Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / docs / Frontend / PerformanceTips.rst
blobdfa3ccdd1ddd1ee6ef047279aa2c7d0466b7e2a9
1 =====================================
2 Performance Tips for Frontend Authors
3 =====================================
5 .. contents::
6    :local:
7    :depth: 2
9 Abstract
10 ========
12 The intended audience of this document is developers of language frontends
13 targeting LLVM IR. This document is home to a collection of tips on how to
14 generate IR that optimizes well.
16 IR Best Practices
17 =================
19 As with any optimizer, LLVM has its strengths and weaknesses.  In some cases,
20 surprisingly small changes in the source IR can have a large effect on the
21 generated code.
23 Beyond the specific items on the list below, it's worth noting that the most
24 mature frontend for LLVM is Clang.  As a result, the further your IR gets from
25 what Clang might emit, the less likely it is to be effectively optimized. It
26 can often be useful to write a quick C program with the semantics you're trying
27 to model and see what decisions Clang's IRGen makes about what IR to emit.
28 Studying Clang's CodeGen directory can also be a good source of ideas.  Note
29 that Clang and LLVM are explicitly version locked so you'll need to make sure
30 you're using a Clang built from the same git revision or release as the LLVM
31 library you're using.  As always, it's *strongly* recommended that you track
32 tip of tree development, particularly during bring up of a new project.
34 The Basics
35 ^^^^^^^^^^^
37 #. Make sure that your Modules contain both a data layout specification and
38    target triple. Without these pieces, non of the target specific optimization
39    will be enabled.  This can have a major effect on the generated code quality.
41 #. For each function or global emitted, use the most private linkage type
42    possible (private, internal or linkonce_odr preferably).  Doing so will
43    make LLVM's inter-procedural optimizations much more effective.
45 #. Avoid high in-degree basic blocks (e.g. basic blocks with dozens or hundreds
46    of predecessors).  Among other issues, the register allocator is known to
47    perform badly with confronted with such structures.  The only exception to
48    this guidance is that a unified return block with high in-degree is fine.
50 Use of allocas
51 ^^^^^^^^^^^^^^
53 An alloca instruction can be used to represent a function scoped stack slot,
54 but can also represent dynamic frame expansion.  When representing function
55 scoped variables or locations, placing alloca instructions at the beginning of
56 the entry block should be preferred.   In particular, place them before any
57 call instructions. Call instructions might get inlined and replaced with
58 multiple basic blocks. The end result is that a following alloca instruction
59 would no longer be in the entry basic block afterward.
61 The SROA (Scalar Replacement Of Aggregates) and Mem2Reg passes only attempt
62 to eliminate alloca instructions that are in the entry basic block.  Given
63 SSA is the canonical form expected by much of the optimizer; if allocas can
64 not be eliminated by Mem2Reg or SROA, the optimizer is likely to be less
65 effective than it could be.
67 Avoid loads and stores of large aggregate type
68 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
70 LLVM currently does not optimize well loads and stores of large :ref:`aggregate
71 types <t_aggregate>` (i.e. structs and arrays).  As an alternative, consider
72 loading individual fields from memory.
74 Aggregates that are smaller than the largest (performant) load or store
75 instruction supported by the targeted hardware are well supported.  These can
76 be an effective way to represent collections of small packed fields.
78 Prefer zext over sext when legal
79 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
81 On some architectures (X86_64 is one), sign extension can involve an extra
82 instruction whereas zero extension can be folded into a load.  LLVM will try to
83 replace a sext with a zext when it can be proven safe, but if you have
84 information in your source language about the range of an integer value, it can
85 be profitable to use a zext rather than a sext.
87 Alternatively, you can :ref:`specify the range of the value using metadata
88 <range-metadata>` and LLVM can do the sext to zext conversion for you.
90 Zext GEP indices to machine register width
91 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
93 Internally, LLVM often promotes the width of GEP indices to machine register
94 width.  When it does so, it will default to using sign extension (sext)
95 operations for safety.  If your source language provides information about
96 the range of the index, you may wish to manually extend indices to machine
97 register width using a zext instruction.
99 When to specify alignment
100 ^^^^^^^^^^^^^^^^^^^^^^^^^^
101 LLVM will always generate correct code if you don’t specify alignment, but may
102 generate inefficient code.  For example, if you are targeting MIPS (or older
103 ARM ISAs) then the hardware does not handle unaligned loads and stores, and
104 so you will enter a trap-and-emulate path if you do a load or store with
105 lower-than-natural alignment.  To avoid this, LLVM will emit a slower
106 sequence of loads, shifts and masks (or load-right + load-left on MIPS) for
107 all cases where the load / store does not have a sufficiently high alignment
108 in the IR.
110 The alignment is used to guarantee the alignment on allocas and globals,
111 though in most cases this is unnecessary (most targets have a sufficiently
112 high default alignment that they’ll be fine).  It is also used to provide a
113 contract to the back end saying ‘either this load/store has this alignment, or
114 it is undefined behavior’.  This means that the back end is free to emit
115 instructions that rely on that alignment (and mid-level optimizers are free to
116 perform transforms that require that alignment).  For x86, it doesn’t make
117 much difference, as almost all instructions are alignment-independent.  For
118 MIPS, it can make a big difference.
120 Note that if your loads and stores are atomic, the backend will be unable to
121 lower an under aligned access into a sequence of natively aligned accesses.
122 As a result, alignment is mandatory for atomic loads and stores.
124 Other Things to Consider
125 ^^^^^^^^^^^^^^^^^^^^^^^^
127 #. Use ptrtoint/inttoptr sparingly (they interfere with pointer aliasing
128    analysis), prefer GEPs
130 #. Prefer globals over inttoptr of a constant address - this gives you
131    dereferencability information.  In MCJIT, use getSymbolAddress to provide
132    actual address.
134 #. Be wary of ordered and atomic memory operations.  They are hard to optimize
135    and may not be well optimized by the current optimizer.  Depending on your
136    source language, you may consider using fences instead.
138 #. If calling a function which is known to throw an exception (unwind), use
139    an invoke with a normal destination which contains an unreachable
140    instruction.  This form conveys to the optimizer that the call returns
141    abnormally.  For an invoke which neither returns normally or requires unwind
142    code in the current function, you can use a noreturn call instruction if
143    desired.  This is generally not required because the optimizer will convert
144    an invoke with an unreachable unwind destination to a call instruction.
146 #. Use profile metadata to indicate statically known cold paths, even if
147    dynamic profiling information is not available.  This can make a large
148    difference in code placement and thus the performance of tight loops.
150 #. When generating code for loops, try to avoid terminating the header block of
151    the loop earlier than necessary.  If the terminator of the loop header
152    block is a loop exiting conditional branch, the effectiveness of LICM will
153    be limited for loads not in the header.  (This is due to the fact that LLVM
154    may not know such a load is safe to speculatively execute and thus can't
155    lift an otherwise loop invariant load unless it can prove the exiting
156    condition is not taken.)  It can be profitable, in some cases, to emit such
157    instructions into the header even if they are not used along a rarely
158    executed path that exits the loop.  This guidance specifically does not
159    apply if the condition which terminates the loop header is itself invariant,
160    or can be easily discharged by inspecting the loop index variables.
162 #. In hot loops, consider duplicating instructions from small basic blocks
163    which end in highly predictable terminators into their successor blocks.
164    If a hot successor block contains instructions which can be vectorized
165    with the duplicated ones, this can provide a noticeable throughput
166    improvement.  Note that this is not always profitable and does involve a
167    potentially large increase in code size.
169 #. When checking a value against a constant, emit the check using a consistent
170    comparison type.  The GVN pass *will* optimize redundant equalities even if
171    the type of comparison is inverted, but GVN only runs late in the pipeline.
172    As a result, you may miss the opportunity to run other important
173    optimizations.
175 #. Avoid using arithmetic intrinsics unless you are *required* by your source
176    language specification to emit a particular code sequence.  The optimizer
177    is quite good at reasoning about general control flow and arithmetic, it is
178    not anywhere near as strong at reasoning about the various intrinsics.  If
179    profitable for code generation purposes, the optimizer will likely form the
180    intrinsics itself late in the optimization pipeline.  It is *very* rarely
181    profitable to emit these directly in the language frontend.  This item
182    explicitly includes the use of the :ref:`overflow intrinsics <int_overflow>`.
184 #. Avoid using the :ref:`assume intrinsic <int_assume>` until you've
185    established that a) there's no other way to express the given fact and b)
186    that fact is critical for optimization purposes.  Assumes are a great
187    prototyping mechanism, but they can have negative effects on both compile
188    time and optimization effectiveness.  The former is fixable with enough
189    effort, but the later is fairly fundamental to their designed purpose.
192 Describing Language Specific Properties
193 =======================================
195 When translating a source language to LLVM, finding ways to express concepts
196 and guarantees available in your source language which are not natively
197 provided by LLVM IR will greatly improve LLVM's ability to optimize your code.
198 As an example, C/C++'s ability to mark every add as "no signed wrap (nsw)" goes
199 a long way to assisting the optimizer in reasoning about loop induction
200 variables and thus generating more optimal code for loops.
202 The LLVM LangRef includes a number of mechanisms for annotating the IR with
203 additional semantic information.  It is *strongly* recommended that you become
204 highly familiar with this document.  The list below is intended to highlight a
205 couple of items of particular interest, but is by no means exhaustive.
207 Restricted Operation Semantics
208 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
209 #. Add nsw/nuw flags as appropriate.  Reasoning about overflow is
210    generally hard for an optimizer so providing these facts from the frontend
211    can be very impactful.
213 #. Use fast-math flags on floating point operations if legal.  If you don't
214    need strict IEEE floating point semantics, there are a number of additional
215    optimizations that can be performed.  This can be highly impactful for
216    floating point intensive computations.
218 Describing Aliasing Properties
219 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
221 #. Add noalias/align/dereferenceable/nonnull to function arguments and return
222    values as appropriate
224 #. Use pointer aliasing metadata, especially tbaa metadata, to communicate
225    otherwise-non-deducible pointer aliasing facts
227 #. Use inbounds on geps.  This can help to disambiguate some aliasing queries.
229 Undefined Values
230 ^^^^^^^^^^^^^^^^
232 #. Use poison values instead of undef values whenever possible.
234 #. Tag function parameters with the noundef attribute whenever possible.
236 Modeling Memory Effects
237 ^^^^^^^^^^^^^^^^^^^^^^^^
239 #. Mark functions as readnone/readonly/argmemonly or noreturn/nounwind when
240    known.  The optimizer will try to infer these flags, but may not always be
241    able to.  Manual annotations are particularly important for external
242    functions that the optimizer can not analyze.
244 #. Use the lifetime.start/lifetime.end and invariant.start/invariant.end
245    intrinsics where possible.  Common profitable uses are for stack like data
246    structures (thus allowing dead store elimination) and for describing
247    life times of allocas (thus allowing smaller stack sizes).
249 #. Mark invariant locations using !invariant.load and TBAA's constant flags
251 Pass Ordering
252 ^^^^^^^^^^^^^
254 One of the most common mistakes made by new language frontend projects is to
255 use the existing -O2 or -O3 pass pipelines as is.  These pass pipelines make a
256 good starting point for an optimizing compiler for any language, but they have
257 been carefully tuned for C and C++, not your target language.  You will almost
258 certainly need to use a custom pass order to achieve optimal performance.  A
259 couple specific suggestions:
261 #. For languages with numerous rarely executed guard conditions (e.g. null
262    checks, type checks, range checks) consider adding an extra execution or
263    two of LoopUnswitch and LICM to your pass order.  The standard pass order,
264    which is tuned for C and C++ applications, may not be sufficient to remove
265    all dischargeable checks from loops.
267 #. If your language uses range checks, consider using the IRCE pass.  It is not
268    currently part of the standard pass order.
270 #. A useful sanity check to run is to run your optimized IR back through the
271    -O2 pipeline again.  If you see noticeable improvement in the resulting IR,
272    you likely need to adjust your pass order.
275 I Still Can't Find What I'm Looking For
276 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
278 If you didn't find what you were looking for above, consider proposing a piece
279 of metadata which provides the optimization hint you need.  Such extensions are
280 relatively common and are generally well received by the community.  You will
281 need to ensure that your proposal is sufficiently general so that it benefits
282 others if you wish to contribute it upstream.
284 You should also consider describing the problem you're facing on `Discourse
285 <https://discourse.llvm.org>`_ and asking for advice.
286 It's entirely possible someone has encountered your problem before and can
287 give good advice.  If there are multiple interested parties, that also
288 increases the chances that a metadata extension would be well received by the
289 community as a whole.
291 Adding to this document
292 =======================
294 If you run across a case that you feel deserves to be covered here, please send
295 a patch to `llvm-commits
296 <http://lists.llvm.org/mailman/listinfo/llvm-commits>`_ for review.
298 If you have questions on these items, please ask them on `Discourse
299 <https://discourse.llvm.org>`_.  The more relevant
300 context you are able to give to your question, the more likely it is to be
301 answered.