Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lldb / source / Plugins / ExpressionParser / Clang / ClangExpressionParser.cpp
blobf6856b1a2558cbc9dfd4e766c075d8f2b2aeebfe
1 //===-- ClangExpressionParser.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/ExternalASTSource.h"
12 #include "clang/AST/PrettyPrinter.h"
13 #include "clang/Basic/Builtins.h"
14 #include "clang/Basic/DiagnosticIDs.h"
15 #include "clang/Basic/SourceLocation.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Basic/Version.h"
18 #include "clang/CodeGen/CodeGenAction.h"
19 #include "clang/CodeGen/ModuleBuilder.h"
20 #include "clang/Edit/Commit.h"
21 #include "clang/Edit/EditedSource.h"
22 #include "clang/Edit/EditsReceiver.h"
23 #include "clang/Frontend/CompilerInstance.h"
24 #include "clang/Frontend/CompilerInvocation.h"
25 #include "clang/Frontend/FrontendActions.h"
26 #include "clang/Frontend/FrontendDiagnostic.h"
27 #include "clang/Frontend/FrontendPluginRegistry.h"
28 #include "clang/Frontend/TextDiagnosticBuffer.h"
29 #include "clang/Frontend/TextDiagnosticPrinter.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Parse/ParseAST.h"
32 #include "clang/Rewrite/Core/Rewriter.h"
33 #include "clang/Rewrite/Frontend/FrontendActions.h"
34 #include "clang/Sema/CodeCompleteConsumer.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaConsumer.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ExecutionEngine/ExecutionEngine.h"
40 #include "llvm/Support/CrashRecoveryContext.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/TargetSelect.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/DynamicLibrary.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MemoryBuffer.h"
50 #include "llvm/Support/Signals.h"
51 #include "llvm/TargetParser/Host.h"
53 #include "ClangDiagnostic.h"
54 #include "ClangExpressionParser.h"
55 #include "ClangUserExpression.h"
57 #include "ASTUtils.h"
58 #include "ClangASTSource.h"
59 #include "ClangDiagnostic.h"
60 #include "ClangExpressionDeclMap.h"
61 #include "ClangExpressionHelper.h"
62 #include "ClangExpressionParser.h"
63 #include "ClangHost.h"
64 #include "ClangModulesDeclVendor.h"
65 #include "ClangPersistentVariables.h"
66 #include "IRDynamicChecks.h"
67 #include "IRForTarget.h"
68 #include "ModuleDependencyCollector.h"
70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
71 #include "lldb/Core/Debugger.h"
72 #include "lldb/Core/Disassembler.h"
73 #include "lldb/Core/Module.h"
74 #include "lldb/Expression/IRExecutionUnit.h"
75 #include "lldb/Expression/IRInterpreter.h"
76 #include "lldb/Host/File.h"
77 #include "lldb/Host/HostInfo.h"
78 #include "lldb/Symbol/SymbolVendor.h"
79 #include "lldb/Target/ExecutionContext.h"
80 #include "lldb/Target/Language.h"
81 #include "lldb/Target/Process.h"
82 #include "lldb/Target/Target.h"
83 #include "lldb/Target/ThreadPlanCallFunction.h"
84 #include "lldb/Utility/DataBufferHeap.h"
85 #include "lldb/Utility/LLDBAssert.h"
86 #include "lldb/Utility/LLDBLog.h"
87 #include "lldb/Utility/Log.h"
88 #include "lldb/Utility/Stream.h"
89 #include "lldb/Utility/StreamString.h"
90 #include "lldb/Utility/StringList.h"
92 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
94 #include <cctype>
95 #include <memory>
96 #include <optional>
98 using namespace clang;
99 using namespace llvm;
100 using namespace lldb_private;
102 //===----------------------------------------------------------------------===//
103 // Utility Methods for Clang
104 //===----------------------------------------------------------------------===//
106 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
107 ClangModulesDeclVendor &m_decl_vendor;
108 ClangPersistentVariables &m_persistent_vars;
109 clang::SourceManager &m_source_mgr;
110 StreamString m_error_stream;
111 bool m_has_errors = false;
113 public:
114 LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
115 ClangPersistentVariables &persistent_vars,
116 clang::SourceManager &source_mgr)
117 : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars),
118 m_source_mgr(source_mgr) {}
120 void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
121 const clang::Module * /*null*/) override {
122 // Ignore modules that are imported in the wrapper code as these are not
123 // loaded by the user.
124 llvm::StringRef filename =
125 m_source_mgr.getPresumedLoc(import_location).getFilename();
126 if (filename == ClangExpressionSourceCode::g_prefix_file_name)
127 return;
129 SourceModule module;
131 for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
132 module.path.push_back(ConstString(component.first->getName()));
134 StreamString error_stream;
136 ClangModulesDeclVendor::ModuleVector exported_modules;
137 if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
138 m_has_errors = true;
140 for (ClangModulesDeclVendor::ModuleID module : exported_modules)
141 m_persistent_vars.AddHandLoadedClangModule(module);
144 bool hasErrors() { return m_has_errors; }
146 llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
149 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) {
150 for (auto &fix_it : Info.getFixItHints()) {
151 if (fix_it.isNull())
152 continue;
153 diag->AddFixitHint(fix_it);
157 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
158 public:
159 ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) {
160 DiagnosticOptions *options = new DiagnosticOptions(opts);
161 options->ShowPresumedLoc = true;
162 options->ShowLevel = false;
163 m_os = std::make_shared<llvm::raw_string_ostream>(m_output);
164 m_passthrough =
165 std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options);
168 void ResetManager(DiagnosticManager *manager = nullptr) {
169 m_manager = manager;
172 /// Returns the last ClangDiagnostic message that the DiagnosticManager
173 /// received or a nullptr if the DiagnosticMangager hasn't seen any
174 /// Clang diagnostics yet.
175 ClangDiagnostic *MaybeGetLastClangDiag() const {
176 if (m_manager->Diagnostics().empty())
177 return nullptr;
178 lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get();
179 ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag);
180 return clang_diag;
183 void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
184 const clang::Diagnostic &Info) override {
185 if (!m_manager) {
186 // We have no DiagnosticManager before/after parsing but we still could
187 // receive diagnostics (e.g., by the ASTImporter failing to copy decls
188 // when we move the expression result ot the ScratchASTContext). Let's at
189 // least log these diagnostics until we find a way to properly render
190 // them and display them to the user.
191 Log *log = GetLog(LLDBLog::Expressions);
192 if (log) {
193 llvm::SmallVector<char, 32> diag_str;
194 Info.FormatDiagnostic(diag_str);
195 diag_str.push_back('\0');
196 const char *plain_diag = diag_str.data();
197 LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag);
199 return;
202 // Update error/warning counters.
203 DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info);
205 // Render diagnostic message to m_output.
206 m_output.clear();
207 m_passthrough->HandleDiagnostic(DiagLevel, Info);
208 m_os->flush();
210 lldb_private::DiagnosticSeverity severity;
211 bool make_new_diagnostic = true;
213 switch (DiagLevel) {
214 case DiagnosticsEngine::Level::Fatal:
215 case DiagnosticsEngine::Level::Error:
216 severity = eDiagnosticSeverityError;
217 break;
218 case DiagnosticsEngine::Level::Warning:
219 severity = eDiagnosticSeverityWarning;
220 break;
221 case DiagnosticsEngine::Level::Remark:
222 case DiagnosticsEngine::Level::Ignored:
223 severity = eDiagnosticSeverityRemark;
224 break;
225 case DiagnosticsEngine::Level::Note:
226 m_manager->AppendMessageToDiagnostic(m_output);
227 make_new_diagnostic = false;
229 // 'note:' diagnostics for errors and warnings can also contain Fix-Its.
230 // We add these Fix-Its to the last error diagnostic to make sure
231 // that we later have all Fix-Its related to an 'error' diagnostic when
232 // we apply them to the user expression.
233 auto *clang_diag = MaybeGetLastClangDiag();
234 // If we don't have a previous diagnostic there is nothing to do.
235 // If the previous diagnostic already has its own Fix-Its, assume that
236 // the 'note:' Fix-It is just an alternative way to solve the issue and
237 // ignore these Fix-Its.
238 if (!clang_diag || clang_diag->HasFixIts())
239 break;
240 // Ignore all Fix-Its that are not associated with an error.
241 if (clang_diag->GetSeverity() != eDiagnosticSeverityError)
242 break;
243 AddAllFixIts(clang_diag, Info);
244 break;
246 if (make_new_diagnostic) {
247 // ClangDiagnostic messages are expected to have no whitespace/newlines
248 // around them.
249 std::string stripped_output =
250 std::string(llvm::StringRef(m_output).trim());
252 auto new_diagnostic = std::make_unique<ClangDiagnostic>(
253 stripped_output, severity, Info.getID());
255 // Don't store away warning fixits, since the compiler doesn't have
256 // enough context in an expression for the warning to be useful.
257 // FIXME: Should we try to filter out FixIts that apply to our generated
258 // code, and not the user's expression?
259 if (severity == eDiagnosticSeverityError)
260 AddAllFixIts(new_diagnostic.get(), Info);
262 m_manager->AddDiagnostic(std::move(new_diagnostic));
266 void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override {
267 m_passthrough->BeginSourceFile(LO, PP);
270 void EndSourceFile() override { m_passthrough->EndSourceFile(); }
272 private:
273 DiagnosticManager *m_manager = nullptr;
274 std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough;
275 /// Output stream of m_passthrough.
276 std::shared_ptr<llvm::raw_string_ostream> m_os;
277 /// Output string filled by m_os.
278 std::string m_output;
281 static void SetupModuleHeaderPaths(CompilerInstance *compiler,
282 std::vector<std::string> include_directories,
283 lldb::TargetSP target_sp) {
284 Log *log = GetLog(LLDBLog::Expressions);
286 HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts();
288 for (const std::string &dir : include_directories) {
289 search_opts.AddPath(dir, frontend::System, false, true);
290 LLDB_LOG(log, "Added user include dir: {0}", dir);
293 llvm::SmallString<128> module_cache;
294 const auto &props = ModuleList::GetGlobalModuleListProperties();
295 props.GetClangModulesCachePath().GetPath(module_cache);
296 search_opts.ModuleCachePath = std::string(module_cache.str());
297 LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str());
299 search_opts.ResourceDir = GetClangResourceDir().GetPath();
301 search_opts.ImplicitModuleMaps = true;
304 /// Iff the given identifier is a C++ keyword, remove it from the
305 /// identifier table (i.e., make the token a normal identifier).
306 static void RemoveCppKeyword(IdentifierTable &idents, llvm::StringRef token) {
307 // FIXME: 'using' is used by LLDB for local variables, so we can't remove
308 // this keyword without breaking this functionality.
309 if (token == "using")
310 return;
311 // GCC's '__null' is used by LLDB to define NULL/Nil/nil.
312 if (token == "__null")
313 return;
315 LangOptions cpp_lang_opts;
316 cpp_lang_opts.CPlusPlus = true;
317 cpp_lang_opts.CPlusPlus11 = true;
318 cpp_lang_opts.CPlusPlus20 = true;
320 clang::IdentifierInfo &ii = idents.get(token);
321 // The identifier has to be a C++-exclusive keyword. if not, then there is
322 // nothing to do.
323 if (!ii.isCPlusPlusKeyword(cpp_lang_opts))
324 return;
325 // If the token is already an identifier, then there is nothing to do.
326 if (ii.getTokenID() == clang::tok::identifier)
327 return;
328 // Otherwise the token is a C++ keyword, so turn it back into a normal
329 // identifier.
330 ii.revertTokenIDToIdentifier();
333 /// Remove all C++ keywords from the given identifier table.
334 static void RemoveAllCppKeywords(IdentifierTable &idents) {
335 #define KEYWORD(NAME, FLAGS) RemoveCppKeyword(idents, llvm::StringRef(#NAME));
336 #include "clang/Basic/TokenKinds.def"
339 /// Configures Clang diagnostics for the expression parser.
340 static void SetupDefaultClangDiagnostics(CompilerInstance &compiler) {
341 // List of Clang warning groups that are not useful when parsing expressions.
342 const std::vector<const char *> groupsToIgnore = {
343 "unused-value",
344 "odr",
345 "unused-getter-return-value",
347 for (const char *group : groupsToIgnore) {
348 compiler.getDiagnostics().setSeverityForGroup(
349 clang::diag::Flavor::WarningOrError, group,
350 clang::diag::Severity::Ignored, SourceLocation());
354 //===----------------------------------------------------------------------===//
355 // Implementation of ClangExpressionParser
356 //===----------------------------------------------------------------------===//
358 ClangExpressionParser::ClangExpressionParser(
359 ExecutionContextScope *exe_scope, Expression &expr,
360 bool generate_debug_info, std::vector<std::string> include_directories,
361 std::string filename)
362 : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
363 m_pp_callbacks(nullptr),
364 m_include_directories(std::move(include_directories)),
365 m_filename(std::move(filename)) {
366 Log *log = GetLog(LLDBLog::Expressions);
368 // We can't compile expressions without a target. So if the exe_scope is
369 // null or doesn't have a target, then we just need to get out of here. I'll
370 // lldbassert and not make any of the compiler objects since
371 // I can't return errors directly from the constructor. Further calls will
372 // check if the compiler was made and
373 // bag out if it wasn't.
375 if (!exe_scope) {
376 lldbassert(exe_scope &&
377 "Can't make an expression parser with a null scope.");
378 return;
381 lldb::TargetSP target_sp;
382 target_sp = exe_scope->CalculateTarget();
383 if (!target_sp) {
384 lldbassert(target_sp.get() &&
385 "Can't make an expression parser with a null target.");
386 return;
389 // 1. Create a new compiler instance.
390 m_compiler = std::make_unique<CompilerInstance>();
392 // Make sure clang uses the same VFS as LLDB.
393 m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
395 lldb::LanguageType frame_lang =
396 expr.Language(); // defaults to lldb::eLanguageTypeUnknown
398 std::string abi;
399 ArchSpec target_arch;
400 target_arch = target_sp->GetArchitecture();
402 const auto target_machine = target_arch.GetMachine();
404 // If the expression is being evaluated in the context of an existing stack
405 // frame, we introspect to see if the language runtime is available.
407 lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
408 lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
410 // Make sure the user hasn't provided a preferred execution language with
411 // `expression --language X -- ...`
412 if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
413 frame_lang = frame_sp->GetLanguage();
415 if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
416 LLDB_LOGF(log, "Frame has language of type %s",
417 Language::GetNameForLanguageType(frame_lang));
420 // 2. Configure the compiler with a set of default options that are
421 // appropriate for most situations.
422 if (target_arch.IsValid()) {
423 std::string triple = target_arch.GetTriple().str();
424 m_compiler->getTargetOpts().Triple = triple;
425 LLDB_LOGF(log, "Using %s as the target triple",
426 m_compiler->getTargetOpts().Triple.c_str());
427 } else {
428 // If we get here we don't have a valid target and just have to guess.
429 // Sometimes this will be ok to just use the host target triple (when we
430 // evaluate say "2+3", but other expressions like breakpoint conditions and
431 // other things that _are_ target specific really shouldn't just be using
432 // the host triple. In such a case the language runtime should expose an
433 // overridden options set (3), below.
434 m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
435 LLDB_LOGF(log, "Using default target triple of %s",
436 m_compiler->getTargetOpts().Triple.c_str());
438 // Now add some special fixes for known architectures: Any arm32 iOS
439 // environment, but not on arm64
440 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
441 m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
442 m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
443 m_compiler->getTargetOpts().ABI = "apcs-gnu";
445 // Supported subsets of x86
446 if (target_machine == llvm::Triple::x86 ||
447 target_machine == llvm::Triple::x86_64) {
448 m_compiler->getTargetOpts().Features.push_back("+sse");
449 m_compiler->getTargetOpts().Features.push_back("+sse2");
452 // Set the target CPU to generate code for. This will be empty for any CPU
453 // that doesn't really need to make a special
454 // CPU string.
455 m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
457 // Set the target ABI
458 abi = GetClangTargetABI(target_arch);
459 if (!abi.empty())
460 m_compiler->getTargetOpts().ABI = abi;
462 // 3. Create and install the target on the compiler.
463 m_compiler->createDiagnostics();
464 // Limit the number of error diagnostics we emit.
465 // A value of 0 means no limit for both LLDB and Clang.
466 m_compiler->getDiagnostics().setErrorLimit(target_sp->GetExprErrorLimit());
468 auto target_info = TargetInfo::CreateTargetInfo(
469 m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
470 if (log) {
471 LLDB_LOGF(log, "Target datalayout string: '%s'",
472 target_info->getDataLayoutString());
473 LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str());
474 LLDB_LOGF(log, "Target vector alignment: %d",
475 target_info->getMaxVectorAlign());
477 m_compiler->setTarget(target_info);
479 assert(m_compiler->hasTarget());
481 // 4. Set language options.
482 lldb::LanguageType language = expr.Language();
483 LangOptions &lang_opts = m_compiler->getLangOpts();
485 switch (language) {
486 case lldb::eLanguageTypeC:
487 case lldb::eLanguageTypeC89:
488 case lldb::eLanguageTypeC99:
489 case lldb::eLanguageTypeC11:
490 // FIXME: the following language option is a temporary workaround,
491 // to "ask for C, get C++."
492 // For now, the expression parser must use C++ anytime the language is a C
493 // family language, because the expression parser uses features of C++ to
494 // capture values.
495 lang_opts.CPlusPlus = true;
496 break;
497 case lldb::eLanguageTypeObjC:
498 lang_opts.ObjC = true;
499 // FIXME: the following language option is a temporary workaround,
500 // to "ask for ObjC, get ObjC++" (see comment above).
501 lang_opts.CPlusPlus = true;
503 // Clang now sets as default C++14 as the default standard (with
504 // GNU extensions), so we do the same here to avoid mismatches that
505 // cause compiler error when evaluating expressions (e.g. nullptr not found
506 // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
507 // two lines below) so we decide to be consistent with that, but this could
508 // be re-evaluated in the future.
509 lang_opts.CPlusPlus11 = true;
510 break;
511 case lldb::eLanguageTypeC_plus_plus_20:
512 lang_opts.CPlusPlus20 = true;
513 [[fallthrough]];
514 case lldb::eLanguageTypeC_plus_plus_17:
515 // FIXME: add a separate case for CPlusPlus14. Currently folded into C++17
516 // because C++14 is the default standard for Clang but enabling CPlusPlus14
517 // expression evaluatino doesn't pass the test-suite cleanly.
518 lang_opts.CPlusPlus14 = true;
519 lang_opts.CPlusPlus17 = true;
520 [[fallthrough]];
521 case lldb::eLanguageTypeC_plus_plus:
522 case lldb::eLanguageTypeC_plus_plus_11:
523 case lldb::eLanguageTypeC_plus_plus_14:
524 lang_opts.CPlusPlus11 = true;
525 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
526 [[fallthrough]];
527 case lldb::eLanguageTypeC_plus_plus_03:
528 lang_opts.CPlusPlus = true;
529 if (process_sp)
530 lang_opts.ObjC =
531 process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
532 break;
533 case lldb::eLanguageTypeObjC_plus_plus:
534 case lldb::eLanguageTypeUnknown:
535 default:
536 lang_opts.ObjC = true;
537 lang_opts.CPlusPlus = true;
538 lang_opts.CPlusPlus11 = true;
539 m_compiler->getHeaderSearchOpts().UseLibcxx = true;
540 break;
543 lang_opts.Bool = true;
544 lang_opts.WChar = true;
545 lang_opts.Blocks = true;
546 lang_opts.DebuggerSupport =
547 true; // Features specifically for debugger clients
548 if (expr.DesiredResultType() == Expression::eResultTypeId)
549 lang_opts.DebuggerCastResultToId = true;
551 lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
552 .CharIsSignedByDefault();
554 // Spell checking is a nice feature, but it ends up completing a lot of types
555 // that we didn't strictly speaking need to complete. As a result, we spend a
556 // long time parsing and importing debug information.
557 lang_opts.SpellChecking = false;
559 auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr);
560 if (clang_expr && clang_expr->DidImportCxxModules()) {
561 LLDB_LOG(log, "Adding lang options for importing C++ modules");
563 lang_opts.Modules = true;
564 // We want to implicitly build modules.
565 lang_opts.ImplicitModules = true;
566 // To automatically import all submodules when we import 'std'.
567 lang_opts.ModulesLocalVisibility = false;
569 // We use the @import statements, so we need this:
570 // FIXME: We could use the modules-ts, but that currently doesn't work.
571 lang_opts.ObjC = true;
573 // Options we need to parse libc++ code successfully.
574 // FIXME: We should ask the driver for the appropriate default flags.
575 lang_opts.GNUMode = true;
576 lang_opts.GNUKeywords = true;
577 lang_opts.CPlusPlus11 = true;
578 lang_opts.BuiltinHeadersInSystemModules = true;
580 // The Darwin libc expects this macro to be set.
581 lang_opts.GNUCVersion = 40201;
583 SetupModuleHeaderPaths(m_compiler.get(), m_include_directories,
584 target_sp);
587 if (process_sp && lang_opts.ObjC) {
588 if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) {
589 switch (runtime->GetRuntimeVersion()) {
590 case ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2:
591 lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
592 break;
593 case ObjCLanguageRuntime::ObjCRuntimeVersions::eObjC_VersionUnknown:
594 case ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V1:
595 lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
596 VersionTuple(10, 7));
597 break;
598 case ObjCLanguageRuntime::ObjCRuntimeVersions::eGNUstep_libobjc2:
599 lang_opts.ObjCRuntime.set(ObjCRuntime::GNUstep, VersionTuple(2, 0));
600 break;
603 if (runtime->HasNewLiteralsAndIndexing())
604 lang_opts.DebuggerObjCLiteral = true;
608 lang_opts.ThreadsafeStatics = false;
609 lang_opts.AccessControl = false; // Debuggers get universal access
610 lang_opts.DollarIdents = true; // $ indicates a persistent variable name
611 // We enable all builtin functions beside the builtins from libc/libm (e.g.
612 // 'fopen'). Those libc functions are already correctly handled by LLDB, and
613 // additionally enabling them as expandable builtins is breaking Clang.
614 lang_opts.NoBuiltin = true;
616 // Set CodeGen options
617 m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
618 m_compiler->getCodeGenOpts().InstrumentFunctions = false;
619 m_compiler->getCodeGenOpts().setFramePointer(
620 CodeGenOptions::FramePointerKind::All);
621 if (generate_debug_info)
622 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
623 else
624 m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
626 // Disable some warnings.
627 SetupDefaultClangDiagnostics(*m_compiler);
629 // Inform the target of the language options
631 // FIXME: We shouldn't need to do this, the target should be immutable once
632 // created. This complexity should be lifted elsewhere.
633 m_compiler->getTarget().adjust(m_compiler->getDiagnostics(),
634 m_compiler->getLangOpts());
636 // 5. Set up the diagnostic buffer for reporting errors
638 auto diag_mgr = new ClangDiagnosticManagerAdapter(
639 m_compiler->getDiagnostics().getDiagnosticOptions());
640 m_compiler->getDiagnostics().setClient(diag_mgr);
642 // 6. Set up the source management objects inside the compiler
643 m_compiler->createFileManager();
644 if (!m_compiler->hasSourceManager())
645 m_compiler->createSourceManager(m_compiler->getFileManager());
646 m_compiler->createPreprocessor(TU_Complete);
648 switch (language) {
649 case lldb::eLanguageTypeC:
650 case lldb::eLanguageTypeC89:
651 case lldb::eLanguageTypeC99:
652 case lldb::eLanguageTypeC11:
653 case lldb::eLanguageTypeObjC:
654 // This is not a C++ expression but we enabled C++ as explained above.
655 // Remove all C++ keywords from the PP so that the user can still use
656 // variables that have C++ keywords as names (e.g. 'int template;').
657 RemoveAllCppKeywords(m_compiler->getPreprocessor().getIdentifierTable());
658 break;
659 default:
660 break;
663 if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>(
664 target_sp->GetPersistentExpressionStateForLanguage(
665 lldb::eLanguageTypeC))) {
666 if (std::shared_ptr<ClangModulesDeclVendor> decl_vendor =
667 clang_persistent_vars->GetClangModulesDeclVendor()) {
668 std::unique_ptr<PPCallbacks> pp_callbacks(
669 new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars,
670 m_compiler->getSourceManager()));
671 m_pp_callbacks =
672 static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
673 m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
677 // 7. Most of this we get from the CompilerInstance, but we also want to give
678 // the context an ExternalASTSource.
680 auto &PP = m_compiler->getPreprocessor();
681 auto &builtin_context = PP.getBuiltinInfo();
682 builtin_context.initializeBuiltins(PP.getIdentifierTable(),
683 m_compiler->getLangOpts());
685 m_compiler->createASTContext();
686 clang::ASTContext &ast_context = m_compiler->getASTContext();
688 m_ast_context = std::make_shared<TypeSystemClang>(
689 "Expression ASTContext for '" + m_filename + "'", ast_context);
691 std::string module_name("$__lldb_module");
693 m_llvm_context = std::make_unique<LLVMContext>();
694 m_code_generator.reset(CreateLLVMCodeGen(
695 m_compiler->getDiagnostics(), module_name,
696 &m_compiler->getVirtualFileSystem(), m_compiler->getHeaderSearchOpts(),
697 m_compiler->getPreprocessorOpts(), m_compiler->getCodeGenOpts(),
698 *m_llvm_context));
701 ClangExpressionParser::~ClangExpressionParser() = default;
703 namespace {
705 /// \class CodeComplete
707 /// A code completion consumer for the clang Sema that is responsible for
708 /// creating the completion suggestions when a user requests completion
709 /// of an incomplete `expr` invocation.
710 class CodeComplete : public CodeCompleteConsumer {
711 CodeCompletionTUInfo m_info;
713 std::string m_expr;
714 unsigned m_position = 0;
715 /// The printing policy we use when printing declarations for our completion
716 /// descriptions.
717 clang::PrintingPolicy m_desc_policy;
719 struct CompletionWithPriority {
720 CompletionResult::Completion completion;
721 /// See CodeCompletionResult::Priority;
722 unsigned Priority;
724 /// Establishes a deterministic order in a list of CompletionWithPriority.
725 /// The order returned here is the order in which the completions are
726 /// displayed to the user.
727 bool operator<(const CompletionWithPriority &o) const {
728 // High priority results should come first.
729 if (Priority != o.Priority)
730 return Priority > o.Priority;
732 // Identical priority, so just make sure it's a deterministic order.
733 return completion.GetUniqueKey() < o.completion.GetUniqueKey();
737 /// The stored completions.
738 /// Warning: These are in a non-deterministic order until they are sorted
739 /// and returned back to the caller.
740 std::vector<CompletionWithPriority> m_completions;
742 /// Returns true if the given character can be used in an identifier.
743 /// This also returns true for numbers because for completion we usually
744 /// just iterate backwards over iterators.
746 /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
747 static bool IsIdChar(char c) {
748 return c == '_' || std::isalnum(c) || c == '$';
751 /// Returns true if the given character is used to separate arguments
752 /// in the command line of lldb.
753 static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
755 /// Drops all tokens in front of the expression that are unrelated for
756 /// the completion of the cmd line. 'unrelated' means here that the token
757 /// is not interested for the lldb completion API result.
758 StringRef dropUnrelatedFrontTokens(StringRef cmd) const {
759 if (cmd.empty())
760 return cmd;
762 // If we are at the start of a word, then all tokens are unrelated to
763 // the current completion logic.
764 if (IsTokenSeparator(cmd.back()))
765 return StringRef();
767 // Remove all previous tokens from the string as they are unrelated
768 // to completing the current token.
769 StringRef to_remove = cmd;
770 while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
771 to_remove = to_remove.drop_back();
773 cmd = cmd.drop_front(to_remove.size());
775 return cmd;
778 /// Removes the last identifier token from the given cmd line.
779 StringRef removeLastToken(StringRef cmd) const {
780 while (!cmd.empty() && IsIdChar(cmd.back())) {
781 cmd = cmd.drop_back();
783 return cmd;
786 /// Attempts to merge the given completion from the given position into the
787 /// existing command. Returns the completion string that can be returned to
788 /// the lldb completion API.
789 std::string mergeCompletion(StringRef existing, unsigned pos,
790 StringRef completion) const {
791 StringRef existing_command = existing.substr(0, pos);
792 // We rewrite the last token with the completion, so let's drop that
793 // token from the command.
794 existing_command = removeLastToken(existing_command);
795 // We also should remove all previous tokens from the command as they
796 // would otherwise be added to the completion that already has the
797 // completion.
798 existing_command = dropUnrelatedFrontTokens(existing_command);
799 return existing_command.str() + completion.str();
802 public:
803 /// Constructs a CodeComplete consumer that can be attached to a Sema.
805 /// \param[out] expr
806 /// The whole expression string that we are currently parsing. This
807 /// string needs to be equal to the input the user typed, and NOT the
808 /// final code that Clang is parsing.
809 /// \param[out] position
810 /// The character position of the user cursor in the `expr` parameter.
812 CodeComplete(clang::LangOptions ops, std::string expr, unsigned position)
813 : CodeCompleteConsumer(CodeCompleteOptions()),
814 m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
815 m_position(position), m_desc_policy(ops) {
817 // Ensure that the printing policy is producing a description that is as
818 // short as possible.
819 m_desc_policy.SuppressScope = true;
820 m_desc_policy.SuppressTagKeyword = true;
821 m_desc_policy.FullyQualifiedName = false;
822 m_desc_policy.TerseOutput = true;
823 m_desc_policy.IncludeNewlines = false;
824 m_desc_policy.UseVoidForZeroParams = false;
825 m_desc_policy.Bool = true;
828 /// \name Code-completion filtering
829 /// Check if the result should be filtered out.
830 bool isResultFilteredOut(StringRef Filter,
831 CodeCompletionResult Result) override {
832 // This code is mostly copied from CodeCompleteConsumer.
833 switch (Result.Kind) {
834 case CodeCompletionResult::RK_Declaration:
835 return !(
836 Result.Declaration->getIdentifier() &&
837 Result.Declaration->getIdentifier()->getName().startswith(Filter));
838 case CodeCompletionResult::RK_Keyword:
839 return !StringRef(Result.Keyword).startswith(Filter);
840 case CodeCompletionResult::RK_Macro:
841 return !Result.Macro->getName().startswith(Filter);
842 case CodeCompletionResult::RK_Pattern:
843 return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
845 // If we trigger this assert or the above switch yields a warning, then
846 // CodeCompletionResult has been enhanced with more kinds of completion
847 // results. Expand the switch above in this case.
848 assert(false && "Unknown completion result type?");
849 // If we reach this, then we should just ignore whatever kind of unknown
850 // result we got back. We probably can't turn it into any kind of useful
851 // completion suggestion with the existing code.
852 return true;
855 private:
856 /// Generate the completion strings for the given CodeCompletionResult.
857 /// Note that this function has to process results that could come in
858 /// non-deterministic order, so this function should have no side effects.
859 /// To make this easier to enforce, this function and all its parameters
860 /// should always be const-qualified.
861 /// \return Returns std::nullopt if no completion should be provided for the
862 /// given CodeCompletionResult.
863 std::optional<CompletionWithPriority>
864 getCompletionForResult(const CodeCompletionResult &R) const {
865 std::string ToInsert;
866 std::string Description;
867 // Handle the different completion kinds that come from the Sema.
868 switch (R.Kind) {
869 case CodeCompletionResult::RK_Declaration: {
870 const NamedDecl *D = R.Declaration;
871 ToInsert = R.Declaration->getNameAsString();
872 // If we have a function decl that has no arguments we want to
873 // complete the empty parantheses for the user. If the function has
874 // arguments, we at least complete the opening bracket.
875 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
876 if (F->getNumParams() == 0)
877 ToInsert += "()";
878 else
879 ToInsert += "(";
880 raw_string_ostream OS(Description);
881 F->print(OS, m_desc_policy, false);
882 OS.flush();
883 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
884 Description = V->getType().getAsString(m_desc_policy);
885 } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
886 Description = F->getType().getAsString(m_desc_policy);
887 } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
888 // If we try to complete a namespace, then we can directly append
889 // the '::'.
890 if (!N->isAnonymousNamespace())
891 ToInsert += "::";
893 break;
895 case CodeCompletionResult::RK_Keyword:
896 ToInsert = R.Keyword;
897 break;
898 case CodeCompletionResult::RK_Macro:
899 ToInsert = R.Macro->getName().str();
900 break;
901 case CodeCompletionResult::RK_Pattern:
902 ToInsert = R.Pattern->getTypedText();
903 break;
905 // We also filter some internal lldb identifiers here. The user
906 // shouldn't see these.
907 if (llvm::StringRef(ToInsert).startswith("$__lldb_"))
908 return std::nullopt;
909 if (ToInsert.empty())
910 return std::nullopt;
911 // Merge the suggested Token into the existing command line to comply
912 // with the kind of result the lldb API expects.
913 std::string CompletionSuggestion =
914 mergeCompletion(m_expr, m_position, ToInsert);
916 CompletionResult::Completion completion(CompletionSuggestion, Description,
917 CompletionMode::Normal);
918 return {{completion, R.Priority}};
921 public:
922 /// Adds the completions to the given CompletionRequest.
923 void GetCompletions(CompletionRequest &request) {
924 // Bring m_completions into a deterministic order and pass it on to the
925 // CompletionRequest.
926 llvm::sort(m_completions);
928 for (const CompletionWithPriority &C : m_completions)
929 request.AddCompletion(C.completion.GetCompletion(),
930 C.completion.GetDescription(),
931 C.completion.GetMode());
934 /// \name Code-completion callbacks
935 /// Process the finalized code-completion results.
936 void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
937 CodeCompletionResult *Results,
938 unsigned NumResults) override {
940 // The Sema put the incomplete token we try to complete in here during
941 // lexing, so we need to retrieve it here to know what we are completing.
942 StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
944 // Iterate over all the results. Filter out results we don't want and
945 // process the rest.
946 for (unsigned I = 0; I != NumResults; ++I) {
947 // Filter the results with the information from the Sema.
948 if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
949 continue;
951 CodeCompletionResult &R = Results[I];
952 std::optional<CompletionWithPriority> CompletionAndPriority =
953 getCompletionForResult(R);
954 if (!CompletionAndPriority)
955 continue;
956 m_completions.push_back(*CompletionAndPriority);
960 /// \param S the semantic-analyzer object for which code-completion is being
961 /// done.
963 /// \param CurrentArg the index of the current argument.
965 /// \param Candidates an array of overload candidates.
967 /// \param NumCandidates the number of overload candidates
968 void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
969 OverloadCandidate *Candidates,
970 unsigned NumCandidates,
971 SourceLocation OpenParLoc,
972 bool Braced) override {
973 // At the moment we don't filter out any overloaded candidates.
976 CodeCompletionAllocator &getAllocator() override {
977 return m_info.getAllocator();
980 CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
982 } // namespace
984 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
985 unsigned pos, unsigned typed_pos) {
986 DiagnosticManager mgr;
987 // We need the raw user expression here because that's what the CodeComplete
988 // class uses to provide completion suggestions.
989 // However, the `Text` method only gives us the transformed expression here.
990 // To actually get the raw user input here, we have to cast our expression to
991 // the LLVMUserExpression which exposes the right API. This should never fail
992 // as we always have a ClangUserExpression whenever we call this.
993 ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr);
994 CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(),
995 typed_pos);
996 // We don't need a code generator for parsing.
997 m_code_generator.reset();
998 // Start parsing the expression with our custom code completion consumer.
999 ParseInternal(mgr, &CC, line, pos);
1000 CC.GetCompletions(request);
1001 return true;
1004 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
1005 return ParseInternal(diagnostic_manager);
1008 unsigned
1009 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
1010 CodeCompleteConsumer *completion_consumer,
1011 unsigned completion_line,
1012 unsigned completion_column) {
1013 ClangDiagnosticManagerAdapter *adapter =
1014 static_cast<ClangDiagnosticManagerAdapter *>(
1015 m_compiler->getDiagnostics().getClient());
1017 adapter->ResetManager(&diagnostic_manager);
1019 const char *expr_text = m_expr.Text();
1021 clang::SourceManager &source_mgr = m_compiler->getSourceManager();
1022 bool created_main_file = false;
1024 // Clang wants to do completion on a real file known by Clang's file manager,
1025 // so we have to create one to make this work.
1026 // TODO: We probably could also simulate to Clang's file manager that there
1027 // is a real file that contains our code.
1028 bool should_create_file = completion_consumer != nullptr;
1030 // We also want a real file on disk if we generate full debug info.
1031 should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
1032 codegenoptions::FullDebugInfo;
1034 if (should_create_file) {
1035 int temp_fd = -1;
1036 llvm::SmallString<128> result_path;
1037 if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
1038 tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
1039 std::string temp_source_path = tmpdir_file_spec.GetPath();
1040 llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
1041 } else {
1042 llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
1045 if (temp_fd != -1) {
1046 lldb_private::NativeFile file(temp_fd, File::eOpenOptionWriteOnly, true);
1047 const size_t expr_text_len = strlen(expr_text);
1048 size_t bytes_written = expr_text_len;
1049 if (file.Write(expr_text, bytes_written).Success()) {
1050 if (bytes_written == expr_text_len) {
1051 file.Close();
1052 if (auto fileEntry = m_compiler->getFileManager().getOptionalFileRef(
1053 result_path)) {
1054 source_mgr.setMainFileID(source_mgr.createFileID(
1055 *fileEntry,
1056 SourceLocation(), SrcMgr::C_User));
1057 created_main_file = true;
1064 if (!created_main_file) {
1065 std::unique_ptr<MemoryBuffer> memory_buffer =
1066 MemoryBuffer::getMemBufferCopy(expr_text, m_filename);
1067 source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
1070 adapter->BeginSourceFile(m_compiler->getLangOpts(),
1071 &m_compiler->getPreprocessor());
1073 ClangExpressionHelper *type_system_helper =
1074 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1076 // If we want to parse for code completion, we need to attach our code
1077 // completion consumer to the Sema and specify a completion position.
1078 // While parsing the Sema will call this consumer with the provided
1079 // completion suggestions.
1080 if (completion_consumer) {
1081 auto main_file =
1082 source_mgr.getFileEntryRefForID(source_mgr.getMainFileID());
1083 auto &PP = m_compiler->getPreprocessor();
1084 // Lines and columns start at 1 in Clang, but code completion positions are
1085 // indexed from 0, so we need to add 1 to the line and column here.
1086 ++completion_line;
1087 ++completion_column;
1088 PP.SetCodeCompletionPoint(*main_file, completion_line, completion_column);
1091 ASTConsumer *ast_transformer =
1092 type_system_helper->ASTTransformer(m_code_generator.get());
1094 std::unique_ptr<clang::ASTConsumer> Consumer;
1095 if (ast_transformer) {
1096 Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer);
1097 } else if (m_code_generator) {
1098 Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get());
1099 } else {
1100 Consumer = std::make_unique<ASTConsumer>();
1103 clang::ASTContext &ast_context = m_compiler->getASTContext();
1105 m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context,
1106 *Consumer, TU_Complete, completion_consumer));
1107 m_compiler->setASTConsumer(std::move(Consumer));
1109 if (ast_context.getLangOpts().Modules) {
1110 m_compiler->createASTReader();
1111 m_ast_context->setSema(&m_compiler->getSema());
1114 ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
1115 if (decl_map) {
1116 decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer());
1117 decl_map->InstallDiagnosticManager(diagnostic_manager);
1119 clang::ExternalASTSource *ast_source = decl_map->CreateProxy();
1121 if (ast_context.getExternalSource()) {
1122 auto module_wrapper =
1123 new ExternalASTSourceWrapper(ast_context.getExternalSource());
1125 auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source);
1127 auto multiplexer =
1128 new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper);
1129 IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer);
1130 ast_context.setExternalSource(Source);
1131 } else {
1132 ast_context.setExternalSource(ast_source);
1134 decl_map->InstallASTContext(*m_ast_context);
1137 // Check that the ASTReader is properly attached to ASTContext and Sema.
1138 if (ast_context.getLangOpts().Modules) {
1139 assert(m_compiler->getASTContext().getExternalSource() &&
1140 "ASTContext doesn't know about the ASTReader?");
1141 assert(m_compiler->getSema().getExternalSource() &&
1142 "Sema doesn't know about the ASTReader?");
1146 llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(
1147 &m_compiler->getSema());
1148 ParseAST(m_compiler->getSema(), false, false);
1151 // Make sure we have no pointer to the Sema we are about to destroy.
1152 if (ast_context.getLangOpts().Modules)
1153 m_ast_context->setSema(nullptr);
1154 // Destroy the Sema. This is necessary because we want to emulate the
1155 // original behavior of ParseAST (which also destroys the Sema after parsing).
1156 m_compiler->setSema(nullptr);
1158 adapter->EndSourceFile();
1160 unsigned num_errors = adapter->getNumErrors();
1162 if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
1163 num_errors++;
1164 diagnostic_manager.PutString(eDiagnosticSeverityError,
1165 "while importing modules:");
1166 diagnostic_manager.AppendMessageToDiagnostic(
1167 m_pp_callbacks->getErrorString());
1170 if (!num_errors) {
1171 type_system_helper->CommitPersistentDecls();
1174 adapter->ResetManager();
1176 return num_errors;
1179 std::string
1180 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
1181 std::string abi;
1183 if (target_arch.IsMIPS()) {
1184 switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
1185 case ArchSpec::eMIPSABI_N64:
1186 abi = "n64";
1187 break;
1188 case ArchSpec::eMIPSABI_N32:
1189 abi = "n32";
1190 break;
1191 case ArchSpec::eMIPSABI_O32:
1192 abi = "o32";
1193 break;
1194 default:
1195 break;
1198 return abi;
1201 /// Applies the given Fix-It hint to the given commit.
1202 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) {
1203 // This is cobbed from clang::Rewrite::FixItRewriter.
1204 if (fixit.CodeToInsert.empty()) {
1205 if (fixit.InsertFromRange.isValid()) {
1206 commit.insertFromRange(fixit.RemoveRange.getBegin(),
1207 fixit.InsertFromRange, /*afterToken=*/false,
1208 fixit.BeforePreviousInsertions);
1209 return;
1211 commit.remove(fixit.RemoveRange);
1212 return;
1214 if (fixit.RemoveRange.isTokenRange() ||
1215 fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) {
1216 commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1217 return;
1219 commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1220 /*afterToken=*/false, fixit.BeforePreviousInsertions);
1223 bool ClangExpressionParser::RewriteExpression(
1224 DiagnosticManager &diagnostic_manager) {
1225 clang::SourceManager &source_manager = m_compiler->getSourceManager();
1226 clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
1227 nullptr);
1228 clang::edit::Commit commit(editor);
1229 clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
1231 class RewritesReceiver : public edit::EditsReceiver {
1232 Rewriter &rewrite;
1234 public:
1235 RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
1237 void insert(SourceLocation loc, StringRef text) override {
1238 rewrite.InsertText(loc, text);
1240 void replace(CharSourceRange range, StringRef text) override {
1241 rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
1245 RewritesReceiver rewrites_receiver(rewriter);
1247 const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
1248 size_t num_diags = diagnostics.size();
1249 if (num_diags == 0)
1250 return false;
1252 for (const auto &diag : diagnostic_manager.Diagnostics()) {
1253 const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get());
1254 if (!diagnostic)
1255 continue;
1256 if (!diagnostic->HasFixIts())
1257 continue;
1258 for (const FixItHint &fixit : diagnostic->FixIts())
1259 ApplyFixIt(fixit, commit);
1262 // FIXME - do we want to try to propagate specific errors here?
1263 if (!commit.isCommitable())
1264 return false;
1265 else if (!editor.commit(commit))
1266 return false;
1268 // Now play all the edits, and stash the result in the diagnostic manager.
1269 editor.applyRewrites(rewrites_receiver);
1270 RewriteBuffer &main_file_buffer =
1271 rewriter.getEditBuffer(source_manager.getMainFileID());
1273 std::string fixed_expression;
1274 llvm::raw_string_ostream out_stream(fixed_expression);
1276 main_file_buffer.write(out_stream);
1277 out_stream.flush();
1278 diagnostic_manager.SetFixedExpression(fixed_expression);
1280 return true;
1283 static bool FindFunctionInModule(ConstString &mangled_name,
1284 llvm::Module *module, const char *orig_name) {
1285 for (const auto &func : module->getFunctionList()) {
1286 const StringRef &name = func.getName();
1287 if (name.contains(orig_name)) {
1288 mangled_name.SetString(name);
1289 return true;
1293 return false;
1296 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1297 lldb::addr_t &func_addr, lldb::addr_t &func_end,
1298 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1299 bool &can_interpret, ExecutionPolicy execution_policy) {
1300 func_addr = LLDB_INVALID_ADDRESS;
1301 func_end = LLDB_INVALID_ADDRESS;
1302 Log *log = GetLog(LLDBLog::Expressions);
1304 lldb_private::Status err;
1306 std::unique_ptr<llvm::Module> llvm_module_up(
1307 m_code_generator->ReleaseModule());
1309 if (!llvm_module_up) {
1310 err.SetErrorToGenericError();
1311 err.SetErrorString("IR doesn't contain a module");
1312 return err;
1315 ConstString function_name;
1317 if (execution_policy != eExecutionPolicyTopLevel) {
1318 // Find the actual name of the function (it's often mangled somehow)
1320 if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1321 m_expr.FunctionName())) {
1322 err.SetErrorToGenericError();
1323 err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1324 m_expr.FunctionName());
1325 return err;
1326 } else {
1327 LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(),
1328 m_expr.FunctionName());
1332 SymbolContext sc;
1334 if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1335 sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1336 } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1337 sc.target_sp = target_sp;
1340 LLVMUserExpression::IRPasses custom_passes;
1342 auto lang = m_expr.Language();
1343 LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__,
1344 Language::GetNameForLanguageType(lang));
1345 lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1346 if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1347 auto runtime = process_sp->GetLanguageRuntime(lang);
1348 if (runtime)
1349 runtime->GetIRPasses(custom_passes);
1353 if (custom_passes.EarlyPasses) {
1354 LLDB_LOGF(log,
1355 "%s - Running Early IR Passes from LanguageRuntime on "
1356 "expression module '%s'",
1357 __FUNCTION__, m_expr.FunctionName());
1359 custom_passes.EarlyPasses->run(*llvm_module_up);
1362 execution_unit_sp = std::make_shared<IRExecutionUnit>(
1363 m_llvm_context, // handed off here
1364 llvm_module_up, // handed off here
1365 function_name, exe_ctx.GetTargetSP(), sc,
1366 m_compiler->getTargetOpts().Features);
1368 ClangExpressionHelper *type_system_helper =
1369 dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1370 ClangExpressionDeclMap *decl_map =
1371 type_system_helper->DeclMap(); // result can be NULL
1373 if (decl_map) {
1374 StreamString error_stream;
1375 IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1376 *execution_unit_sp, error_stream,
1377 function_name.AsCString());
1379 if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) {
1380 err.SetErrorString(error_stream.GetString());
1381 return err;
1384 Process *process = exe_ctx.GetProcessPtr();
1386 if (execution_policy != eExecutionPolicyAlways &&
1387 execution_policy != eExecutionPolicyTopLevel) {
1388 lldb_private::Status interpret_error;
1390 bool interpret_function_calls =
1391 !process ? false : process->CanInterpretFunctionCalls();
1392 can_interpret = IRInterpreter::CanInterpret(
1393 *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1394 interpret_error, interpret_function_calls);
1396 if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1397 err.SetErrorStringWithFormat(
1398 "Can't evaluate the expression without a running target due to: %s",
1399 interpret_error.AsCString());
1400 return err;
1404 if (!process && execution_policy == eExecutionPolicyAlways) {
1405 err.SetErrorString("Expression needed to run in the target, but the "
1406 "target can't be run");
1407 return err;
1410 if (!process && execution_policy == eExecutionPolicyTopLevel) {
1411 err.SetErrorString("Top-level code needs to be inserted into a runnable "
1412 "target, but the target can't be run");
1413 return err;
1416 if (execution_policy == eExecutionPolicyAlways ||
1417 (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1418 if (m_expr.NeedsValidation() && process) {
1419 if (!process->GetDynamicCheckers()) {
1420 ClangDynamicCheckerFunctions *dynamic_checkers =
1421 new ClangDynamicCheckerFunctions();
1423 DiagnosticManager install_diags;
1424 if (Error Err = dynamic_checkers->Install(install_diags, exe_ctx)) {
1425 std::string ErrMsg = "couldn't install checkers: " + toString(std::move(Err));
1426 if (install_diags.Diagnostics().size())
1427 ErrMsg = ErrMsg + "\n" + install_diags.GetString().c_str();
1428 err.SetErrorString(ErrMsg);
1429 return err;
1432 process->SetDynamicCheckers(dynamic_checkers);
1434 LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] "
1435 "Finished installing dynamic checkers ==");
1438 if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>(
1439 process->GetDynamicCheckers())) {
1440 IRDynamicChecks ir_dynamic_checks(*checker_funcs,
1441 function_name.AsCString());
1443 llvm::Module *module = execution_unit_sp->GetModule();
1444 if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1445 err.SetErrorToGenericError();
1446 err.SetErrorString("Couldn't add dynamic checks to the expression");
1447 return err;
1450 if (custom_passes.LatePasses) {
1451 LLDB_LOGF(log,
1452 "%s - Running Late IR Passes from LanguageRuntime on "
1453 "expression module '%s'",
1454 __FUNCTION__, m_expr.FunctionName());
1456 custom_passes.LatePasses->run(*module);
1462 if (execution_policy == eExecutionPolicyAlways ||
1463 execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1464 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1466 } else {
1467 execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1470 return err;
1473 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1474 lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1475 lldb_private::Status err;
1477 lldbassert(execution_unit_sp.get());
1478 lldbassert(exe_ctx.HasThreadScope());
1480 if (!execution_unit_sp.get()) {
1481 err.SetErrorString(
1482 "can't run static initializers for a NULL execution unit");
1483 return err;
1486 if (!exe_ctx.HasThreadScope()) {
1487 err.SetErrorString("can't run static initializers without a thread");
1488 return err;
1491 std::vector<lldb::addr_t> static_initializers;
1493 execution_unit_sp->GetStaticInitializers(static_initializers);
1495 for (lldb::addr_t static_initializer : static_initializers) {
1496 EvaluateExpressionOptions options;
1498 lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1499 exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1500 llvm::ArrayRef<lldb::addr_t>(), options));
1502 DiagnosticManager execution_errors;
1503 lldb::ExpressionResults results =
1504 exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1505 exe_ctx, call_static_initializer, options, execution_errors);
1507 if (results != lldb::eExpressionCompleted) {
1508 err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1509 execution_errors.GetString().c_str());
1510 return err;
1514 return err;