Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / lldb / source / Utility / ConstString.cpp
blob4535771adfb73563131157b810dab70617bc8aac
1 //===-- ConstString.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "lldb/Utility/ConstString.h"
11 #include "lldb/Utility/Stream.h"
13 #include "llvm/ADT/StringMap.h"
14 #include "llvm/ADT/iterator.h"
15 #include "llvm/Support/Allocator.h"
16 #include "llvm/Support/DJB.h"
17 #include "llvm/Support/FormatProviders.h"
18 #include "llvm/Support/RWMutex.h"
19 #include "llvm/Support/Threading.h"
21 #include <array>
22 #include <utility>
24 #include <cinttypes>
25 #include <cstdint>
26 #include <cstring>
28 using namespace lldb_private;
30 class Pool {
31 public:
32 /// The default BumpPtrAllocatorImpl slab size.
33 static const size_t AllocatorSlabSize = 4096;
34 static const size_t SizeThreshold = AllocatorSlabSize;
35 /// Every Pool has its own allocator which receives an equal share of
36 /// the ConstString allocations. This means that when allocating many
37 /// ConstStrings, every allocator sees only its small share of allocations and
38 /// assumes LLDB only allocated a small amount of memory so far. In reality
39 /// LLDB allocated a total memory that is N times as large as what the
40 /// allocator sees (where N is the number of string pools). This causes that
41 /// the BumpPtrAllocator continues a long time to allocate memory in small
42 /// chunks which only makes sense when allocating a small amount of memory
43 /// (which is true from the perspective of a single allocator). On some
44 /// systems doing all these small memory allocations causes LLDB to spend
45 /// a lot of time in malloc, so we need to force all these allocators to
46 /// behave like one allocator in terms of scaling their memory allocations
47 /// with increased demand. To do this we set the growth delay for each single
48 /// allocator to a rate so that our pool of allocators scales their memory
49 /// allocations similar to a single BumpPtrAllocatorImpl.
50 ///
51 /// Currently we have 256 string pools and the normal growth delay of the
52 /// BumpPtrAllocatorImpl is 128 (i.e., the memory allocation size increases
53 /// every 128 full chunks), so by changing the delay to 1 we get a
54 /// total growth delay in our allocator collection of 256/1 = 256. This is
55 /// still only half as fast as a normal allocator but we can't go any faster
56 /// without decreasing the number of string pools.
57 static const size_t AllocatorGrowthDelay = 1;
58 typedef llvm::BumpPtrAllocatorImpl<llvm::MallocAllocator, AllocatorSlabSize,
59 SizeThreshold, AllocatorGrowthDelay>
60 Allocator;
61 typedef const char *StringPoolValueType;
62 typedef llvm::StringMap<StringPoolValueType, Allocator> StringPool;
63 typedef llvm::StringMapEntry<StringPoolValueType> StringPoolEntryType;
65 static StringPoolEntryType &
66 GetStringMapEntryFromKeyData(const char *keyData) {
67 return StringPoolEntryType::GetStringMapEntryFromKeyData(keyData);
70 static size_t GetConstCStringLength(const char *ccstr) {
71 if (ccstr != nullptr) {
72 // Since the entry is read only, and we derive the entry entirely from
73 // the pointer, we don't need the lock.
74 const StringPoolEntryType &entry = GetStringMapEntryFromKeyData(ccstr);
75 return entry.getKey().size();
77 return 0;
80 StringPoolValueType GetMangledCounterpart(const char *ccstr) const {
81 if (ccstr != nullptr) {
82 const uint8_t h = hash(llvm::StringRef(ccstr));
83 llvm::sys::SmartScopedReader<false> rlock(m_string_pools[h].m_mutex);
84 return GetStringMapEntryFromKeyData(ccstr).getValue();
86 return nullptr;
89 const char *GetConstCString(const char *cstr) {
90 if (cstr != nullptr)
91 return GetConstCStringWithLength(cstr, strlen(cstr));
92 return nullptr;
95 const char *GetConstCStringWithLength(const char *cstr, size_t cstr_len) {
96 if (cstr != nullptr)
97 return GetConstCStringWithStringRef(llvm::StringRef(cstr, cstr_len));
98 return nullptr;
101 const char *GetConstCStringWithStringRef(llvm::StringRef string_ref) {
102 if (string_ref.data()) {
103 const uint8_t h = hash(string_ref);
106 llvm::sys::SmartScopedReader<false> rlock(m_string_pools[h].m_mutex);
107 auto it = m_string_pools[h].m_string_map.find(string_ref);
108 if (it != m_string_pools[h].m_string_map.end())
109 return it->getKeyData();
112 llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
113 StringPoolEntryType &entry =
114 *m_string_pools[h]
115 .m_string_map.insert(std::make_pair(string_ref, nullptr))
116 .first;
117 return entry.getKeyData();
119 return nullptr;
122 const char *
123 GetConstCStringAndSetMangledCounterPart(llvm::StringRef demangled,
124 const char *mangled_ccstr) {
125 const char *demangled_ccstr = nullptr;
128 const uint8_t h = hash(demangled);
129 llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
131 // Make or update string pool entry with the mangled counterpart
132 StringPool &map = m_string_pools[h].m_string_map;
133 StringPoolEntryType &entry = *map.try_emplace(demangled).first;
135 entry.second = mangled_ccstr;
137 // Extract the const version of the demangled_cstr
138 demangled_ccstr = entry.getKeyData();
142 // Now assign the demangled const string as the counterpart of the
143 // mangled const string...
144 const uint8_t h = hash(llvm::StringRef(mangled_ccstr));
145 llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
146 GetStringMapEntryFromKeyData(mangled_ccstr).setValue(demangled_ccstr);
149 // Return the constant demangled C string
150 return demangled_ccstr;
153 const char *GetConstTrimmedCStringWithLength(const char *cstr,
154 size_t cstr_len) {
155 if (cstr != nullptr) {
156 const size_t trimmed_len = strnlen(cstr, cstr_len);
157 return GetConstCStringWithLength(cstr, trimmed_len);
159 return nullptr;
162 ConstString::MemoryStats GetMemoryStats() const {
163 ConstString::MemoryStats stats;
164 for (const auto &pool : m_string_pools) {
165 llvm::sys::SmartScopedReader<false> rlock(pool.m_mutex);
166 const Allocator &alloc = pool.m_string_map.getAllocator();
167 stats.bytes_total += alloc.getTotalMemory();
168 stats.bytes_used += alloc.getBytesAllocated();
170 return stats;
173 protected:
174 uint8_t hash(llvm::StringRef s) const {
175 uint32_t h = llvm::djbHash(s);
176 return ((h >> 24) ^ (h >> 16) ^ (h >> 8) ^ h) & 0xff;
179 struct PoolEntry {
180 mutable llvm::sys::SmartRWMutex<false> m_mutex;
181 StringPool m_string_map;
184 std::array<PoolEntry, 256> m_string_pools;
187 // Frameworks and dylibs aren't supposed to have global C++ initializers so we
188 // hide the string pool in a static function so that it will get initialized on
189 // the first call to this static function.
191 // Note, for now we make the string pool a pointer to the pool, because we
192 // can't guarantee that some objects won't get destroyed after the global
193 // destructor chain is run, and trying to make sure no destructors touch
194 // ConstStrings is difficult. So we leak the pool instead.
195 static Pool &StringPool() {
196 static llvm::once_flag g_pool_initialization_flag;
197 static Pool *g_string_pool = nullptr;
199 llvm::call_once(g_pool_initialization_flag,
200 []() { g_string_pool = new Pool(); });
202 return *g_string_pool;
205 ConstString::ConstString(const char *cstr)
206 : m_string(StringPool().GetConstCString(cstr)) {}
208 ConstString::ConstString(const char *cstr, size_t cstr_len)
209 : m_string(StringPool().GetConstCStringWithLength(cstr, cstr_len)) {}
211 ConstString::ConstString(llvm::StringRef s)
212 : m_string(StringPool().GetConstCStringWithStringRef(s)) {}
214 bool ConstString::operator<(ConstString rhs) const {
215 if (m_string == rhs.m_string)
216 return false;
218 llvm::StringRef lhs_string_ref(GetStringRef());
219 llvm::StringRef rhs_string_ref(rhs.GetStringRef());
221 // If both have valid C strings, then return the comparison
222 if (lhs_string_ref.data() && rhs_string_ref.data())
223 return lhs_string_ref < rhs_string_ref;
225 // Else one of them was nullptr, so if LHS is nullptr then it is less than
226 return lhs_string_ref.data() == nullptr;
229 Stream &lldb_private::operator<<(Stream &s, ConstString str) {
230 const char *cstr = str.GetCString();
231 if (cstr != nullptr)
232 s << cstr;
234 return s;
237 size_t ConstString::GetLength() const {
238 return Pool::GetConstCStringLength(m_string);
241 bool ConstString::Equals(ConstString lhs, ConstString rhs,
242 const bool case_sensitive) {
243 if (lhs.m_string == rhs.m_string)
244 return true;
246 // Since the pointers weren't equal, and identical ConstStrings always have
247 // identical pointers, the result must be false for case sensitive equality
248 // test.
249 if (case_sensitive)
250 return false;
252 // perform case insensitive equality test
253 llvm::StringRef lhs_string_ref(lhs.GetStringRef());
254 llvm::StringRef rhs_string_ref(rhs.GetStringRef());
255 return lhs_string_ref.equals_insensitive(rhs_string_ref);
258 int ConstString::Compare(ConstString lhs, ConstString rhs,
259 const bool case_sensitive) {
260 // If the iterators are the same, this is the same string
261 const char *lhs_cstr = lhs.m_string;
262 const char *rhs_cstr = rhs.m_string;
263 if (lhs_cstr == rhs_cstr)
264 return 0;
265 if (lhs_cstr && rhs_cstr) {
266 llvm::StringRef lhs_string_ref(lhs.GetStringRef());
267 llvm::StringRef rhs_string_ref(rhs.GetStringRef());
269 if (case_sensitive) {
270 return lhs_string_ref.compare(rhs_string_ref);
271 } else {
272 return lhs_string_ref.compare_insensitive(rhs_string_ref);
276 if (lhs_cstr)
277 return +1; // LHS isn't nullptr but RHS is
278 else
279 return -1; // LHS is nullptr but RHS isn't
282 void ConstString::Dump(Stream *s, const char *fail_value) const {
283 if (s != nullptr) {
284 const char *cstr = AsCString(fail_value);
285 if (cstr != nullptr)
286 s->PutCString(cstr);
290 void ConstString::DumpDebug(Stream *s) const {
291 const char *cstr = GetCString();
292 size_t cstr_len = GetLength();
293 // Only print the parens if we have a non-nullptr string
294 const char *parens = cstr ? "\"" : "";
295 s->Printf("%*p: ConstString, string = %s%s%s, length = %" PRIu64,
296 static_cast<int>(sizeof(void *) * 2),
297 static_cast<const void *>(this), parens, cstr, parens,
298 static_cast<uint64_t>(cstr_len));
301 void ConstString::SetCString(const char *cstr) {
302 m_string = StringPool().GetConstCString(cstr);
305 void ConstString::SetString(llvm::StringRef s) {
306 m_string = StringPool().GetConstCStringWithStringRef(s);
309 void ConstString::SetStringWithMangledCounterpart(llvm::StringRef demangled,
310 ConstString mangled) {
311 m_string = StringPool().GetConstCStringAndSetMangledCounterPart(
312 demangled, mangled.m_string);
315 bool ConstString::GetMangledCounterpart(ConstString &counterpart) const {
316 counterpart.m_string = StringPool().GetMangledCounterpart(m_string);
317 return (bool)counterpart;
320 void ConstString::SetCStringWithLength(const char *cstr, size_t cstr_len) {
321 m_string = StringPool().GetConstCStringWithLength(cstr, cstr_len);
324 void ConstString::SetTrimmedCStringWithLength(const char *cstr,
325 size_t cstr_len) {
326 m_string = StringPool().GetConstTrimmedCStringWithLength(cstr, cstr_len);
329 ConstString::MemoryStats ConstString::GetMemoryStats() {
330 return StringPool().GetMemoryStats();
333 void llvm::format_provider<ConstString>::format(const ConstString &CS,
334 llvm::raw_ostream &OS,
335 llvm::StringRef Options) {
336 format_provider<StringRef>::format(CS.GetStringRef(), OS, Options);