Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lldb / source / Plugins / Trace / intel-pt / PerfContextSwitchDecoder.cpp
blob1aa2a3cc097bb1d5f2576af51940774e59a1bb19
1 //===-- PerfContextSwitchDecoder.cpp --======------------------------------===//
2 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
3 // See https://llvm.org/LICENSE.txt for license information.
4 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
5 //
6 //===----------------------------------------------------------------------===//
8 #include "PerfContextSwitchDecoder.h"
9 #include <optional>
11 using namespace lldb;
12 using namespace lldb_private;
13 using namespace lldb_private::trace_intel_pt;
14 using namespace llvm;
16 /// Copied from <linux/perf_event.h> to avoid depending on perf_event.h on
17 /// non-linux platforms.
18 /// \{
19 #define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
21 #define PERF_RECORD_LOST 2
22 #define PERF_RECORD_THROTTLE 5
23 #define PERF_RECORD_UNTHROTTLE 6
24 #define PERF_RECORD_LOST_SAMPLES 13
25 #define PERF_RECORD_SWITCH_CPU_WIDE 15
26 #define PERF_RECORD_MAX 19
28 struct perf_event_header {
29 uint32_t type;
30 uint16_t misc;
31 uint16_t size;
33 /// \return
34 /// An \a llvm::Error if the record looks obviously wrong, or \a
35 /// llvm::Error::success() otherwise.
36 Error SanityCheck() const {
37 // The following checks are based on visual inspection of the records and
38 // enums in
39 // https://elixir.bootlin.com/linux/v4.8/source/include/uapi/linux/perf_event.h
40 // See PERF_RECORD_MAX, PERF_RECORD_SWITCH and the data similar records
41 // hold.
43 // A record of too many uint64_t's or more should mean that the data is
44 // wrong
45 const uint64_t max_valid_size_bytes = 8000;
46 if (size == 0 || size > max_valid_size_bytes)
47 return createStringError(
48 inconvertibleErrorCode(),
49 formatv("A record of {0} bytes was found.", size));
51 // We add some numbers to PERF_RECORD_MAX because some systems might have
52 // custom records. In any case, we are looking only for abnormal data.
53 if (type >= PERF_RECORD_MAX + 100)
54 return createStringError(
55 inconvertibleErrorCode(),
56 formatv("Invalid record type {0} was found.", type));
57 return Error::success();
60 bool IsContextSwitchRecord() const {
61 return type == PERF_RECORD_SWITCH_CPU_WIDE;
64 bool IsErrorRecord() const {
65 return type == PERF_RECORD_LOST || type == PERF_RECORD_THROTTLE ||
66 type == PERF_RECORD_UNTHROTTLE || type == PERF_RECORD_LOST_SAMPLES;
69 /// \}
71 /// Record found in the perf_event context switch traces. It might contain
72 /// additional fields in memory, but header.size should have the actual size
73 /// of the record.
74 struct PerfContextSwitchRecord {
75 struct perf_event_header header;
76 uint32_t next_prev_pid;
77 uint32_t next_prev_tid;
78 uint32_t pid, tid;
79 uint64_t time_in_nanos;
81 bool IsOut() const { return header.misc & PERF_RECORD_MISC_SWITCH_OUT; }
84 /// Record produced after parsing the raw context switch trace produce by
85 /// perf_event. A major difference between this struct and
86 /// PerfContextSwitchRecord is that this one uses tsc instead of nanos.
87 struct ContextSwitchRecord {
88 uint64_t tsc;
89 /// Whether the switch is in or out
90 bool is_out;
91 /// pid = 0 and tid = 0 indicate the swapper or idle process, which normally
92 /// runs after a context switch out of a normal user thread.
93 lldb::pid_t pid;
94 lldb::tid_t tid;
96 bool IsOut() const { return is_out; }
98 bool IsIn() const { return !is_out; }
101 uint64_t ThreadContinuousExecution::GetLowestKnownTSC() const {
102 switch (variant) {
103 case Variant::Complete:
104 return tscs.complete.start;
105 case Variant::OnlyStart:
106 return tscs.only_start.start;
107 case Variant::OnlyEnd:
108 return tscs.only_end.end;
109 case Variant::HintedEnd:
110 return tscs.hinted_end.start;
111 case Variant::HintedStart:
112 return tscs.hinted_start.end;
116 uint64_t ThreadContinuousExecution::GetStartTSC() const {
117 switch (variant) {
118 case Variant::Complete:
119 return tscs.complete.start;
120 case Variant::OnlyStart:
121 return tscs.only_start.start;
122 case Variant::OnlyEnd:
123 return 0;
124 case Variant::HintedEnd:
125 return tscs.hinted_end.start;
126 case Variant::HintedStart:
127 return tscs.hinted_start.hinted_start;
131 uint64_t ThreadContinuousExecution::GetEndTSC() const {
132 switch (variant) {
133 case Variant::Complete:
134 return tscs.complete.end;
135 case Variant::OnlyStart:
136 return std::numeric_limits<uint64_t>::max();
137 case Variant::OnlyEnd:
138 return tscs.only_end.end;
139 case Variant::HintedEnd:
140 return tscs.hinted_end.hinted_end;
141 case Variant::HintedStart:
142 return tscs.hinted_start.end;
146 ThreadContinuousExecution ThreadContinuousExecution::CreateCompleteExecution(
147 lldb::cpu_id_t cpu_id, lldb::tid_t tid, lldb::pid_t pid, uint64_t start,
148 uint64_t end) {
149 ThreadContinuousExecution o(cpu_id, tid, pid);
150 o.variant = Variant::Complete;
151 o.tscs.complete.start = start;
152 o.tscs.complete.end = end;
153 return o;
156 ThreadContinuousExecution ThreadContinuousExecution::CreateHintedStartExecution(
157 lldb::cpu_id_t cpu_id, lldb::tid_t tid, lldb::pid_t pid,
158 uint64_t hinted_start, uint64_t end) {
159 ThreadContinuousExecution o(cpu_id, tid, pid);
160 o.variant = Variant::HintedStart;
161 o.tscs.hinted_start.hinted_start = hinted_start;
162 o.tscs.hinted_start.end = end;
163 return o;
166 ThreadContinuousExecution ThreadContinuousExecution::CreateHintedEndExecution(
167 lldb::cpu_id_t cpu_id, lldb::tid_t tid, lldb::pid_t pid, uint64_t start,
168 uint64_t hinted_end) {
169 ThreadContinuousExecution o(cpu_id, tid, pid);
170 o.variant = Variant::HintedEnd;
171 o.tscs.hinted_end.start = start;
172 o.tscs.hinted_end.hinted_end = hinted_end;
173 return o;
176 ThreadContinuousExecution ThreadContinuousExecution::CreateOnlyEndExecution(
177 lldb::cpu_id_t cpu_id, lldb::tid_t tid, lldb::pid_t pid, uint64_t end) {
178 ThreadContinuousExecution o(cpu_id, tid, pid);
179 o.variant = Variant::OnlyEnd;
180 o.tscs.only_end.end = end;
181 return o;
184 ThreadContinuousExecution ThreadContinuousExecution::CreateOnlyStartExecution(
185 lldb::cpu_id_t cpu_id, lldb::tid_t tid, lldb::pid_t pid, uint64_t start) {
186 ThreadContinuousExecution o(cpu_id, tid, pid);
187 o.variant = Variant::OnlyStart;
188 o.tscs.only_start.start = start;
189 return o;
192 static Error RecoverExecutionsFromConsecutiveRecords(
193 cpu_id_t cpu_id, const LinuxPerfZeroTscConversion &tsc_conversion,
194 const ContextSwitchRecord &current_record,
195 const std::optional<ContextSwitchRecord> &prev_record,
196 std::function<void(const ThreadContinuousExecution &execution)>
197 on_new_execution) {
198 if (!prev_record) {
199 if (current_record.IsOut()) {
200 on_new_execution(ThreadContinuousExecution::CreateOnlyEndExecution(
201 cpu_id, current_record.tid, current_record.pid, current_record.tsc));
203 // The 'in' case will be handled later when we try to look for its end
204 return Error::success();
207 const ContextSwitchRecord &prev = *prev_record;
208 if (prev.tsc >= current_record.tsc)
209 return createStringError(
210 inconvertibleErrorCode(),
211 formatv("A context switch record doesn't happen after the previous "
212 "record. Previous TSC= {0}, current TSC = {1}.",
213 prev.tsc, current_record.tsc));
215 if (current_record.IsIn() && prev.IsIn()) {
216 // We found two consecutive ins, which means that we didn't capture
217 // the end of the previous execution.
218 on_new_execution(ThreadContinuousExecution::CreateHintedEndExecution(
219 cpu_id, prev.tid, prev.pid, prev.tsc, current_record.tsc - 1));
220 } else if (current_record.IsOut() && prev.IsOut()) {
221 // We found two consecutive outs, that means that we didn't capture
222 // the beginning of the current execution.
223 on_new_execution(ThreadContinuousExecution::CreateHintedStartExecution(
224 cpu_id, current_record.tid, current_record.pid, prev.tsc + 1,
225 current_record.tsc));
226 } else if (current_record.IsOut() && prev.IsIn()) {
227 if (current_record.pid == prev.pid && current_record.tid == prev.tid) {
228 /// A complete execution
229 on_new_execution(ThreadContinuousExecution::CreateCompleteExecution(
230 cpu_id, current_record.tid, current_record.pid, prev.tsc,
231 current_record.tsc));
232 } else {
233 // An out after the in of a different thread. The first one doesn't
234 // have an end, and the second one doesn't have a start.
235 on_new_execution(ThreadContinuousExecution::CreateHintedEndExecution(
236 cpu_id, prev.tid, prev.pid, prev.tsc, current_record.tsc - 1));
237 on_new_execution(ThreadContinuousExecution::CreateHintedStartExecution(
238 cpu_id, current_record.tid, current_record.pid, prev.tsc + 1,
239 current_record.tsc));
242 return Error::success();
245 Expected<std::vector<ThreadContinuousExecution>>
246 lldb_private::trace_intel_pt::DecodePerfContextSwitchTrace(
247 ArrayRef<uint8_t> data, cpu_id_t cpu_id,
248 const LinuxPerfZeroTscConversion &tsc_conversion) {
250 std::vector<ThreadContinuousExecution> executions;
252 // This offset is used to create the error message in case of failures.
253 size_t offset = 0;
255 auto do_decode = [&]() -> Error {
256 std::optional<ContextSwitchRecord> prev_record;
257 while (offset < data.size()) {
258 const perf_event_header &perf_record =
259 *reinterpret_cast<const perf_event_header *>(data.data() + offset);
260 if (Error err = perf_record.SanityCheck())
261 return err;
263 if (perf_record.IsContextSwitchRecord()) {
264 const PerfContextSwitchRecord &context_switch_record =
265 *reinterpret_cast<const PerfContextSwitchRecord *>(data.data() +
266 offset);
267 ContextSwitchRecord record{
268 tsc_conversion.ToTSC(context_switch_record.time_in_nanos),
269 context_switch_record.IsOut(),
270 static_cast<lldb::pid_t>(context_switch_record.pid),
271 static_cast<lldb::tid_t>(context_switch_record.tid)};
273 if (Error err = RecoverExecutionsFromConsecutiveRecords(
274 cpu_id, tsc_conversion, record, prev_record,
275 [&](const ThreadContinuousExecution &execution) {
276 executions.push_back(execution);
278 return err;
280 prev_record = record;
282 offset += perf_record.size;
285 // We might have an incomplete last record
286 if (prev_record && prev_record->IsIn())
287 executions.push_back(ThreadContinuousExecution::CreateOnlyStartExecution(
288 cpu_id, prev_record->tid, prev_record->pid, prev_record->tsc));
289 return Error::success();
292 if (Error err = do_decode())
293 return createStringError(inconvertibleErrorCode(),
294 formatv("Malformed perf context switch trace for "
295 "cpu {0} at offset {1}. {2}",
296 cpu_id, offset, toString(std::move(err))));
298 return executions;
301 Expected<std::vector<uint8_t>>
302 lldb_private::trace_intel_pt::FilterProcessesFromContextSwitchTrace(
303 llvm::ArrayRef<uint8_t> data, const std::set<lldb::pid_t> &pids) {
304 size_t offset = 0;
305 std::vector<uint8_t> out_data;
307 while (offset < data.size()) {
308 const perf_event_header &perf_record =
309 *reinterpret_cast<const perf_event_header *>(data.data() + offset);
310 if (Error err = perf_record.SanityCheck())
311 return std::move(err);
312 bool should_copy = false;
313 if (perf_record.IsContextSwitchRecord()) {
314 const PerfContextSwitchRecord &context_switch_record =
315 *reinterpret_cast<const PerfContextSwitchRecord *>(data.data() +
316 offset);
317 if (pids.count(context_switch_record.pid))
318 should_copy = true;
319 } else if (perf_record.IsErrorRecord()) {
320 should_copy = true;
323 if (should_copy) {
324 for (size_t i = 0; i < perf_record.size; i++) {
325 out_data.push_back(data[offset + i]);
329 offset += perf_record.size;
331 return out_data;