Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lldb / source / Plugins / ABI / PowerPC / ABISysV_ppc.cpp
bloba07d7179e5f8aebb73aebb9b66f65495d3025bac
1 //===-- ABISysV_ppc.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "ABISysV_ppc.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/TargetParser/Triple.h"
14 #include "lldb/Core/Module.h"
15 #include "lldb/Core/PluginManager.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/ValueObjectConstResult.h"
18 #include "lldb/Core/ValueObjectMemory.h"
19 #include "lldb/Core/ValueObjectRegister.h"
20 #include "lldb/Symbol/UnwindPlan.h"
21 #include "lldb/Target/Process.h"
22 #include "lldb/Target/RegisterContext.h"
23 #include "lldb/Target/StackFrame.h"
24 #include "lldb/Target/Target.h"
25 #include "lldb/Target/Thread.h"
26 #include "lldb/Utility/ConstString.h"
27 #include "lldb/Utility/DataExtractor.h"
28 #include "lldb/Utility/LLDBLog.h"
29 #include "lldb/Utility/Log.h"
30 #include "lldb/Utility/RegisterValue.h"
31 #include "lldb/Utility/Status.h"
32 #include <optional>
34 using namespace lldb;
35 using namespace lldb_private;
37 LLDB_PLUGIN_DEFINE(ABISysV_ppc)
39 enum dwarf_regnums {
40 dwarf_r0 = 0,
41 dwarf_r1,
42 dwarf_r2,
43 dwarf_r3,
44 dwarf_r4,
45 dwarf_r5,
46 dwarf_r6,
47 dwarf_r7,
48 dwarf_r8,
49 dwarf_r9,
50 dwarf_r10,
51 dwarf_r11,
52 dwarf_r12,
53 dwarf_r13,
54 dwarf_r14,
55 dwarf_r15,
56 dwarf_r16,
57 dwarf_r17,
58 dwarf_r18,
59 dwarf_r19,
60 dwarf_r20,
61 dwarf_r21,
62 dwarf_r22,
63 dwarf_r23,
64 dwarf_r24,
65 dwarf_r25,
66 dwarf_r26,
67 dwarf_r27,
68 dwarf_r28,
69 dwarf_r29,
70 dwarf_r30,
71 dwarf_r31,
72 dwarf_f0,
73 dwarf_f1,
74 dwarf_f2,
75 dwarf_f3,
76 dwarf_f4,
77 dwarf_f5,
78 dwarf_f6,
79 dwarf_f7,
80 dwarf_f8,
81 dwarf_f9,
82 dwarf_f10,
83 dwarf_f11,
84 dwarf_f12,
85 dwarf_f13,
86 dwarf_f14,
87 dwarf_f15,
88 dwarf_f16,
89 dwarf_f17,
90 dwarf_f18,
91 dwarf_f19,
92 dwarf_f20,
93 dwarf_f21,
94 dwarf_f22,
95 dwarf_f23,
96 dwarf_f24,
97 dwarf_f25,
98 dwarf_f26,
99 dwarf_f27,
100 dwarf_f28,
101 dwarf_f29,
102 dwarf_f30,
103 dwarf_f31,
104 dwarf_cr,
105 dwarf_fpscr,
106 dwarf_xer = 101,
107 dwarf_lr = 108,
108 dwarf_ctr,
109 dwarf_pc,
110 dwarf_cfa,
113 // Note that the size and offset will be updated by platform-specific classes.
114 #define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4) \
116 #reg, alt, 8, 0, eEncodingUint, eFormatHex, {kind1, kind2, kind3, kind4 }, \
117 nullptr, nullptr, nullptr, \
120 static const RegisterInfo g_register_infos[] = {
121 // General purpose registers. eh_frame, DWARF,
122 // Generic, Process Plugin
123 DEFINE_GPR(r0, nullptr, dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM,
124 LLDB_INVALID_REGNUM),
125 DEFINE_GPR(r1, nullptr, dwarf_r1, dwarf_r1, LLDB_REGNUM_GENERIC_SP,
126 LLDB_INVALID_REGNUM),
127 DEFINE_GPR(r2, nullptr, dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM,
128 LLDB_INVALID_REGNUM),
129 DEFINE_GPR(r3, nullptr, dwarf_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG1,
130 LLDB_INVALID_REGNUM),
131 DEFINE_GPR(r4, nullptr, dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG2,
132 LLDB_INVALID_REGNUM),
133 DEFINE_GPR(r5, nullptr, dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG3,
134 LLDB_INVALID_REGNUM),
135 DEFINE_GPR(r6, nullptr, dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG4,
136 LLDB_INVALID_REGNUM),
137 DEFINE_GPR(r7, nullptr, dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG5,
138 LLDB_INVALID_REGNUM),
139 DEFINE_GPR(r8, nullptr, dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG6,
140 LLDB_INVALID_REGNUM),
141 DEFINE_GPR(r9, nullptr, dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG7,
142 LLDB_INVALID_REGNUM),
143 DEFINE_GPR(r10, nullptr, dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG8,
144 LLDB_INVALID_REGNUM),
145 DEFINE_GPR(r11, nullptr, dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM,
146 LLDB_INVALID_REGNUM),
147 DEFINE_GPR(r12, nullptr, dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM,
148 LLDB_INVALID_REGNUM),
149 DEFINE_GPR(r13, nullptr, dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM,
150 LLDB_INVALID_REGNUM),
151 DEFINE_GPR(r14, nullptr, dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM,
152 LLDB_INVALID_REGNUM),
153 DEFINE_GPR(r15, nullptr, dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM,
154 LLDB_INVALID_REGNUM),
155 DEFINE_GPR(r16, nullptr, dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM,
156 LLDB_INVALID_REGNUM),
157 DEFINE_GPR(r17, nullptr, dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM,
158 LLDB_INVALID_REGNUM),
159 DEFINE_GPR(r18, nullptr, dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM,
160 LLDB_INVALID_REGNUM),
161 DEFINE_GPR(r19, nullptr, dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM,
162 LLDB_INVALID_REGNUM),
163 DEFINE_GPR(r20, nullptr, dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM,
164 LLDB_INVALID_REGNUM),
165 DEFINE_GPR(r21, nullptr, dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM,
166 LLDB_INVALID_REGNUM),
167 DEFINE_GPR(r22, nullptr, dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM,
168 LLDB_INVALID_REGNUM),
169 DEFINE_GPR(r23, nullptr, dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM,
170 LLDB_INVALID_REGNUM),
171 DEFINE_GPR(r24, nullptr, dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM,
172 LLDB_INVALID_REGNUM),
173 DEFINE_GPR(r25, nullptr, dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM,
174 LLDB_INVALID_REGNUM),
175 DEFINE_GPR(r26, nullptr, dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM,
176 LLDB_INVALID_REGNUM),
177 DEFINE_GPR(r27, nullptr, dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM,
178 LLDB_INVALID_REGNUM),
179 DEFINE_GPR(r28, nullptr, dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM,
180 LLDB_INVALID_REGNUM),
181 DEFINE_GPR(r29, nullptr, dwarf_r29, dwarf_r29, LLDB_INVALID_REGNUM,
182 LLDB_INVALID_REGNUM),
183 DEFINE_GPR(r30, nullptr, dwarf_r30, dwarf_r30, LLDB_INVALID_REGNUM,
184 LLDB_INVALID_REGNUM),
185 DEFINE_GPR(r31, nullptr, dwarf_r31, dwarf_r31, LLDB_INVALID_REGNUM,
186 LLDB_INVALID_REGNUM),
187 DEFINE_GPR(lr, nullptr, dwarf_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA,
188 LLDB_INVALID_REGNUM),
189 DEFINE_GPR(cr, nullptr, dwarf_cr, dwarf_cr, LLDB_REGNUM_GENERIC_FLAGS,
190 LLDB_INVALID_REGNUM),
191 DEFINE_GPR(xer, nullptr, dwarf_xer, dwarf_xer, LLDB_INVALID_REGNUM,
192 LLDB_INVALID_REGNUM),
193 DEFINE_GPR(ctr, nullptr, dwarf_ctr, dwarf_ctr, LLDB_INVALID_REGNUM,
194 LLDB_INVALID_REGNUM),
195 DEFINE_GPR(pc, nullptr, dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC,
196 LLDB_INVALID_REGNUM),
197 {nullptr,
198 nullptr,
201 eEncodingUint,
202 eFormatHex,
203 {dwarf_cfa, dwarf_cfa, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
204 nullptr,
205 nullptr,
206 nullptr,
209 static const uint32_t k_num_register_infos = std::size(g_register_infos);
211 const lldb_private::RegisterInfo *
212 ABISysV_ppc::GetRegisterInfoArray(uint32_t &count) {
213 count = k_num_register_infos;
214 return g_register_infos;
217 size_t ABISysV_ppc::GetRedZoneSize() const { return 224; }
219 // Static Functions
221 ABISP
222 ABISysV_ppc::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
223 if (arch.GetTriple().getArch() == llvm::Triple::ppc) {
224 return ABISP(
225 new ABISysV_ppc(std::move(process_sp), MakeMCRegisterInfo(arch)));
227 return ABISP();
230 bool ABISysV_ppc::PrepareTrivialCall(Thread &thread, addr_t sp,
231 addr_t func_addr, addr_t return_addr,
232 llvm::ArrayRef<addr_t> args) const {
233 Log *log = GetLog(LLDBLog::Expressions);
235 if (log) {
236 StreamString s;
237 s.Printf("ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64
238 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
239 ", return_addr = 0x%" PRIx64,
240 thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
241 (uint64_t)return_addr);
243 for (size_t i = 0; i < args.size(); ++i)
244 s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
245 args[i]);
246 s.PutCString(")");
247 log->PutString(s.GetString());
250 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
251 if (!reg_ctx)
252 return false;
254 const RegisterInfo *reg_info = nullptr;
256 if (args.size() > 8) // TODO handle more than 8 arguments
257 return false;
259 for (size_t i = 0; i < args.size(); ++i) {
260 reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
261 LLDB_REGNUM_GENERIC_ARG1 + i);
262 LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
263 static_cast<uint64_t>(i + 1), args[i], reg_info->name);
264 if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
265 return false;
268 // First, align the SP
270 LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
271 (uint64_t)sp, (uint64_t)(sp & ~0xfull));
273 sp &= ~(0xfull); // 16-byte alignment
275 sp -= 8;
277 Status error;
278 const RegisterInfo *pc_reg_info =
279 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
280 const RegisterInfo *sp_reg_info =
281 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
282 ProcessSP process_sp(thread.GetProcess());
284 RegisterValue reg_value;
286 LLDB_LOGF(log,
287 "Pushing the return address onto the stack: 0x%" PRIx64
288 ": 0x%" PRIx64,
289 (uint64_t)sp, (uint64_t)return_addr);
291 // Save return address onto the stack
292 if (!process_sp->WritePointerToMemory(sp, return_addr, error))
293 return false;
295 // %r1 is set to the actual stack value.
297 LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
299 if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
300 return false;
302 // %pc is set to the address of the called function.
304 LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
306 if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
307 return false;
309 return true;
312 static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
313 bool is_signed, Thread &thread,
314 uint32_t *argument_register_ids,
315 unsigned int &current_argument_register,
316 addr_t &current_stack_argument) {
317 if (bit_width > 64)
318 return false; // Scalar can't hold large integer arguments
320 if (current_argument_register < 6) {
321 scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
322 argument_register_ids[current_argument_register], 0);
323 current_argument_register++;
324 if (is_signed)
325 scalar.SignExtend(bit_width);
326 } else {
327 uint32_t byte_size = (bit_width + (8 - 1)) / 8;
328 Status error;
329 if (thread.GetProcess()->ReadScalarIntegerFromMemory(
330 current_stack_argument, byte_size, is_signed, scalar, error)) {
331 current_stack_argument += byte_size;
332 return true;
334 return false;
336 return true;
339 bool ABISysV_ppc::GetArgumentValues(Thread &thread, ValueList &values) const {
340 unsigned int num_values = values.GetSize();
341 unsigned int value_index;
343 // Extract the register context so we can read arguments from registers
345 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
347 if (!reg_ctx)
348 return false;
350 // Get the pointer to the first stack argument so we have a place to start
351 // when reading data
353 addr_t sp = reg_ctx->GetSP(0);
355 if (!sp)
356 return false;
358 addr_t current_stack_argument = sp + 48; // jump over return address
360 uint32_t argument_register_ids[8];
362 argument_register_ids[0] =
363 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
364 ->kinds[eRegisterKindLLDB];
365 argument_register_ids[1] =
366 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
367 ->kinds[eRegisterKindLLDB];
368 argument_register_ids[2] =
369 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
370 ->kinds[eRegisterKindLLDB];
371 argument_register_ids[3] =
372 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
373 ->kinds[eRegisterKindLLDB];
374 argument_register_ids[4] =
375 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5)
376 ->kinds[eRegisterKindLLDB];
377 argument_register_ids[5] =
378 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6)
379 ->kinds[eRegisterKindLLDB];
380 argument_register_ids[6] =
381 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG7)
382 ->kinds[eRegisterKindLLDB];
383 argument_register_ids[7] =
384 reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG8)
385 ->kinds[eRegisterKindLLDB];
387 unsigned int current_argument_register = 0;
389 for (value_index = 0; value_index < num_values; ++value_index) {
390 Value *value = values.GetValueAtIndex(value_index);
392 if (!value)
393 return false;
395 // We currently only support extracting values with Clang QualTypes. Do we
396 // care about others?
397 CompilerType compiler_type = value->GetCompilerType();
398 std::optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
399 if (!bit_size)
400 return false;
401 bool is_signed;
402 if (compiler_type.IsIntegerOrEnumerationType(is_signed))
403 ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
404 argument_register_ids, current_argument_register,
405 current_stack_argument);
406 else if (compiler_type.IsPointerType())
407 ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
408 argument_register_ids, current_argument_register,
409 current_stack_argument);
412 return true;
415 Status ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
416 lldb::ValueObjectSP &new_value_sp) {
417 Status error;
418 if (!new_value_sp) {
419 error.SetErrorString("Empty value object for return value.");
420 return error;
423 CompilerType compiler_type = new_value_sp->GetCompilerType();
424 if (!compiler_type) {
425 error.SetErrorString("Null clang type for return value.");
426 return error;
429 Thread *thread = frame_sp->GetThread().get();
431 bool is_signed;
432 uint32_t count;
433 bool is_complex;
435 RegisterContext *reg_ctx = thread->GetRegisterContext().get();
437 bool set_it_simple = false;
438 if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
439 compiler_type.IsPointerType()) {
440 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
442 DataExtractor data;
443 Status data_error;
444 size_t num_bytes = new_value_sp->GetData(data, data_error);
445 if (data_error.Fail()) {
446 error.SetErrorStringWithFormat(
447 "Couldn't convert return value to raw data: %s",
448 data_error.AsCString());
449 return error;
451 lldb::offset_t offset = 0;
452 if (num_bytes <= 8) {
453 uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
455 if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
456 set_it_simple = true;
457 } else {
458 error.SetErrorString("We don't support returning longer than 64 bit "
459 "integer values at present.");
461 } else if (compiler_type.IsFloatingPointType(count, is_complex)) {
462 if (is_complex)
463 error.SetErrorString(
464 "We don't support returning complex values at present");
465 else {
466 std::optional<uint64_t> bit_width =
467 compiler_type.GetBitSize(frame_sp.get());
468 if (!bit_width) {
469 error.SetErrorString("can't get type size");
470 return error;
472 if (*bit_width <= 64) {
473 DataExtractor data;
474 Status data_error;
475 size_t num_bytes = new_value_sp->GetData(data, data_error);
476 if (data_error.Fail()) {
477 error.SetErrorStringWithFormat(
478 "Couldn't convert return value to raw data: %s",
479 data_error.AsCString());
480 return error;
483 unsigned char buffer[16];
484 ByteOrder byte_order = data.GetByteOrder();
486 data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
487 set_it_simple = true;
488 } else {
489 // FIXME - don't know how to do 80 bit long doubles yet.
490 error.SetErrorString(
491 "We don't support returning float values > 64 bits at present");
496 if (!set_it_simple) {
497 // Okay we've got a structure or something that doesn't fit in a simple
498 // register. We should figure out where it really goes, but we don't
499 // support this yet.
500 error.SetErrorString("We only support setting simple integer and float "
501 "return types at present.");
504 return error;
507 ValueObjectSP ABISysV_ppc::GetReturnValueObjectSimple(
508 Thread &thread, CompilerType &return_compiler_type) const {
509 ValueObjectSP return_valobj_sp;
510 Value value;
512 if (!return_compiler_type)
513 return return_valobj_sp;
515 // value.SetContext (Value::eContextTypeClangType, return_value_type);
516 value.SetCompilerType(return_compiler_type);
518 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
519 if (!reg_ctx)
520 return return_valobj_sp;
522 const uint32_t type_flags = return_compiler_type.GetTypeInfo();
523 if (type_flags & eTypeIsScalar) {
524 value.SetValueType(Value::ValueType::Scalar);
526 bool success = false;
527 if (type_flags & eTypeIsInteger) {
528 // Extract the register context so we can read arguments from registers
530 std::optional<uint64_t> byte_size =
531 return_compiler_type.GetByteSize(&thread);
532 if (!byte_size)
533 return return_valobj_sp;
534 uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
535 reg_ctx->GetRegisterInfoByName("r3", 0), 0);
536 const bool is_signed = (type_flags & eTypeIsSigned) != 0;
537 switch (*byte_size) {
538 default:
539 break;
541 case sizeof(uint64_t):
542 if (is_signed)
543 value.GetScalar() = (int64_t)(raw_value);
544 else
545 value.GetScalar() = (uint64_t)(raw_value);
546 success = true;
547 break;
549 case sizeof(uint32_t):
550 if (is_signed)
551 value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
552 else
553 value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
554 success = true;
555 break;
557 case sizeof(uint16_t):
558 if (is_signed)
559 value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
560 else
561 value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
562 success = true;
563 break;
565 case sizeof(uint8_t):
566 if (is_signed)
567 value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
568 else
569 value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
570 success = true;
571 break;
573 } else if (type_flags & eTypeIsFloat) {
574 if (type_flags & eTypeIsComplex) {
575 // Don't handle complex yet.
576 } else {
577 std::optional<uint64_t> byte_size =
578 return_compiler_type.GetByteSize(&thread);
579 if (byte_size && *byte_size <= sizeof(long double)) {
580 const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
581 RegisterValue f1_value;
582 if (reg_ctx->ReadRegister(f1_info, f1_value)) {
583 DataExtractor data;
584 if (f1_value.GetData(data)) {
585 lldb::offset_t offset = 0;
586 if (*byte_size == sizeof(float)) {
587 value.GetScalar() = (float)data.GetFloat(&offset);
588 success = true;
589 } else if (*byte_size == sizeof(double)) {
590 value.GetScalar() = (double)data.GetDouble(&offset);
591 success = true;
599 if (success)
600 return_valobj_sp = ValueObjectConstResult::Create(
601 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
602 } else if (type_flags & eTypeIsPointer) {
603 unsigned r3_id =
604 reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
605 value.GetScalar() =
606 (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0);
607 value.SetValueType(Value::ValueType::Scalar);
608 return_valobj_sp = ValueObjectConstResult::Create(
609 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
610 } else if (type_flags & eTypeIsVector) {
611 std::optional<uint64_t> byte_size =
612 return_compiler_type.GetByteSize(&thread);
613 if (byte_size && *byte_size > 0) {
614 const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0);
615 if (altivec_reg) {
616 if (*byte_size <= altivec_reg->byte_size) {
617 ProcessSP process_sp(thread.GetProcess());
618 if (process_sp) {
619 std::unique_ptr<DataBufferHeap> heap_data_up(
620 new DataBufferHeap(*byte_size, 0));
621 const ByteOrder byte_order = process_sp->GetByteOrder();
622 RegisterValue reg_value;
623 if (reg_ctx->ReadRegister(altivec_reg, reg_value)) {
624 Status error;
625 if (reg_value.GetAsMemoryData(
626 *altivec_reg, heap_data_up->GetBytes(),
627 heap_data_up->GetByteSize(), byte_order, error)) {
628 DataExtractor data(DataBufferSP(heap_data_up.release()),
629 byte_order,
630 process_sp->GetTarget()
631 .GetArchitecture()
632 .GetAddressByteSize());
633 return_valobj_sp = ValueObjectConstResult::Create(
634 &thread, return_compiler_type, ConstString(""), data);
643 return return_valobj_sp;
646 ValueObjectSP ABISysV_ppc::GetReturnValueObjectImpl(
647 Thread &thread, CompilerType &return_compiler_type) const {
648 ValueObjectSP return_valobj_sp;
650 if (!return_compiler_type)
651 return return_valobj_sp;
653 ExecutionContext exe_ctx(thread.shared_from_this());
654 return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
655 if (return_valobj_sp)
656 return return_valobj_sp;
658 RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
659 if (!reg_ctx_sp)
660 return return_valobj_sp;
662 std::optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
663 if (!bit_width)
664 return return_valobj_sp;
665 if (return_compiler_type.IsAggregateType()) {
666 Target *target = exe_ctx.GetTargetPtr();
667 bool is_memory = true;
668 if (*bit_width <= 128) {
669 ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
670 WritableDataBufferSP data_sp(new DataBufferHeap(16, 0));
671 DataExtractor return_ext(data_sp, target_byte_order,
672 target->GetArchitecture().GetAddressByteSize());
674 const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0);
675 const RegisterInfo *rdx_info =
676 reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
678 RegisterValue r3_value, rdx_value;
679 reg_ctx_sp->ReadRegister(r3_info, r3_value);
680 reg_ctx_sp->ReadRegister(rdx_info, rdx_value);
682 DataExtractor r3_data, rdx_data;
684 r3_value.GetData(r3_data);
685 rdx_value.GetData(rdx_data);
687 uint32_t integer_bytes =
688 0; // Tracks how much of the r3/rds registers we've consumed so far
690 const uint32_t num_children = return_compiler_type.GetNumFields();
692 // Since we are in the small struct regime, assume we are not in memory.
693 is_memory = false;
695 for (uint32_t idx = 0; idx < num_children; idx++) {
696 std::string name;
697 uint64_t field_bit_offset = 0;
698 bool is_signed;
699 bool is_complex;
700 uint32_t count;
702 CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
703 idx, name, &field_bit_offset, nullptr, nullptr);
704 std::optional<uint64_t> field_bit_width =
705 field_compiler_type.GetBitSize(&thread);
706 if (!field_bit_width)
707 return return_valobj_sp;
709 // If there are any unaligned fields, this is stored in memory.
710 if (field_bit_offset % *field_bit_width != 0) {
711 is_memory = true;
712 break;
715 uint32_t field_byte_width = *field_bit_width / 8;
716 uint32_t field_byte_offset = field_bit_offset / 8;
718 DataExtractor *copy_from_extractor = nullptr;
719 uint32_t copy_from_offset = 0;
721 if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
722 field_compiler_type.IsPointerType()) {
723 if (integer_bytes < 8) {
724 if (integer_bytes + field_byte_width <= 8) {
725 // This is in RAX, copy from register to our result structure:
726 copy_from_extractor = &r3_data;
727 copy_from_offset = integer_bytes;
728 integer_bytes += field_byte_width;
729 } else {
730 // The next field wouldn't fit in the remaining space, so we
731 // pushed it to rdx.
732 copy_from_extractor = &rdx_data;
733 copy_from_offset = 0;
734 integer_bytes = 8 + field_byte_width;
736 } else if (integer_bytes + field_byte_width <= 16) {
737 copy_from_extractor = &rdx_data;
738 copy_from_offset = integer_bytes - 8;
739 integer_bytes += field_byte_width;
740 } else {
741 // The last field didn't fit. I can't see how that would happen
742 // w/o the overall size being greater than 16 bytes. For now,
743 // return a nullptr return value object.
744 return return_valobj_sp;
746 } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
747 // Structs with long doubles are always passed in memory.
748 if (*field_bit_width == 128) {
749 is_memory = true;
750 break;
751 } else if (*field_bit_width == 64) {
752 copy_from_offset = 0;
753 } else if (*field_bit_width == 32) {
754 // This one is kind of complicated. If we are in an "eightbyte"
755 // with another float, we'll be stuffed into an xmm register with
756 // it. If we are in an "eightbyte" with one or more ints, then we
757 // will be stuffed into the appropriate GPR with them.
758 bool in_gpr;
759 if (field_byte_offset % 8 == 0) {
760 // We are at the beginning of one of the eightbytes, so check the
761 // next element (if any)
762 if (idx == num_children - 1)
763 in_gpr = false;
764 else {
765 uint64_t next_field_bit_offset = 0;
766 CompilerType next_field_compiler_type =
767 return_compiler_type.GetFieldAtIndex(idx + 1, name,
768 &next_field_bit_offset,
769 nullptr, nullptr);
770 if (next_field_compiler_type.IsIntegerOrEnumerationType(
771 is_signed))
772 in_gpr = true;
773 else {
774 copy_from_offset = 0;
775 in_gpr = false;
778 } else if (field_byte_offset % 4 == 0) {
779 // We are inside of an eightbyte, so see if the field before us
780 // is floating point: This could happen if somebody put padding
781 // in the structure.
782 if (idx == 0)
783 in_gpr = false;
784 else {
785 uint64_t prev_field_bit_offset = 0;
786 CompilerType prev_field_compiler_type =
787 return_compiler_type.GetFieldAtIndex(idx - 1, name,
788 &prev_field_bit_offset,
789 nullptr, nullptr);
790 if (prev_field_compiler_type.IsIntegerOrEnumerationType(
791 is_signed))
792 in_gpr = true;
793 else {
794 copy_from_offset = 4;
795 in_gpr = false;
798 } else {
799 is_memory = true;
800 continue;
803 // Okay, we've figured out whether we are in GPR or XMM, now figure
804 // out which one.
805 if (in_gpr) {
806 if (integer_bytes < 8) {
807 // This is in RAX, copy from register to our result structure:
808 copy_from_extractor = &r3_data;
809 copy_from_offset = integer_bytes;
810 integer_bytes += field_byte_width;
811 } else {
812 copy_from_extractor = &rdx_data;
813 copy_from_offset = integer_bytes - 8;
814 integer_bytes += field_byte_width;
820 // These two tests are just sanity checks. If I somehow get the type
821 // calculation wrong above it is better to just return nothing than to
822 // assert or crash.
823 if (!copy_from_extractor)
824 return return_valobj_sp;
825 if (copy_from_offset + field_byte_width >
826 copy_from_extractor->GetByteSize())
827 return return_valobj_sp;
829 copy_from_extractor->CopyByteOrderedData(
830 copy_from_offset, field_byte_width,
831 data_sp->GetBytes() + field_byte_offset, field_byte_width,
832 target_byte_order);
835 if (!is_memory) {
836 // The result is in our data buffer. Let's make a variable object out
837 // of it:
838 return_valobj_sp = ValueObjectConstResult::Create(
839 &thread, return_compiler_type, ConstString(""), return_ext);
843 // FIXME: This is just taking a guess, r3 may very well no longer hold the
844 // return storage location.
845 // If we are going to do this right, when we make a new frame we should
846 // check to see if it uses a memory return, and if we are at the first
847 // instruction and if so stash away the return location. Then we would
848 // only return the memory return value if we know it is valid.
850 if (is_memory) {
851 unsigned r3_id =
852 reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
853 lldb::addr_t storage_addr =
854 (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id,
856 return_valobj_sp = ValueObjectMemory::Create(
857 &thread, "", Address(storage_addr, nullptr), return_compiler_type);
861 return return_valobj_sp;
864 bool ABISysV_ppc::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
865 unwind_plan.Clear();
866 unwind_plan.SetRegisterKind(eRegisterKindDWARF);
868 uint32_t lr_reg_num = dwarf_lr;
869 uint32_t sp_reg_num = dwarf_r1;
870 uint32_t pc_reg_num = dwarf_pc;
872 UnwindPlan::RowSP row(new UnwindPlan::Row);
874 // Our Call Frame Address is the stack pointer value
875 row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
877 // The previous PC is in the LR
878 row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
879 unwind_plan.AppendRow(row);
881 // All other registers are the same.
883 unwind_plan.SetSourceName("ppc at-func-entry default");
884 unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
886 return true;
889 bool ABISysV_ppc::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
890 unwind_plan.Clear();
891 unwind_plan.SetRegisterKind(eRegisterKindDWARF);
893 uint32_t sp_reg_num = dwarf_r1;
894 uint32_t pc_reg_num = dwarf_lr;
896 UnwindPlan::RowSP row(new UnwindPlan::Row);
898 const int32_t ptr_size = 4;
899 row->SetUnspecifiedRegistersAreUndefined(true);
900 row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num);
902 row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 1, true);
903 row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
905 unwind_plan.AppendRow(row);
906 unwind_plan.SetSourceName("ppc default unwind plan");
907 unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
908 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
909 unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
910 unwind_plan.SetReturnAddressRegister(dwarf_lr);
911 return true;
914 bool ABISysV_ppc::RegisterIsVolatile(const RegisterInfo *reg_info) {
915 return !RegisterIsCalleeSaved(reg_info);
918 // See "Register Usage" in the
919 // "System V Application Binary Interface"
920 // "64-bit PowerPC ELF Application Binary Interface Supplement" current version
921 // is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC-
922 // elf64abi-1.9.pdf
924 bool ABISysV_ppc::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
925 if (reg_info) {
926 // Preserved registers are :
927 // r1,r2,r13-r31
928 // f14-f31 (not yet)
929 // v20-v31 (not yet)
930 // vrsave (not yet)
932 const char *name = reg_info->name;
933 if (name[0] == 'r') {
934 if ((name[1] == '1' || name[1] == '2') && name[2] == '\0')
935 return true;
936 if (name[1] == '1' && name[2] > '2')
937 return true;
938 if ((name[1] == '2' || name[1] == '3') && name[2] != '\0')
939 return true;
942 if (name[0] == 'f' && name[1] >= '0' && name[1] <= '9') {
943 if (name[3] == '1' && name[4] >= '4')
944 return true;
945 if ((name[3] == '2' || name[3] == '3') && name[4] != '\0')
946 return true;
949 if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
950 return true;
951 if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
952 return true;
953 if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
954 return true;
956 return false;
959 void ABISysV_ppc::Initialize() {
960 PluginManager::RegisterPlugin(GetPluginNameStatic(),
961 "System V ABI for ppc targets", CreateInstance);
964 void ABISysV_ppc::Terminate() {
965 PluginManager::UnregisterPlugin(CreateInstance);