data;
684 Status data_error;
685 size_t num_bytes = new_value_sp->GetData(data, data_error);
686 if (data_error.Fail()) {
687 error.SetErrorStringWithFormat(
688 "Couldn't convert return value to raw data: %s",
689 data_error.AsCString());
690 return error;
693 const uint32_t type_flags = compiler_type.GetTypeInfo(nullptr);
695 if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) {
696 if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) {
697 lldb::offset_t offset = 0;
699 if (num_bytes <= 16) {
700 const RegisterInfo *r2_info = reg_ctx->GetRegisterInfoByName("r2", 0);
701 if (num_bytes <= 8) {
702 uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
704 if (!reg_ctx->WriteRegisterFromUnsigned(r2_info, raw_value))
705 error.SetErrorString("failed to write register r2");
706 } else {
707 uint64_t raw_value = data.GetMaxU64(&offset, 8);
708 if (reg_ctx->WriteRegisterFromUnsigned(r2_info, raw_value)) {
709 const RegisterInfo *r3_info =
710 reg_ctx->GetRegisterInfoByName("r3", 0);
711 raw_value = data.GetMaxU64(&offset, num_bytes - offset);
713 if (!reg_ctx->WriteRegisterFromUnsigned(r3_info, raw_value))
714 error.SetErrorString("failed to write register r3");
715 } else
716 error.SetErrorString("failed to write register r2");
718 } else {
719 error.SetErrorString("We don't support returning longer than 128 bit "
720 "integer values at present.");
722 } else if (type_flags & eTypeIsFloat) {
723 error.SetErrorString("TODO: Handle Float Types.");
725 } else if (type_flags & eTypeIsVector) {
726 error.SetErrorString("returning vector values are not supported");
729 return error;
732 ValueObjectSP ABISysV_mips64::GetReturnValueObjectSimple(
733 Thread &thread, CompilerType &return_compiler_type) const {
734 ValueObjectSP return_valobj_sp;
735 return return_valobj_sp;
738 ValueObjectSP ABISysV_mips64::GetReturnValueObjectImpl(
739 Thread &thread, CompilerType &return_compiler_type) const {
740 ValueObjectSP return_valobj_sp;
741 Value value;
742 Status error;
744 ExecutionContext exe_ctx(thread.shared_from_this());
745 if (exe_ctx.GetTargetPtr() == nullptr || exe_ctx.GetProcessPtr() == nullptr)
746 return return_valobj_sp;
748 value.SetCompilerType(return_compiler_type);
750 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
751 if (!reg_ctx)
752 return return_valobj_sp;
754 Target *target = exe_ctx.GetTargetPtr();
755 const ArchSpec target_arch = target->GetArchitecture();
756 ByteOrder target_byte_order = target_arch.GetByteOrder();
757 std::optional<uint64_t> byte_size = return_compiler_type.GetByteSize(&thread);
758 if (!byte_size)
759 return return_valobj_sp;
760 const uint32_t type_flags = return_compiler_type.GetTypeInfo(nullptr);
761 uint32_t fp_flag =
762 target_arch.GetFlags() & lldb_private::ArchSpec::eMIPS_ABI_FP_mask;
764 const RegisterInfo *r2_info = reg_ctx->GetRegisterInfoByName("r2", 0);
765 const RegisterInfo *r3_info = reg_ctx->GetRegisterInfoByName("r3", 0);
766 assert(r2_info && r3_info && "Basic registers should always be present.");
768 if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) {
769 value.SetValueType(Value::ValueType::Scalar);
771 bool success = false;
772 if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) {
773 // Extract the register context so we can read arguments from registers
774 // In MIPS register "r2" (v0) holds the integer function return values
776 uint64_t raw_value = reg_ctx->ReadRegisterAsUnsigned(r2_info, 0);
778 const bool is_signed = (type_flags & eTypeIsSigned) != 0;
779 switch (*byte_size) {
780 default:
781 break;
783 case sizeof(uint64_t):
784 if (is_signed)
785 value.GetScalar() = (int64_t)(raw_value);
786 else
787 value.GetScalar() = (uint64_t)(raw_value);
788 success = true;
789 break;
791 case sizeof(uint32_t):
792 if (is_signed)
793 value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
794 else
795 value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
796 success = true;
797 break;
799 case sizeof(uint16_t):
800 if (is_signed)
801 value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
802 else
803 value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
804 success = true;
805 break;
807 case sizeof(uint8_t):
808 if (is_signed)
809 value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
810 else
811 value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
812 success = true;
813 break;
815 } else if (type_flags & eTypeIsFloat) {
816 if (type_flags & eTypeIsComplex) {
817 // Don't handle complex yet.
818 } else if (IsSoftFloat(fp_flag)) {
819 uint64_t raw_value = reg_ctx->ReadRegisterAsUnsigned(r2_info, 0);
820 switch (*byte_size) {
821 case 4:
822 value.GetScalar() = *((float *)(&raw_value));
823 success = true;
824 break;
825 case 8:
826 value.GetScalar() = *((double *)(&raw_value));
827 success = true;
828 break;
829 case 16:
830 uint64_t result[2];
831 if (target_byte_order == eByteOrderLittle) {
832 result[0] = raw_value;
833 result[1] = reg_ctx->ReadRegisterAsUnsigned(r3_info, 0);
834 value.GetScalar() = *((long double *)(result));
835 } else {
836 result[0] = reg_ctx->ReadRegisterAsUnsigned(r3_info, 0);
837 result[1] = raw_value;
838 value.GetScalar() = *((long double *)(result));
840 success = true;
841 break;
844 } else {
845 if (*byte_size <= sizeof(long double)) {
846 const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0);
848 RegisterValue f0_value;
849 DataExtractor f0_data;
851 reg_ctx->ReadRegister(f0_info, f0_value);
853 f0_value.GetData(f0_data);
855 lldb::offset_t offset = 0;
856 if (*byte_size == sizeof(float)) {
857 value.GetScalar() = (float)f0_data.GetFloat(&offset);
858 success = true;
859 } else if (*byte_size == sizeof(double)) {
860 value.GetScalar() = (double)f0_data.GetDouble(&offset);
861 success = true;
862 } else if (*byte_size == sizeof(long double)) {
863 const RegisterInfo *f2_info =
864 reg_ctx->GetRegisterInfoByName("f2", 0);
865 RegisterValue f2_value;
866 DataExtractor f2_data;
867 reg_ctx->ReadRegister(f2_info, f2_value);
868 DataExtractor *copy_from_extractor = nullptr;
869 WritableDataBufferSP data_sp(new DataBufferHeap(16, 0));
870 DataExtractor return_ext(
871 data_sp, target_byte_order,
872 target->GetArchitecture().GetAddressByteSize());
874 if (target_byte_order == eByteOrderLittle) {
875 copy_from_extractor = &f0_data;
876 copy_from_extractor->CopyByteOrderedData(
877 0, 8, data_sp->GetBytes(), *byte_size - 8, target_byte_order);
878 f2_value.GetData(f2_data);
879 copy_from_extractor = &f2_data;
880 copy_from_extractor->CopyByteOrderedData(
881 0, 8, data_sp->GetBytes() + 8, *byte_size - 8,
882 target_byte_order);
883 } else {
884 copy_from_extractor = &f0_data;
885 copy_from_extractor->CopyByteOrderedData(
886 0, 8, data_sp->GetBytes() + 8, *byte_size - 8,
887 target_byte_order);
888 f2_value.GetData(f2_data);
889 copy_from_extractor = &f2_data;
890 copy_from_extractor->CopyByteOrderedData(
891 0, 8, data_sp->GetBytes(), *byte_size - 8, target_byte_order);
894 return_valobj_sp = ValueObjectConstResult::Create(
895 &thread, return_compiler_type, ConstString(""), return_ext);
896 return return_valobj_sp;
902 if (success)
903 return_valobj_sp = ValueObjectConstResult::Create(
904 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
905 } else if (type_flags & eTypeIsStructUnion || type_flags & eTypeIsClass ||
906 type_flags & eTypeIsVector) {
907 // Any structure of up to 16 bytes in size is returned in the registers.
908 if (*byte_size <= 16) {
909 WritableDataBufferSP data_sp(new DataBufferHeap(16, 0));
910 DataExtractor return_ext(data_sp, target_byte_order,
911 target->GetArchitecture().GetAddressByteSize());
913 RegisterValue r2_value, r3_value, f0_value, f1_value, f2_value;
914 // Tracks how much bytes of r2 and r3 registers we've consumed so far
915 uint32_t integer_bytes = 0;
917 // True if return values are in FP return registers.
918 bool use_fp_regs = false;
919 // True if we found any non floating point field in structure.
920 bool found_non_fp_field = false;
921 // True if return values are in r2 register.
922 bool use_r2 = false;
923 // True if return values are in r3 register.
924 bool use_r3 = false;
925 // True if the result is copied into our data buffer
926 bool sucess = false;
927 std::string name;
928 bool is_complex;
929 uint32_t count;
930 const uint32_t num_children = return_compiler_type.GetNumFields();
932 // A structure consisting of one or two FP values (and nothing else) will
933 // be returned in the two FP return-value registers i.e fp0 and fp2.
934 if (num_children <= 2) {
935 uint64_t field_bit_offset = 0;
937 // Check if this structure contains only floating point fields
938 for (uint32_t idx = 0; idx < num_children; idx++) {
939 CompilerType field_compiler_type =
940 return_compiler_type.GetFieldAtIndex(idx, name, &field_bit_offset,
941 nullptr, nullptr);
943 if (field_compiler_type.IsFloatingPointType(count, is_complex))
944 use_fp_regs = true;
945 else
946 found_non_fp_field = true;
949 if (use_fp_regs && !found_non_fp_field) {
950 // We have one or two FP-only values in this structure. Get it from
951 // f0/f2 registers.
952 DataExtractor f0_data, f1_data, f2_data;
953 const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0);
954 const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
955 const RegisterInfo *f2_info = reg_ctx->GetRegisterInfoByName("f2", 0);
957 reg_ctx->ReadRegister(f0_info, f0_value);
958 reg_ctx->ReadRegister(f2_info, f2_value);
960 f0_value.GetData(f0_data);
962 for (uint32_t idx = 0; idx < num_children; idx++) {
963 CompilerType field_compiler_type =
964 return_compiler_type.GetFieldAtIndex(
965 idx, name, &field_bit_offset, nullptr, nullptr);
966 std::optional<uint64_t> field_byte_width =
967 field_compiler_type.GetByteSize(&thread);
968 if (!field_byte_width)
969 return return_valobj_sp;
971 DataExtractor *copy_from_extractor = nullptr;
972 uint64_t return_value[2];
973 offset_t offset = 0;
975 if (idx == 0) {
976 // This case is for long double type.
977 if (*field_byte_width == 16) {
979 // If structure contains long double type, then it is returned
980 // in fp0/fp1 registers.
981 if (target_byte_order == eByteOrderLittle) {
982 return_value[0] = f0_data.GetU64(&offset);
983 reg_ctx->ReadRegister(f1_info, f1_value);
984 f1_value.GetData(f1_data);
985 offset = 0;
986 return_value[1] = f1_data.GetU64(&offset);
987 } else {
988 return_value[1] = f0_data.GetU64(&offset);
989 reg_ctx->ReadRegister(f1_info, f1_value);
990 f1_value.GetData(f1_data);
991 offset = 0;
992 return_value[0] = f1_data.GetU64(&offset);
995 f0_data.SetData(return_value, *field_byte_width,
996 target_byte_order);
998 copy_from_extractor = &f0_data; // This is in f0, copy from
999 // register to our result
1000 // structure
1001 } else {
1002 f2_value.GetData(f2_data);
1003 // This is in f2, copy from register to our result structure
1004 copy_from_extractor = &f2_data;
1007 // Sanity check to avoid crash
1008 if (!copy_from_extractor ||
1009 *field_byte_width > copy_from_extractor->GetByteSize())
1010 return return_valobj_sp;
1012 // copy the register contents into our data buffer
1013 copy_from_extractor->CopyByteOrderedData(
1014 0, *field_byte_width,
1015 data_sp->GetBytes() + (field_bit_offset / 8), *field_byte_width,
1016 target_byte_order);
1019 // The result is in our data buffer. Create a variable object out of
1020 // it
1021 return_valobj_sp = ValueObjectConstResult::Create(
1022 &thread, return_compiler_type, ConstString(""), return_ext);
1024 return return_valobj_sp;
1028 // If we reach here, it means this structure either contains more than
1029 // two fields or it contains at least one non floating point type. In
1030 // that case, all fields are returned in GP return registers.
1031 for (uint32_t idx = 0; idx < num_children; idx++) {
1032 uint64_t field_bit_offset = 0;
1033 bool is_signed;
1034 uint32_t padding;
1036 CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
1037 idx, name, &field_bit_offset, nullptr, nullptr);
1038 std::optional<uint64_t> field_byte_width =
1039 field_compiler_type.GetByteSize(&thread);
1041 // if we don't know the size of the field (e.g. invalid type), just
1042 // bail out
1043 if (!field_byte_width || *field_byte_width == 0)
1044 break;
1046 uint32_t field_byte_offset = field_bit_offset / 8;
1048 if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
1049 field_compiler_type.IsPointerType() ||
1050 field_compiler_type.IsFloatingPointType(count, is_complex)) {
1051 padding = field_byte_offset - integer_bytes;
1053 if (integer_bytes < 8) {
1054 // We have not yet consumed r2 completely.
1055 if (integer_bytes + *field_byte_width + padding <= 8) {
1056 // This field fits in r2, copy its value from r2 to our result
1057 // structure
1058 integer_bytes = integer_bytes + *field_byte_width +
1059 padding; // Increase the consumed bytes.
1060 use_r2 = true;
1061 } else {
1062 // There isn't enough space left in r2 for this field, so this
1063 // will be in r3.
1064 integer_bytes = integer_bytes + *field_byte_width +
1065 padding; // Increase the consumed bytes.
1066 use_r3 = true;
1069 // We already have consumed at-least 8 bytes that means r2 is done,
1070 // and this field will be in r3. Check if this field can fit in r3.
1071 else if (integer_bytes + *field_byte_width + padding <= 16) {
1072 integer_bytes = integer_bytes + *field_byte_width + padding;
1073 use_r3 = true;
1074 } else {
1075 // There isn't any space left for this field, this should not
1076 // happen as we have already checked the overall size is not
1077 // greater than 16 bytes. For now, return a nullptr return value
1078 // object.
1079 return return_valobj_sp;
1083 // Vector types up to 16 bytes are returned in GP return registers
1084 if (type_flags & eTypeIsVector) {
1085 if (*byte_size <= 8)
1086 use_r2 = true;
1087 else {
1088 use_r2 = true;
1089 use_r3 = true;
1093 if (use_r2) {
1094 reg_ctx->ReadRegister(r2_info, r2_value);
1096 const size_t bytes_copied = r2_value.GetAsMemoryData(
1097 *r2_info, data_sp->GetBytes(), r2_info->byte_size,
1098 target_byte_order, error);
1099 if (bytes_copied != r2_info->byte_size)
1100 return return_valobj_sp;
1101 sucess = true;
1103 if (use_r3) {
1104 reg_ctx->ReadRegister(r3_info, r3_value);
1105 const size_t bytes_copied = r3_value.GetAsMemoryData(
1106 *r3_info, data_sp->GetBytes() + r2_info->byte_size,
1107 r3_info->byte_size, target_byte_order, error);
1109 if (bytes_copied != r3_info->byte_size)
1110 return return_valobj_sp;
1111 sucess = true;
1113 if (sucess) {
1114 // The result is in our data buffer. Create a variable object out of
1115 // it
1116 return_valobj_sp = ValueObjectConstResult::Create(
1117 &thread, return_compiler_type, ConstString(""), return_ext);
1119 return return_valobj_sp;
1122 // Any structure/vector greater than 16 bytes in size is returned in
1123 // memory. The pointer to that memory is returned in r2.
1124 uint64_t mem_address = reg_ctx->ReadRegisterAsUnsigned(
1125 reg_ctx->GetRegisterInfoByName("r2", 0), 0);
1127 // We have got the address. Create a memory object out of it
1128 return_valobj_sp = ValueObjectMemory::Create(
1129 &thread, "", Address(mem_address, nullptr), return_compiler_type);
1131 return return_valobj_sp;
1134 bool ABISysV_mips64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
1135 unwind_plan.Clear();
1136 unwind_plan.SetRegisterKind(eRegisterKindDWARF);
1138 UnwindPlan::RowSP row(new UnwindPlan::Row);
1140 // Our Call Frame Address is the stack pointer value
1141 row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_r29, 0);
1143 // The previous PC is in the RA
1144 row->SetRegisterLocationToRegister(dwarf_pc, dwarf_r31, true);
1145 unwind_plan.AppendRow(row);
1147 // All other registers are the same.
1149 unwind_plan.SetSourceName("mips64 at-func-entry default");
1150 unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
1151 unwind_plan.SetReturnAddressRegister(dwarf_r31);
1152 return true;
1155 bool ABISysV_mips64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
1156 unwind_plan.Clear();
1157 unwind_plan.SetRegisterKind(eRegisterKindDWARF);
1159 UnwindPlan::RowSP row(new UnwindPlan::Row);
1161 row->SetUnspecifiedRegistersAreUndefined(true);
1162 row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_r29, 0);
1164 row->SetRegisterLocationToRegister(dwarf_pc, dwarf_r31, true);
1166 unwind_plan.AppendRow(row);
1167 unwind_plan.SetSourceName("mips64 default unwind plan");
1168 unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
1169 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
1170 unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
1171 return true;
1174 bool ABISysV_mips64::RegisterIsVolatile(const RegisterInfo *reg_info) {
1175 return !RegisterIsCalleeSaved(reg_info);
1178 bool ABISysV_mips64::IsSoftFloat(uint32_t fp_flag) const {
1179 return (fp_flag == lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT);
1182 bool ABISysV_mips64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
1183 if (reg_info) {
1184 // Preserved registers are :
1185 // r16-r23, r28, r29, r30, r31
1187 int reg = ((reg_info->byte_offset) / 8);
1189 bool save = (reg >= 16) && (reg <= 23);
1190 save |= (reg >= 28) && (reg <= 31);
1192 return save;
1194 return false;
1197 void ABISysV_mips64::Initialize() {
1198 PluginManager::RegisterPlugin(
1199 GetPluginNameStatic(), "System V ABI for mips64 targets", CreateInstance);
1202 void ABISysV_mips64::Terminate() {
1203 PluginManager::UnregisterPlugin(CreateInstance);