1 //===-- ABISysV_ppc.cpp ---------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "ABISysV_ppc.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/TargetParser/Triple.h"
14 #include "lldb/Core/Module.h"
15 #include "lldb/Core/PluginManager.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/ValueObjectConstResult.h"
18 #include "lldb/Core/ValueObjectMemory.h"
19 #include "lldb/Core/ValueObjectRegister.h"
20 #include "lldb/Symbol/UnwindPlan.h"
21 #include "lldb/Target/Process.h"
22 #include "lldb/Target/RegisterContext.h"
23 #include "lldb/Target/StackFrame.h"
24 #include "lldb/Target/Target.h"
25 #include "lldb/Target/Thread.h"
26 #include "lldb/Utility/ConstString.h"
27 #include "lldb/Utility/DataExtractor.h"
28 #include "lldb/Utility/LLDBLog.h"
29 #include "lldb/Utility/Log.h"
30 #include "lldb/Utility/RegisterValue.h"
31 #include "lldb/Utility/Status.h"
35 using namespace lldb_private
;
37 LLDB_PLUGIN_DEFINE(ABISysV_ppc
)
113 // Note that the size and offset will be updated by platform-specific classes.
114 #define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4) \
116 #reg, alt, 8, 0, eEncodingUint, eFormatHex, {kind1, kind2, kind3, kind4 }, \
117 nullptr, nullptr, nullptr, \
120 static const RegisterInfo g_register_infos
[] = {
121 // General purpose registers. eh_frame, DWARF,
122 // Generic, Process Plugin
123 DEFINE_GPR(r0
, nullptr, dwarf_r0
, dwarf_r0
, LLDB_INVALID_REGNUM
,
124 LLDB_INVALID_REGNUM
),
125 DEFINE_GPR(r1
, nullptr, dwarf_r1
, dwarf_r1
, LLDB_REGNUM_GENERIC_SP
,
126 LLDB_INVALID_REGNUM
),
127 DEFINE_GPR(r2
, nullptr, dwarf_r2
, dwarf_r2
, LLDB_INVALID_REGNUM
,
128 LLDB_INVALID_REGNUM
),
129 DEFINE_GPR(r3
, nullptr, dwarf_r3
, dwarf_r3
, LLDB_REGNUM_GENERIC_ARG1
,
130 LLDB_INVALID_REGNUM
),
131 DEFINE_GPR(r4
, nullptr, dwarf_r4
, dwarf_r4
, LLDB_REGNUM_GENERIC_ARG2
,
132 LLDB_INVALID_REGNUM
),
133 DEFINE_GPR(r5
, nullptr, dwarf_r5
, dwarf_r5
, LLDB_REGNUM_GENERIC_ARG3
,
134 LLDB_INVALID_REGNUM
),
135 DEFINE_GPR(r6
, nullptr, dwarf_r6
, dwarf_r6
, LLDB_REGNUM_GENERIC_ARG4
,
136 LLDB_INVALID_REGNUM
),
137 DEFINE_GPR(r7
, nullptr, dwarf_r7
, dwarf_r7
, LLDB_REGNUM_GENERIC_ARG5
,
138 LLDB_INVALID_REGNUM
),
139 DEFINE_GPR(r8
, nullptr, dwarf_r8
, dwarf_r8
, LLDB_REGNUM_GENERIC_ARG6
,
140 LLDB_INVALID_REGNUM
),
141 DEFINE_GPR(r9
, nullptr, dwarf_r9
, dwarf_r9
, LLDB_REGNUM_GENERIC_ARG7
,
142 LLDB_INVALID_REGNUM
),
143 DEFINE_GPR(r10
, nullptr, dwarf_r10
, dwarf_r10
, LLDB_REGNUM_GENERIC_ARG8
,
144 LLDB_INVALID_REGNUM
),
145 DEFINE_GPR(r11
, nullptr, dwarf_r11
, dwarf_r11
, LLDB_INVALID_REGNUM
,
146 LLDB_INVALID_REGNUM
),
147 DEFINE_GPR(r12
, nullptr, dwarf_r12
, dwarf_r12
, LLDB_INVALID_REGNUM
,
148 LLDB_INVALID_REGNUM
),
149 DEFINE_GPR(r13
, nullptr, dwarf_r13
, dwarf_r13
, LLDB_INVALID_REGNUM
,
150 LLDB_INVALID_REGNUM
),
151 DEFINE_GPR(r14
, nullptr, dwarf_r14
, dwarf_r14
, LLDB_INVALID_REGNUM
,
152 LLDB_INVALID_REGNUM
),
153 DEFINE_GPR(r15
, nullptr, dwarf_r15
, dwarf_r15
, LLDB_INVALID_REGNUM
,
154 LLDB_INVALID_REGNUM
),
155 DEFINE_GPR(r16
, nullptr, dwarf_r16
, dwarf_r16
, LLDB_INVALID_REGNUM
,
156 LLDB_INVALID_REGNUM
),
157 DEFINE_GPR(r17
, nullptr, dwarf_r17
, dwarf_r17
, LLDB_INVALID_REGNUM
,
158 LLDB_INVALID_REGNUM
),
159 DEFINE_GPR(r18
, nullptr, dwarf_r18
, dwarf_r18
, LLDB_INVALID_REGNUM
,
160 LLDB_INVALID_REGNUM
),
161 DEFINE_GPR(r19
, nullptr, dwarf_r19
, dwarf_r19
, LLDB_INVALID_REGNUM
,
162 LLDB_INVALID_REGNUM
),
163 DEFINE_GPR(r20
, nullptr, dwarf_r20
, dwarf_r20
, LLDB_INVALID_REGNUM
,
164 LLDB_INVALID_REGNUM
),
165 DEFINE_GPR(r21
, nullptr, dwarf_r21
, dwarf_r21
, LLDB_INVALID_REGNUM
,
166 LLDB_INVALID_REGNUM
),
167 DEFINE_GPR(r22
, nullptr, dwarf_r22
, dwarf_r22
, LLDB_INVALID_REGNUM
,
168 LLDB_INVALID_REGNUM
),
169 DEFINE_GPR(r23
, nullptr, dwarf_r23
, dwarf_r23
, LLDB_INVALID_REGNUM
,
170 LLDB_INVALID_REGNUM
),
171 DEFINE_GPR(r24
, nullptr, dwarf_r24
, dwarf_r24
, LLDB_INVALID_REGNUM
,
172 LLDB_INVALID_REGNUM
),
173 DEFINE_GPR(r25
, nullptr, dwarf_r25
, dwarf_r25
, LLDB_INVALID_REGNUM
,
174 LLDB_INVALID_REGNUM
),
175 DEFINE_GPR(r26
, nullptr, dwarf_r26
, dwarf_r26
, LLDB_INVALID_REGNUM
,
176 LLDB_INVALID_REGNUM
),
177 DEFINE_GPR(r27
, nullptr, dwarf_r27
, dwarf_r27
, LLDB_INVALID_REGNUM
,
178 LLDB_INVALID_REGNUM
),
179 DEFINE_GPR(r28
, nullptr, dwarf_r28
, dwarf_r28
, LLDB_INVALID_REGNUM
,
180 LLDB_INVALID_REGNUM
),
181 DEFINE_GPR(r29
, nullptr, dwarf_r29
, dwarf_r29
, LLDB_INVALID_REGNUM
,
182 LLDB_INVALID_REGNUM
),
183 DEFINE_GPR(r30
, nullptr, dwarf_r30
, dwarf_r30
, LLDB_INVALID_REGNUM
,
184 LLDB_INVALID_REGNUM
),
185 DEFINE_GPR(r31
, nullptr, dwarf_r31
, dwarf_r31
, LLDB_INVALID_REGNUM
,
186 LLDB_INVALID_REGNUM
),
187 DEFINE_GPR(lr
, nullptr, dwarf_lr
, dwarf_lr
, LLDB_REGNUM_GENERIC_RA
,
188 LLDB_INVALID_REGNUM
),
189 DEFINE_GPR(cr
, nullptr, dwarf_cr
, dwarf_cr
, LLDB_REGNUM_GENERIC_FLAGS
,
190 LLDB_INVALID_REGNUM
),
191 DEFINE_GPR(xer
, nullptr, dwarf_xer
, dwarf_xer
, LLDB_INVALID_REGNUM
,
192 LLDB_INVALID_REGNUM
),
193 DEFINE_GPR(ctr
, nullptr, dwarf_ctr
, dwarf_ctr
, LLDB_INVALID_REGNUM
,
194 LLDB_INVALID_REGNUM
),
195 DEFINE_GPR(pc
, nullptr, dwarf_pc
, dwarf_pc
, LLDB_REGNUM_GENERIC_PC
,
196 LLDB_INVALID_REGNUM
),
203 {dwarf_cfa
, dwarf_cfa
, LLDB_INVALID_REGNUM
, LLDB_INVALID_REGNUM
},
209 static const uint32_t k_num_register_infos
= std::size(g_register_infos
);
211 const lldb_private::RegisterInfo
*
212 ABISysV_ppc::GetRegisterInfoArray(uint32_t &count
) {
213 count
= k_num_register_infos
;
214 return g_register_infos
;
217 size_t ABISysV_ppc::GetRedZoneSize() const { return 224; }
222 ABISysV_ppc::CreateInstance(lldb::ProcessSP process_sp
, const ArchSpec
&arch
) {
223 if (arch
.GetTriple().getArch() == llvm::Triple::ppc
) {
225 new ABISysV_ppc(std::move(process_sp
), MakeMCRegisterInfo(arch
)));
230 bool ABISysV_ppc::PrepareTrivialCall(Thread
&thread
, addr_t sp
,
231 addr_t func_addr
, addr_t return_addr
,
232 llvm::ArrayRef
<addr_t
> args
) const {
233 Log
*log
= GetLog(LLDBLog::Expressions
);
237 s
.Printf("ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64
238 ", sp = 0x%" PRIx64
", func_addr = 0x%" PRIx64
239 ", return_addr = 0x%" PRIx64
,
240 thread
.GetID(), (uint64_t)sp
, (uint64_t)func_addr
,
241 (uint64_t)return_addr
);
243 for (size_t i
= 0; i
< args
.size(); ++i
)
244 s
.Printf(", arg%" PRIu64
" = 0x%" PRIx64
, static_cast<uint64_t>(i
+ 1),
247 log
->PutString(s
.GetString());
250 RegisterContext
*reg_ctx
= thread
.GetRegisterContext().get();
254 const RegisterInfo
*reg_info
= nullptr;
256 if (args
.size() > 8) // TODO handle more than 8 arguments
259 for (size_t i
= 0; i
< args
.size(); ++i
) {
260 reg_info
= reg_ctx
->GetRegisterInfo(eRegisterKindGeneric
,
261 LLDB_REGNUM_GENERIC_ARG1
+ i
);
262 LLDB_LOGF(log
, "About to write arg%" PRIu64
" (0x%" PRIx64
") into %s",
263 static_cast<uint64_t>(i
+ 1), args
[i
], reg_info
->name
);
264 if (!reg_ctx
->WriteRegisterFromUnsigned(reg_info
, args
[i
]))
268 // First, align the SP
270 LLDB_LOGF(log
, "16-byte aligning SP: 0x%" PRIx64
" to 0x%" PRIx64
,
271 (uint64_t)sp
, (uint64_t)(sp
& ~0xfull
));
273 sp
&= ~(0xfull
); // 16-byte alignment
278 const RegisterInfo
*pc_reg_info
=
279 reg_ctx
->GetRegisterInfo(eRegisterKindGeneric
, LLDB_REGNUM_GENERIC_PC
);
280 const RegisterInfo
*sp_reg_info
=
281 reg_ctx
->GetRegisterInfo(eRegisterKindGeneric
, LLDB_REGNUM_GENERIC_SP
);
282 ProcessSP
process_sp(thread
.GetProcess());
284 RegisterValue reg_value
;
287 "Pushing the return address onto the stack: 0x%" PRIx64
289 (uint64_t)sp
, (uint64_t)return_addr
);
291 // Save return address onto the stack
292 if (!process_sp
->WritePointerToMemory(sp
, return_addr
, error
))
295 // %r1 is set to the actual stack value.
297 LLDB_LOGF(log
, "Writing SP: 0x%" PRIx64
, (uint64_t)sp
);
299 if (!reg_ctx
->WriteRegisterFromUnsigned(sp_reg_info
, sp
))
302 // %pc is set to the address of the called function.
304 LLDB_LOGF(log
, "Writing IP: 0x%" PRIx64
, (uint64_t)func_addr
);
306 if (!reg_ctx
->WriteRegisterFromUnsigned(pc_reg_info
, func_addr
))
312 static bool ReadIntegerArgument(Scalar
&scalar
, unsigned int bit_width
,
313 bool is_signed
, Thread
&thread
,
314 uint32_t *argument_register_ids
,
315 unsigned int ¤t_argument_register
,
316 addr_t
¤t_stack_argument
) {
318 return false; // Scalar can't hold large integer arguments
320 if (current_argument_register
< 6) {
321 scalar
= thread
.GetRegisterContext()->ReadRegisterAsUnsigned(
322 argument_register_ids
[current_argument_register
], 0);
323 current_argument_register
++;
325 scalar
.SignExtend(bit_width
);
327 uint32_t byte_size
= (bit_width
+ (8 - 1)) / 8;
329 if (thread
.GetProcess()->ReadScalarIntegerFromMemory(
330 current_stack_argument
, byte_size
, is_signed
, scalar
, error
)) {
331 current_stack_argument
+= byte_size
;
339 bool ABISysV_ppc::GetArgumentValues(Thread
&thread
, ValueList
&values
) const {
340 unsigned int num_values
= values
.GetSize();
341 unsigned int value_index
;
343 // Extract the register context so we can read arguments from registers
345 RegisterContext
*reg_ctx
= thread
.GetRegisterContext().get();
350 // Get the pointer to the first stack argument so we have a place to start
353 addr_t sp
= reg_ctx
->GetSP(0);
358 addr_t current_stack_argument
= sp
+ 48; // jump over return address
360 uint32_t argument_register_ids
[8];
362 argument_register_ids
[0] =
363 reg_ctx
->GetRegisterInfo(eRegisterKindGeneric
, LLDB_REGNUM_GENERIC_ARG1
)
364 ->kinds
[eRegisterKindLLDB
];
365 argument_register_ids
[1] =
366 reg_ctx
->GetRegisterInfo(eRegisterKindGeneric
, LLDB_REGNUM_GENERIC_ARG2
)
367 ->kinds
[eRegisterKindLLDB
];
368 argument_register_ids
[2] =
369 reg_ctx
->GetRegisterInfo(eRegisterKindGeneric
, LLDB_REGNUM_GENERIC_ARG3
)
370 ->kinds
[eRegisterKindLLDB
];
371 argument_register_ids
[3] =
372 reg_ctx
->GetRegisterInfo(eRegisterKindGeneric
, LLDB_REGNUM_GENERIC_ARG4
)
373 ->kinds
[eRegisterKindLLDB
];
374 argument_register_ids
[4] =
375 reg_ctx
->GetRegisterInfo(eRegisterKindGeneric
, LLDB_REGNUM_GENERIC_ARG5
)
376 ->kinds
[eRegisterKindLLDB
];
377 argument_register_ids
[5] =
378 reg_ctx
->GetRegisterInfo(eRegisterKindGeneric
, LLDB_REGNUM_GENERIC_ARG6
)
379 ->kinds
[eRegisterKindLLDB
];
380 argument_register_ids
[6] =
381 reg_ctx
->GetRegisterInfo(eRegisterKindGeneric
, LLDB_REGNUM_GENERIC_ARG7
)
382 ->kinds
[eRegisterKindLLDB
];
383 argument_register_ids
[7] =
384 reg_ctx
->GetRegisterInfo(eRegisterKindGeneric
, LLDB_REGNUM_GENERIC_ARG8
)
385 ->kinds
[eRegisterKindLLDB
];
387 unsigned int current_argument_register
= 0;
389 for (value_index
= 0; value_index
< num_values
; ++value_index
) {
390 Value
*value
= values
.GetValueAtIndex(value_index
);
395 // We currently only support extracting values with Clang QualTypes. Do we
396 // care about others?
397 CompilerType compiler_type
= value
->GetCompilerType();
398 std::optional
<uint64_t> bit_size
= compiler_type
.GetBitSize(&thread
);
402 if (compiler_type
.IsIntegerOrEnumerationType(is_signed
))
403 ReadIntegerArgument(value
->GetScalar(), *bit_size
, is_signed
, thread
,
404 argument_register_ids
, current_argument_register
,
405 current_stack_argument
);
406 else if (compiler_type
.IsPointerType())
407 ReadIntegerArgument(value
->GetScalar(), *bit_size
, false, thread
,
408 argument_register_ids
, current_argument_register
,
409 current_stack_argument
);
415 Status
ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP
&frame_sp
,
416 lldb::ValueObjectSP
&new_value_sp
) {
419 error
.SetErrorString("Empty value object for return value.");
423 CompilerType compiler_type
= new_value_sp
->GetCompilerType();
424 if (!compiler_type
) {
425 error
.SetErrorString("Null clang type for return value.");
429 Thread
*thread
= frame_sp
->GetThread().get();
435 RegisterContext
*reg_ctx
= thread
->GetRegisterContext().get();
437 bool set_it_simple
= false;
438 if (compiler_type
.IsIntegerOrEnumerationType(is_signed
) ||
439 compiler_type
.IsPointerType()) {
440 const RegisterInfo
*reg_info
= reg_ctx
->GetRegisterInfoByName("r3", 0);
444 size_t num_bytes
= new_value_sp
->GetData(data
, data_error
);
445 if (data_error
.Fail()) {
446 error
.SetErrorStringWithFormat(
447 "Couldn't convert return value to raw data: %s",
448 data_error
.AsCString());
451 lldb::offset_t offset
= 0;
452 if (num_bytes
<= 8) {
453 uint64_t raw_value
= data
.GetMaxU64(&offset
, num_bytes
);
455 if (reg_ctx
->WriteRegisterFromUnsigned(reg_info
, raw_value
))
456 set_it_simple
= true;
458 error
.SetErrorString("We don't support returning longer than 64 bit "
459 "integer values at present.");
461 } else if (compiler_type
.IsFloatingPointType(count
, is_complex
)) {
463 error
.SetErrorString(
464 "We don't support returning complex values at present");
466 std::optional
<uint64_t> bit_width
=
467 compiler_type
.GetBitSize(frame_sp
.get());
469 error
.SetErrorString("can't get type size");
472 if (*bit_width
<= 64) {
475 size_t num_bytes
= new_value_sp
->GetData(data
, data_error
);
476 if (data_error
.Fail()) {
477 error
.SetErrorStringWithFormat(
478 "Couldn't convert return value to raw data: %s",
479 data_error
.AsCString());
483 unsigned char buffer
[16];
484 ByteOrder byte_order
= data
.GetByteOrder();
486 data
.CopyByteOrderedData(0, num_bytes
, buffer
, 16, byte_order
);
487 set_it_simple
= true;
489 // FIXME - don't know how to do 80 bit long doubles yet.
490 error
.SetErrorString(
491 "We don't support returning float values > 64 bits at present");
496 if (!set_it_simple
) {
497 // Okay we've got a structure or something that doesn't fit in a simple
498 // register. We should figure out where it really goes, but we don't
500 error
.SetErrorString("We only support setting simple integer and float "
501 "return types at present.");
507 ValueObjectSP
ABISysV_ppc::GetReturnValueObjectSimple(
508 Thread
&thread
, CompilerType
&return_compiler_type
) const {
509 ValueObjectSP return_valobj_sp
;
512 if (!return_compiler_type
)
513 return return_valobj_sp
;
515 // value.SetContext (Value::eContextTypeClangType, return_value_type);
516 value
.SetCompilerType(return_compiler_type
);
518 RegisterContext
*reg_ctx
= thread
.GetRegisterContext().get();
520 return return_valobj_sp
;
522 const uint32_t type_flags
= return_compiler_type
.GetTypeInfo();
523 if (type_flags
& eTypeIsScalar
) {
524 value
.SetValueType(Value::ValueType::Scalar
);
526 bool success
= false;
527 if (type_flags
& eTypeIsInteger
) {
528 // Extract the register context so we can read arguments from registers
530 std::optional
<uint64_t> byte_size
=
531 return_compiler_type
.GetByteSize(&thread
);
533 return return_valobj_sp
;
534 uint64_t raw_value
= thread
.GetRegisterContext()->ReadRegisterAsUnsigned(
535 reg_ctx
->GetRegisterInfoByName("r3", 0), 0);
536 const bool is_signed
= (type_flags
& eTypeIsSigned
) != 0;
537 switch (*byte_size
) {
541 case sizeof(uint64_t):
543 value
.GetScalar() = (int64_t)(raw_value
);
545 value
.GetScalar() = (uint64_t)(raw_value
);
549 case sizeof(uint32_t):
551 value
.GetScalar() = (int32_t)(raw_value
& UINT32_MAX
);
553 value
.GetScalar() = (uint32_t)(raw_value
& UINT32_MAX
);
557 case sizeof(uint16_t):
559 value
.GetScalar() = (int16_t)(raw_value
& UINT16_MAX
);
561 value
.GetScalar() = (uint16_t)(raw_value
& UINT16_MAX
);
565 case sizeof(uint8_t):
567 value
.GetScalar() = (int8_t)(raw_value
& UINT8_MAX
);
569 value
.GetScalar() = (uint8_t)(raw_value
& UINT8_MAX
);
573 } else if (type_flags
& eTypeIsFloat
) {
574 if (type_flags
& eTypeIsComplex
) {
575 // Don't handle complex yet.
577 std::optional
<uint64_t> byte_size
=
578 return_compiler_type
.GetByteSize(&thread
);
579 if (byte_size
&& *byte_size
<= sizeof(long double)) {
580 const RegisterInfo
*f1_info
= reg_ctx
->GetRegisterInfoByName("f1", 0);
581 RegisterValue f1_value
;
582 if (reg_ctx
->ReadRegister(f1_info
, f1_value
)) {
584 if (f1_value
.GetData(data
)) {
585 lldb::offset_t offset
= 0;
586 if (*byte_size
== sizeof(float)) {
587 value
.GetScalar() = (float)data
.GetFloat(&offset
);
589 } else if (*byte_size
== sizeof(double)) {
590 value
.GetScalar() = (double)data
.GetDouble(&offset
);
600 return_valobj_sp
= ValueObjectConstResult::Create(
601 thread
.GetStackFrameAtIndex(0).get(), value
, ConstString(""));
602 } else if (type_flags
& eTypeIsPointer
) {
604 reg_ctx
->GetRegisterInfoByName("r3", 0)->kinds
[eRegisterKindLLDB
];
606 (uint64_t)thread
.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id
, 0);
607 value
.SetValueType(Value::ValueType::Scalar
);
608 return_valobj_sp
= ValueObjectConstResult::Create(
609 thread
.GetStackFrameAtIndex(0).get(), value
, ConstString(""));
610 } else if (type_flags
& eTypeIsVector
) {
611 std::optional
<uint64_t> byte_size
=
612 return_compiler_type
.GetByteSize(&thread
);
613 if (byte_size
&& *byte_size
> 0) {
614 const RegisterInfo
*altivec_reg
= reg_ctx
->GetRegisterInfoByName("v2", 0);
616 if (*byte_size
<= altivec_reg
->byte_size
) {
617 ProcessSP
process_sp(thread
.GetProcess());
619 std::unique_ptr
<DataBufferHeap
> heap_data_up(
620 new DataBufferHeap(*byte_size
, 0));
621 const ByteOrder byte_order
= process_sp
->GetByteOrder();
622 RegisterValue reg_value
;
623 if (reg_ctx
->ReadRegister(altivec_reg
, reg_value
)) {
625 if (reg_value
.GetAsMemoryData(
626 *altivec_reg
, heap_data_up
->GetBytes(),
627 heap_data_up
->GetByteSize(), byte_order
, error
)) {
628 DataExtractor
data(DataBufferSP(heap_data_up
.release()),
630 process_sp
->GetTarget()
632 .GetAddressByteSize());
633 return_valobj_sp
= ValueObjectConstResult::Create(
634 &thread
, return_compiler_type
, ConstString(""), data
);
643 return return_valobj_sp
;
646 ValueObjectSP
ABISysV_ppc::GetReturnValueObjectImpl(
647 Thread
&thread
, CompilerType
&return_compiler_type
) const {
648 ValueObjectSP return_valobj_sp
;
650 if (!return_compiler_type
)
651 return return_valobj_sp
;
653 ExecutionContext
exe_ctx(thread
.shared_from_this());
654 return_valobj_sp
= GetReturnValueObjectSimple(thread
, return_compiler_type
);
655 if (return_valobj_sp
)
656 return return_valobj_sp
;
658 RegisterContextSP reg_ctx_sp
= thread
.GetRegisterContext();
660 return return_valobj_sp
;
662 std::optional
<uint64_t> bit_width
= return_compiler_type
.GetBitSize(&thread
);
664 return return_valobj_sp
;
665 if (return_compiler_type
.IsAggregateType()) {
666 Target
*target
= exe_ctx
.GetTargetPtr();
667 bool is_memory
= true;
668 if (*bit_width
<= 128) {
669 ByteOrder target_byte_order
= target
->GetArchitecture().GetByteOrder();
670 WritableDataBufferSP
data_sp(new DataBufferHeap(16, 0));
671 DataExtractor
return_ext(data_sp
, target_byte_order
,
672 target
->GetArchitecture().GetAddressByteSize());
674 const RegisterInfo
*r3_info
= reg_ctx_sp
->GetRegisterInfoByName("r3", 0);
675 const RegisterInfo
*rdx_info
=
676 reg_ctx_sp
->GetRegisterInfoByName("rdx", 0);
678 RegisterValue r3_value
, rdx_value
;
679 reg_ctx_sp
->ReadRegister(r3_info
, r3_value
);
680 reg_ctx_sp
->ReadRegister(rdx_info
, rdx_value
);
682 DataExtractor r3_data
, rdx_data
;
684 r3_value
.GetData(r3_data
);
685 rdx_value
.GetData(rdx_data
);
687 uint32_t integer_bytes
=
688 0; // Tracks how much of the r3/rds registers we've consumed so far
690 const uint32_t num_children
= return_compiler_type
.GetNumFields();
692 // Since we are in the small struct regime, assume we are not in memory.
695 for (uint32_t idx
= 0; idx
< num_children
; idx
++) {
697 uint64_t field_bit_offset
= 0;
702 CompilerType field_compiler_type
= return_compiler_type
.GetFieldAtIndex(
703 idx
, name
, &field_bit_offset
, nullptr, nullptr);
704 std::optional
<uint64_t> field_bit_width
=
705 field_compiler_type
.GetBitSize(&thread
);
706 if (!field_bit_width
)
707 return return_valobj_sp
;
709 // If there are any unaligned fields, this is stored in memory.
710 if (field_bit_offset
% *field_bit_width
!= 0) {
715 uint32_t field_byte_width
= *field_bit_width
/ 8;
716 uint32_t field_byte_offset
= field_bit_offset
/ 8;
718 DataExtractor
*copy_from_extractor
= nullptr;
719 uint32_t copy_from_offset
= 0;
721 if (field_compiler_type
.IsIntegerOrEnumerationType(is_signed
) ||
722 field_compiler_type
.IsPointerType()) {
723 if (integer_bytes
< 8) {
724 if (integer_bytes
+ field_byte_width
<= 8) {
725 // This is in RAX, copy from register to our result structure:
726 copy_from_extractor
= &r3_data
;
727 copy_from_offset
= integer_bytes
;
728 integer_bytes
+= field_byte_width
;
730 // The next field wouldn't fit in the remaining space, so we
732 copy_from_extractor
= &rdx_data
;
733 copy_from_offset
= 0;
734 integer_bytes
= 8 + field_byte_width
;
736 } else if (integer_bytes
+ field_byte_width
<= 16) {
737 copy_from_extractor
= &rdx_data
;
738 copy_from_offset
= integer_bytes
- 8;
739 integer_bytes
+= field_byte_width
;
741 // The last field didn't fit. I can't see how that would happen
742 // w/o the overall size being greater than 16 bytes. For now,
743 // return a nullptr return value object.
744 return return_valobj_sp
;
746 } else if (field_compiler_type
.IsFloatingPointType(count
, is_complex
)) {
747 // Structs with long doubles are always passed in memory.
748 if (*field_bit_width
== 128) {
751 } else if (*field_bit_width
== 64) {
752 copy_from_offset
= 0;
753 } else if (*field_bit_width
== 32) {
754 // This one is kind of complicated. If we are in an "eightbyte"
755 // with another float, we'll be stuffed into an xmm register with
756 // it. If we are in an "eightbyte" with one or more ints, then we
757 // will be stuffed into the appropriate GPR with them.
759 if (field_byte_offset
% 8 == 0) {
760 // We are at the beginning of one of the eightbytes, so check the
761 // next element (if any)
762 if (idx
== num_children
- 1)
765 uint64_t next_field_bit_offset
= 0;
766 CompilerType next_field_compiler_type
=
767 return_compiler_type
.GetFieldAtIndex(idx
+ 1, name
,
768 &next_field_bit_offset
,
770 if (next_field_compiler_type
.IsIntegerOrEnumerationType(
774 copy_from_offset
= 0;
778 } else if (field_byte_offset
% 4 == 0) {
779 // We are inside of an eightbyte, so see if the field before us
780 // is floating point: This could happen if somebody put padding
785 uint64_t prev_field_bit_offset
= 0;
786 CompilerType prev_field_compiler_type
=
787 return_compiler_type
.GetFieldAtIndex(idx
- 1, name
,
788 &prev_field_bit_offset
,
790 if (prev_field_compiler_type
.IsIntegerOrEnumerationType(
794 copy_from_offset
= 4;
803 // Okay, we've figured out whether we are in GPR or XMM, now figure
806 if (integer_bytes
< 8) {
807 // This is in RAX, copy from register to our result structure:
808 copy_from_extractor
= &r3_data
;
809 copy_from_offset
= integer_bytes
;
810 integer_bytes
+= field_byte_width
;
812 copy_from_extractor
= &rdx_data
;
813 copy_from_offset
= integer_bytes
- 8;
814 integer_bytes
+= field_byte_width
;
820 // These two tests are just sanity checks. If I somehow get the type
821 // calculation wrong above it is better to just return nothing than to
823 if (!copy_from_extractor
)
824 return return_valobj_sp
;
825 if (copy_from_offset
+ field_byte_width
>
826 copy_from_extractor
->GetByteSize())
827 return return_valobj_sp
;
829 copy_from_extractor
->CopyByteOrderedData(
830 copy_from_offset
, field_byte_width
,
831 data_sp
->GetBytes() + field_byte_offset
, field_byte_width
,
836 // The result is in our data buffer. Let's make a variable object out
838 return_valobj_sp
= ValueObjectConstResult::Create(
839 &thread
, return_compiler_type
, ConstString(""), return_ext
);
843 // FIXME: This is just taking a guess, r3 may very well no longer hold the
844 // return storage location.
845 // If we are going to do this right, when we make a new frame we should
846 // check to see if it uses a memory return, and if we are at the first
847 // instruction and if so stash away the return location. Then we would
848 // only return the memory return value if we know it is valid.
852 reg_ctx_sp
->GetRegisterInfoByName("r3", 0)->kinds
[eRegisterKindLLDB
];
853 lldb::addr_t storage_addr
=
854 (uint64_t)thread
.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id
,
856 return_valobj_sp
= ValueObjectMemory::Create(
857 &thread
, "", Address(storage_addr
, nullptr), return_compiler_type
);
861 return return_valobj_sp
;
864 bool ABISysV_ppc::CreateFunctionEntryUnwindPlan(UnwindPlan
&unwind_plan
) {
866 unwind_plan
.SetRegisterKind(eRegisterKindDWARF
);
868 uint32_t lr_reg_num
= dwarf_lr
;
869 uint32_t sp_reg_num
= dwarf_r1
;
870 uint32_t pc_reg_num
= dwarf_pc
;
872 UnwindPlan::RowSP
row(new UnwindPlan::Row
);
874 // Our Call Frame Address is the stack pointer value
875 row
->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num
, 0);
877 // The previous PC is in the LR
878 row
->SetRegisterLocationToRegister(pc_reg_num
, lr_reg_num
, true);
879 unwind_plan
.AppendRow(row
);
881 // All other registers are the same.
883 unwind_plan
.SetSourceName("ppc at-func-entry default");
884 unwind_plan
.SetSourcedFromCompiler(eLazyBoolNo
);
889 bool ABISysV_ppc::CreateDefaultUnwindPlan(UnwindPlan
&unwind_plan
) {
891 unwind_plan
.SetRegisterKind(eRegisterKindDWARF
);
893 uint32_t sp_reg_num
= dwarf_r1
;
894 uint32_t pc_reg_num
= dwarf_lr
;
896 UnwindPlan::RowSP
row(new UnwindPlan::Row
);
898 const int32_t ptr_size
= 4;
899 row
->SetUnspecifiedRegistersAreUndefined(true);
900 row
->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num
);
902 row
->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num
, ptr_size
* 1, true);
903 row
->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num
, 0, true);
905 unwind_plan
.AppendRow(row
);
906 unwind_plan
.SetSourceName("ppc default unwind plan");
907 unwind_plan
.SetSourcedFromCompiler(eLazyBoolNo
);
908 unwind_plan
.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo
);
909 unwind_plan
.SetUnwindPlanForSignalTrap(eLazyBoolNo
);
910 unwind_plan
.SetReturnAddressRegister(dwarf_lr
);
914 bool ABISysV_ppc::RegisterIsVolatile(const RegisterInfo
*reg_info
) {
915 return !RegisterIsCalleeSaved(reg_info
);
918 // See "Register Usage" in the
919 // "System V Application Binary Interface"
920 // "64-bit PowerPC ELF Application Binary Interface Supplement" current version
921 // is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC-
924 bool ABISysV_ppc::RegisterIsCalleeSaved(const RegisterInfo
*reg_info
) {
926 // Preserved registers are :
932 const char *name
= reg_info
->name
;
933 if (name
[0] == 'r') {
934 if ((name
[1] == '1' || name
[1] == '2') && name
[2] == '\0')
936 if (name
[1] == '1' && name
[2] > '2')
938 if ((name
[1] == '2' || name
[1] == '3') && name
[2] != '\0')
942 if (name
[0] == 'f' && name
[1] >= '0' && name
[1] <= '9') {
943 if (name
[3] == '1' && name
[4] >= '4')
945 if ((name
[3] == '2' || name
[3] == '3') && name
[4] != '\0')
949 if (name
[0] == 's' && name
[1] == 'p' && name
[2] == '\0') // sp
951 if (name
[0] == 'f' && name
[1] == 'p' && name
[2] == '\0') // fp
953 if (name
[0] == 'p' && name
[1] == 'c' && name
[2] == '\0') // pc
959 void ABISysV_ppc::Initialize() {
960 PluginManager::RegisterPlugin(GetPluginNameStatic(),
961 "System V ABI for ppc targets", CreateInstance
);
964 void ABISysV_ppc::Terminate() {
965 PluginManager::UnregisterPlugin(CreateInstance
);